
Ticket #140 (new Enhancements to standard)

Add const Keyword to the C bindings

Reported by: erezh Owned by: erezh

Priority: Had 1st reading Milestone: 2009/06/08 California

Version: MPI 2.2 Keywords:

Cc: erezh@…, rsthakur, dgsolt,
kannan, buntinas,
alexander.supalov@…, htor,
balaji@…, jayesh@…

Implementation
status:

Completed

Description (last modified by erezh) (diff)

Add const keyword to the C bindings
workgroup list: mpi-const@…

Background:

The const keyword in C defines a contract between the library implementer and the library
user. Using the const keyword the library contracts that it will not change its input object. This
contract enables some compile-time optimization, but more important it provides clearer and
const-correct interface to the library user. (more on http://en.wikipedia.org
/wiki/Const_correctness)

The MPI C bindings as defined by the MPI 1.1 & 2.0 standards are missing the const keyword
for many of the input only parameters.

Proposal:

Add the const keyword to the API’s listed below.

Note: adding the const keyword to the point-to-point and collectives API’s send buffer
depends on the the proposal to ticket #45 Remove Send Buffer Access Restriction

Rational:

The missing const keyword means that the contract between the user and the MPI library is
weaker than it should be. Users need to cast away const-ness before calling MPI. The C++
binding has already implemented a const correct interface. This change catches up with the
C++ interface. (note that the C++ interface implementations cast away the const-ness when
calling their C binding).

Impact on existing implementations:

MPI library implementations need to change their C header files.

Impact on applications:

Risk: compilers that still do not support the const keyword. (i.e., compilers that are not
ANSI/ISO compliant)

Backward compatibility: There should not be any backward compatibility issue. Already

Opened 2 months ago
Last modified 7 days ago

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

1 of 7 6/3/09 9:56 AM

compiled programs should run without a problem with a new dynamically loaded library as
there is no change to the size of the parameters. The C linkers do not check for const
correctness, thus no error here. Recompiled programs should see no new compilation errors or
warning since the const keyword guarantees a stronger contract; any non const pointer is
automatically promoted to be const.

Prototype

This proposal was tested using Microsoft Visual Studio, GNU, Intel and Pathscale compilers
using the MPICH2 and the Intel test suites. All tests compiled without any extra warning or
errors and run correctly.

Adding the const keyword:

A compiled list of API’s that are missing the const keywords is listed below. The API's are
grouped by functionality and the parameter where the const keyword is applied. The last
section lists 4 API’s where this proposal suggests not to add the const keyword as it would
break source level backward compatibility.

The following list only shows where to add the const keyword to the C interface defined in MPI
2.1. The rest of the interface and especially the argument names are not changed.

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

2 of 7 6/3/09 9:56 AM

/* Chapter 3: Point-to-point send buffer */
int MPI_Bsend(const void*, int, MPI_Datatype, int, int, MPI_Comm);
int MPI_Bsend_init(const void*, int, MPI_Datatype, int,int, MPI_Comm, MPI_Request*);
int MPI_Ibsend(const void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request*);
int MPI_Irsend(const void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request*);
int MPI_Isend(const void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request*);
int MPI_Issend(const void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request*);
int MPI_Rsend(const void*, int, MPI_Datatype, int, int, MPI_Comm);
int MPI_Rsend_init(const void*, int, MPI_Datatype, int,int, MPI_Comm, MPI_Request*);
int MPI_Send(const void*, int, MPI_Datatype, int, int, MPI_Comm);
int MPI_Send_init(const void*, int, MPI_Datatype, int, int, MPI_Comm, MPI_Request*);
int MPI_Sendrecv(const void*, int, MPI_Datatype,int, int, void*, int, MPI_Datatype,
int MPI_Ssend(const void*, int, MPI_Datatype, int, int, MPI_Comm);
int MPI_Ssend_init(const void*, int, MPI_Datatype, int,int, MPI_Comm, MPI_Request*);

/* Chapter 3: Miscellany */
int MPI_Test_cancelled(const MPI_Status*, int*);

/* Chapter 4: Index/Count arrays */
int MPI_Type_create_darray(int, int, int, const int [], const int [], const
int MPI_Type_create_hindexed(int, const int [], const MPI_Aint [], MPI_Datatype, MPI_Datatype*);
int MPI_Type_create_indexed_block(int, int, const int [], MPI_Datatype, MPI_Datatype*);
int MPI_Type_create_struct(int, const int [], const MPI_Aint [], const MPI_Datatype [], MPI_Datatype*);
int MPI_Type_create_subarray(int, const int [], const int [], const int [],
int MPI_Type_hindexed(int, const int*, const MPI_Aint*, MPI_Datatype, MPI_Datatype*);
int MPI_Type_indexed(int, const int*, const int*, MPI_Datatype, MPI_Datatype*);
int MPI_Type_struct(int, const int*, const MPI_Aint*, const MPI_Datatype*, MPI_Datatype*);

