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Abstract

We propose new non-blocking interfaces for the collective group communication functions defined in MPI-

1 and MPI-2. This document is meant as a standard extension and written in the same way as the MPI

standards. It covers the MPI-API as well as the semantics of the new operations.

1 Introduction

This document is designed to serve as a discussion gound for the inclusion of non-blocking collective operations
into the MPI standard. It was shown by several groups [1, 4, 7, 11] that non-blocking collectives can be used to
improve application performance and are thus a viable addition to the MPI standard.

The MPI-3 Collective Operations Working Group picks this topic up and discusses a viable interface for the next
generation MPI standard. The working group meets every two months at the MPI Forum and has a teleconference
between two MPI Forum Meetings. Regular attendees (≥ 50%) of the group’s teleconference are (alphabetically):

• Greg Bronevetsky (LLNL)

• Torsten Hoefler (IU)

• Bin Jia (IBM)

• Andrew Lumsdaine (IU)

• Adam Moody (LLNL)

• Christian Siebert (NEC)

• Jesper Larsson Traff (NEC)

• Rolf VandeVaart (Sun)

Several applications benefit from overlapping communication and computation using non-blocking MPI point-to-
point operations. The same mechanism can be applied to collective operations which are defined in a blocking
manner in the MPI standard. For example a parallel 3D Fast Fourier Transformation could overlap the often-used
and scalability limiting MPI ALLTOALL operation with local calculation to utilize the architecture more efficiently.

Additionally, these applications benefit from avoiding a phenomenon that we call pseudo-synchronization, which
is introduced with most blocking collective operations. A collective operation is finished on a given process as soon
as its part of the overall communication is done and the communication buffer can be accessed. This does not
indicate that other processes have completed, or for that matter even started the collective operation. However,
most algorithms introduce a synchronization due to data dependencies (it is obvious that every process has to
wait for the root process in a MPI BCAST). The application waiting time in blocking collective calls results from
the pseudo-synchronization and it limits the scalability of highly parallel MPI codes. Non-blocking collective
operations allow to perform the pseudo-synchronizing collective operation in the background and so would allow
some limited asynchronism and load imbalance between processes.

We define a new interface, similar to the non-blocking point-to-point interface. We do not use tags and thus, all
collective operations must follow the ordering rules for collective calls. This means that the user has to ensure
proper ordering (like in MPI-2 threaded environments).
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1.1 Background

Non-blocking collective operations are not included in the current Message Passing Interface (MPI, [13]) standard
even though they were considered in early drafts for MPI-2. The Journal of Development (JoD, [14]), a compilation
of ideas that were considered but ultimately not included in the standard, documents “split collectives”. Split
collectives offer some of the benefits of the non-blocking collective operations proposed here, but are somewhat
limited in their applicability. For example, while they enable overlapping of computation and communication for
collective operations, they do not allow multiple outstanding collective operations on the same communicator or
matching with blocking collective operations. These limitations were recognized by IBM and in response they
used the more generic earlier interface for their Parallel Environment (PE). Unfortunately, this interface is only
implemented in the PE and applications using this interface were not portable. The MPI/RT standard [10] offers
non-blocking semantics for collective operations but the state of the project is unclear. In this document we define
a new interface that has the same advantages of the IBM interface and we provide a reference implementation to
ensure portability. Details about our implementation and results gathered with several applications can be found
in [6, 3, 2, 9, 8].

1.2 Overview of the new Approach

the new interface is deigned to fit the programmer’s needs to the existing MPI standard, even if the MPI imple-
mentation gets more complicated (e.g. has to handle proper nesting). Our API design is derived from the current
MPI API design. We use the same MPI REQUEST objects in our interface as are used in the MPI standard for
non-blocking point-to-point operations or generalized requests and we offer similar semantics like the blocking
collective operations.

We relax the semantics of the currently defined blocking collectives such that more than one collective operation
can be active on a given communicator. This introduces ordering and matching issues similar to point-to-point
communication. We decided against the use of tags to remain close to the existing collective operations and
simplify the implementation. The matching of those operations is ruled by the order in which the calls are issued.
The same will be true for their non-blocking counterparts where the matching of collective operations will be
defined globally (i.e., a non-blocking Gather might match erroneously with a non-blocking Scatter).

1.3 Reference Implementation

We tested our interface design with a reference implementation called LibNBC (http://www.unixer.de/NBC)
that is publicly available [6]. We optimized several codes [2, 9, 2, 9, 8] for collective communication computation
overlap and compared different implementation options [3]. We also showed how non-blocking collective operations
can be optimized for a specific interconnect [5].

1.4 Organization of the Document

The following section defines special terms used throughout the document. Section 2 introduces the newly
proposed interface for non-blocking collectives and discusses several semantic properties.

1.5 Terms

A basic distinction has to be made between non-blocking collectives, which define a non-blocking interface, and
the different progress types. We define two progress types for collective operations in general:

Synchronous Progress Progress that is only made when the user thread enters the MPI library (e.g. with calls
to MPI WAIT, MPI TEST).

Asynchronous Progress Progress that is made independently of the user program (e.g., a separate communi-
cation thread is used or the hardware supports collective communication offload).

Unexpected Progress Progress is made, even before the user called the collective call. This is not useful for
all collective operations, but seems beneficial for tree-like communications as MPI BCAST.

2 Interface Definition

A call to a non-blocking barrier would look like:
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1 MPI_Ibarrier(comm, request);

...

/* computation, other MPI communications */

...