/* Chapter 4: Pack/Unpack datarep string and input buffer */
int MPI_Pack(const void*, int, MPI_Datatype, void*, int, int*, MPI_Comm);
int MPI_Pack_external(const char*, const void*, int, MPI_Datatype, void*, MPI_Aint, MPI_Aint*);
int MPI_Pack_external_size(const char*, int, MPI_Datatype, MPI_Aint*);
int MPI_Unpack(const void*, int, int*, void*, int, MPI_Datatype, MPI_Comm);
int MPI_Unpack_external(const char*, const void*, MPI_Aint, MPI_Aint*, void

/* Chapter 4: Miscellany */
int MPI_Get_address(const void*, MPI_Aint*);

/* Chapter 5: Collectives send buffer */
int MPI_Allgather(const void* , int, MPI_Datatype, void*, int, MPI_Datatype, MPI_Comm);
int MPI_Allgatherv(const void* , int, MPI_Datatype, void*, const int*, const
int MPI_Allreduce(const void* , void*, int, MPI_Datatype, MPI_Op, MPI_Comm);
int MPI_Alltoall(const void* , int, MPI_Datatype, void*, int, MPI_Datatype, MPI_Comm);
int MPI_Alltoallv(const void* , const int*, const int*, MPI_Datatype, void
int MPI_Alltoallw(const void*, const int [], const int [], const MPI_Datatype [],
int MPI_Exscan(const void*, void*, int, MPI_Datatype, MPI_Op, MPI_Comm) ;
int MPI_Gather(const void* , int, MPI_Datatype, void*, int, MPI_Datatype,
int MPI_Gatherv(const void* , int, MPI_Datatype, void*, const int*, const
int MPI_Reduce(const void* , void*, int, MPI_Datatype, MPI_Op, int, MPI_Comm);
int MPI_Reduce_scatter(const void* , void*, const int*, MPI_Datatype, MPI_Op, MPI_Comm);
int MPI_Scan(const void* , void*, int, MPI_Datatype, MPI_Op, MPI_Comm);
int MPI_Scatter(const void* , int, MPI_Datatype, void*, int, MPI_Datatype,
int MPI_Scatterv(const void* , const int*, const int*, MPI_Datatype, void

/* Chapter 6: Index/Count arrays */
int MPI_Group_excl(MPI_Group, int, const int*, MPI_Group*);
int MPI_Group_incl(MPI_Group, int, const int*, MPI_Group*);
int MPI_Group_translate_ranks(MPI_Group, int, const int*, MPI_Group, int*);

/* Chapter 6: Input strings */
int MPI_Comm_set_name(MPI_Comm, const char*);
int MPI_Type_set_name(MPI_Datatype, const char*);
int MPI_Win_set_name(MPI_Win, const char*);

/* Chapter 7: Index/Count arrays */
int MPI_Cart_create(MPI_Comm, int, const int*, const int*, int, MPI_Comm*);
int MPI_Cart_map(MPI_Comm, int, const int*, const int*, int*);
int MPI_Cart_rank(MPI_Comm, const int*, int*);

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

3 of 7 6/3/09 9:56 AM

Change History

Changed 2 months ago by erezh

This ticket combines tickets #46, #129, #130. (there are no other changes in the ticket)

Implementation is available from ANL

tarballs http://www.mcs.anl.gov/research/projects/mpich2/downloads/tarballs/nightly
/const

svn https://svn.mcs.anl.gov/repos/mpi/mpich2/branches/dev/mpi_binding_const

see ticket #46 for old comments and supporting data

Changed 2 months ago by erezh

cc buntinas@…, alexander.supalov@…, htor, balaji@…, jayesh@… added

Changed 2 months ago by buntinas

cc buntinas added; buntinas@… removed

Changed 2 months ago by buntinas

This looks good to me.

-d

Changed 2 months ago by erezh

description modified (diff)

adding text for functions not changed for backward compat; MPI_User_function and
MPI_Copy_function.

Changed 2 months ago by erezh

description modified (diff)

Changed 2 months ago by rsthakur

Looks good.

Changed 2 months ago by traff

Reviewed and ok'd in the technical sense for Chapters 7 (uncontroversial), 9
(uncontroversial), 11 (controversial)

Jesper

Changed 2 months ago by htor

Entry to the Change Log

The 'const' keyword has been added to many functions in chapters 3-11, 13, 15, and 16.

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

4 of 7 6/3/09 9:56 AM

follow-up: ↓ 13

in reply to: ↑ 11

Chapter 5 looks good (reviewed)! It also does not conflict with MPI_IN_PLACE for the
currently specified collectives and #94 and #31. So it's fine with me!

Changed 2 months ago by asupalov

Reviewed, not OK. May cause fundamental problems with Intel bi-endian complier that
does in-place byte swapping when necessary.

Changed 2 months ago by RolfRabenseifner

1. The proposal should clearly state, that the shown interfaces are not the future
C-interfaces in MPI-2.2. The list only shows, on which arguments the const will be added.
The argument names, as shown in MPI-2.1, should not be not removed.

The text of the "Proposal"

Add the const keyword to the API’s listed below.

should be changed to

Add the const keywords to the C-API's of MPI-2.1 according to the positions
shown in the API's listed below.

2. About the proposal for

int MPI_Comm_spawn_multiple(int, char*[], char**[], const int [], MPI_Info
[], int, MPI_Comm, MPI_Comm*, int []);

Why is there an obvious inconsistency between

the proposed C interface,
and the existing C++ interface

see 302.7-17.
1st, 2nd, and 4th argument should be const.

3. The proposal for

int MPI_Comm_spawn(const char*, char*[], int, MPI_Info, int, MPI_Comm,
MPI_Comm*, int []);

is wrong: see 297.10-16:
1st and 2nd argument should be const. What are the rules for the 4th argument?

4. The tickets #46, #129, #130 should be closed.

5. How was it possible, that the list is wrong: See tickets #129 and #130 and the review
item 4 above. How can we get to a correct list?

Changed 2 months ago by rlgraham

The changes in chapter 3 are consistent with the proposal.

Changed 2 months ago by erezh

cc erezh@… added; erezh removed

Replying to RolfRabenseifner:

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

5 of 7 6/3/09 9:56 AM

1. The proposal should clearly state, that the shown interfaces are not the future
C-interfaces in MPI-2.2. The list only shows, on which arguments the const will be added.
The argument names, as shown in MPI-2.1, should not be not removed. The text of the
"Proposal" Add the const keyword to the API’s listed below. should be changed to Add the
const keywords to the C-API's of MPI-2.1 according to the positions shown in the API's
listed below.

if we take this proposal, I expect that future C-APIs will adopt the const keyword.

2. About the proposal for int MPI_Comm_spawn_multiple(int, char*[], char**[], const int
[], MPI_Info [], int, MPI_Comm, MPI_Comm*, int []); Why is there an obvious
inconsistency between - the proposed C interface, - and the existing C++ interface see
302.7-17.
1st, 2nd, and 4th argument should be const.

This is an explicit chose not to take the const keyword for the 1st, 2nd, 3rd and 4th
arguments, not to break backward compatibility. (the 4th arg is where the const is added)

3. The proposal for int MPI_Comm_spawn(const char*, char*[], int, MPI_Info, int,
MPI_Comm, MPI_Comm*, int []); is wrong: see 297.10-16:
1st and 2nd argument should be const. What are the rules for the 4th argument?

again same reason, not to break backward compat. changing the 2nd arg to const breaks
backward compatibility. there is no point of changing the 4th arg to const since its a
handle value.

4. The tickets #46, #129, #130 should be closed.

I left this open explicitly for the forum to decide if to got with ticket #46 or this one #140.

5. How was it possible, that the list is wrong: See tickets #129 and #130 and the review
item 4 above. How can we get to a correct list?

There was trivial mistakes in #46 (fixed by #129) and I didn't consider the changes in
#130 to be important at the time, but adopted the proposals. I believe that we got the
right list in this proposal; (especially since it was implemented and tested).

Changed 2 months ago by erezh

priority changed from Waiting for reviews to Reviewed

Changed 8 weeks ago by erezh

description modified (diff)

Changed 8 weeks ago by erezh

priority changed from Reviewed to Had 1st reading
milestone changed from 2009/04/06 Chicago to 2009/06/08 California

passed forum reading (replaces ticket #46)

Changed 7 days ago by gropp

The following message was sent to the MPI 2.2 list. I have added it as a comment as it is
highly relevant.

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

6 of 7 6/3/09 9:56 AM

All -

The signatories of this letter represent the majority of MPI implementors participating in the MPI Forum. We are concerned that proposal #140 ("Add const Keyword to the C bindings") has a number of issues which suggest delaying to MPI-3 would be appropriate.

In particular, the proposal:

- Is likely to pass a simple majority vote, but does not carry the support of the majority of MPI implementors, suggesting consensus has not been reached.
- Changes 90+ MPI API interfaces, which is not a "trivial" change and therefore does not meet the intent of the MPI-2.2 process.
- Is not needed to fix any serious bug in the standard text or to solve an issue that cannot easily be avoided by the MPI application.
- Does not offer any demonstrable optimization opportunities for implementation or application, but may constrain future implementation opportunities.

Therefore, we ask for your assistance in deferring proposal #140 to the MPI-3 process, where more time can be spent assessing its impact.

Thank you,

- Cisco: Jeff Squires
- Intel: Alexander Supalov & Keith Underwood
- Sandia: Brian Barrett
- IBM: Richard Treumann
- QLogic: Avneesh Pant
- UTenn: George Bosilca
- HP: David George Solt
- UHouston: Edgar Gabriel
- Myricom: Patrick Geoffray
- ORNL: Richard Graham
- Sun: Terry Dontje
- NEC: Hubert Ritzdorf & Jesper Traeff

Dick Treumann - MPI Team
IBM Systems & Technology Group
Dept X2ZA / MS P963 -- 2455 South Road -- Poughkeepsie, NY 12601
Tele (845) 433-7846 Fax (845) 433-8363

#140 (Add const Keyword to the C bindings) – MPI Forum – Trac https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/140

7 of 7 6/3/09 9:56 AM