MPI_Wait(request, status);

The MPI IBARRIER call returns a request (similar to non-blocking point-to-point communication) that can be
used as any MPI REQUEST with MPI WAIT and MPI TEST. Depending on the quality of the implementation,
the user might need to call MPI TEST to progress the collective operation in the background (especially in non-
threaded environments), otherwise the whole collective might be performed blocking in the according MPI WAIT
without any possibility of overlapping. High-quality implementations should enable asynchronous progress or even
unexpected progress while other implementations are free to implement simple synchronous progression schemes.

2.1 General Rules for Non-Blocking Collective Communication

This section defines common rules for all non-blocking collective operations:

• Non-blocking collective communications can be nested on a single communicator. However, the MPI im-
plementation may limit the number of outstanding non-blocking collectives to some arbitrary number. If a
new non-blocking communication gets started, and the MPI library has no free resources, it fails and raises
an exception.

• The send buffer must not be changed for an outstanding non-blocking collective operation, and the receive
buffer must not be read until the operation is finished (e.g, after MPI WAIT).

• Request test and wait functions (MPI Test, MPI Wait, MPI TESTALL, MPI TESTANY, ...) described in
Section 3.7 of the MPI-1.1 [12] standard are supported for non-blocking collective communications.

• MPI Request free is not applicable to collective operations because they have both, send and receive se-
mantics. Freeing a request is only useful at the sender side and not on the receiver side. Thus, it is not
applicable to collective operations.

• MPI Cancel is not supported

• The order of issued non-blocking collective operations defines the matching of them (cf. ordering rules for
collective operations in the MPI-1.1 standard and MPI-2 standard in threaded environments).

• Non-blocking collective operations and blocking collective operations can not match each other. Any at-
tempts to match them should fail to prevent user portability errors.

• progress is defined similar as for non-blocking point-to-point in the MPI-2 standard

• operations are not tagged to stay close to the current MPI semantics for collective operations (in threaded
environments) and to enable a simple implementation on top of send receive (an implementation could
simply use negative tags to identify collectives internally)

• MPI request objects are used to enable mixing with point-to-point operations in operations like MPI Waitany.
The authors do not see a problem to add this third class of requests (the two classes right now are point-
to-point requests and generalized requests).

• Status objects are not changed by any call finishing a non-blocking collective because all the information is
available in the arguments (there are no wildcards in collectives).

The proposal strictly disallows matching of blocking and non-blocking collective operations. The matching rules
for blocking collective operations are not changed, thus, they have to match in order. That means that it would be
an erroneous program if rank a and rank b would call MPI BCAST and MPI SCATTER on the same communicator
at the same time (the program could deadlock). We extend this definition for non-blocking collectives. The
relaxation of rule that only a single collective can be active on any communicator makes a clarification necessary.
Non-blocking collective operations match strictly in order. It is erroneous if rank a and rank b call MPI IBCAST
and MPI ISCATTER on the same communicator at the same time.
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2.2 Routine Interfaces

This section describes some routines in the style of the MPI standard. Not all routines are explained explicitely
due to the similarity to the MPI-standardized ones. The new features are summarized in ”Other Collective
Routines”.

2.2.1 Barrier Synchronization

MPI IBARRIER(comm, request)
IN comm communicator (handle)
OUT request request (handle)

int MPI Ibarrier(MPI Comm comm, MPI Request* request)

void MPI::Comm::Ibarrier(MPI::Request *request) const = 0

MPI IBARRIER(COMM, REQUEST, IERR)
INTEGER COMM, IERROR, REQUEST

MPI IBARRIER initializes a barrier on a communicator. MPI WAIT may be used to block until it is finished.

Advice to users. A non-blocking barrier sounds unusable because MPI BARRIER is defined
in a blocking manner to protect critical regions. However, there are codes that may move
independent computations between the MPI IBARRIER and the subsequent Wait/Test call to
overlap the barrier latency. The semantic properties are also useful when mixing collectives
and point-to-point messages.

Advice to implementers. A non-blocking barrier can be used to hide the latency of the
MPI BARRIER operation. This means that the implementation of this operation should
incur only a low overhead (CPU usage) in order to allow the user process to take advantage
of the overlap.

2.2.2 Broadcast

MPI IBCAST(buffer, count, datatype, root, comm, request)
INOUT buffer starting address of buffer (choice)
IN count number of elements in buffer (integer)
IN datatype data type of elements of buffer (handle)
IN root rank of the broadcast root (integer)
IN comm communicator (handle)
OUT request request (handle)

int MPI Ibcast(void* buffer, int count, MPI Datatype datatype, int root, MPI Comm comm,

MPI Request* request)

void MPI::Comm::Ibcast(void* buffer, int count, const MPI::Datatype& datatype, int root,

MPI::Request *request) const = 0

MPI IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERR)
<type> BUFFER(*), RECVBUF(*)
INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR, REQUEST

Advice to users. A non-blocking broadcast can efficiently be used with a technique called
“double buffering”. This means that a usual buffer in which a calculation is performed
will be doubled in a communication and a computation buffer. Each time step has two
independent operations - communication in the communication buffer and computation in
the computation buffer. The buffers will be swapped (e.g. with simple pointer operations)
after both operations have finished and the program can enter the next round. Valiant’s
BSP model [15] can be easily changed to support non-blocking collective operations in this
manner.
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2.2.3 Gather

MPI IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm, request)
IN sendbuf starting address of send buffer (choice)
IN sendcount number of elements in send buffer (integer)
IN sendtype data type of sendbuffer elements (handle)
OUT recvbuf starting address of receive buffer (choice, significant only at root)
IN recvcount number of elements for any single receive (integer, significant only at root)
IN recvtype data type recv buffer elements (handle, significant only at root)
IN root rank of receiving process (integer)
IN comm communicator (handle)
OUT request request (handle)

int MPI Igather(void* sendbuf, int sendcount, MPI Datatype sendtype, void* recvbuf,

int recvcount, MPI Datatype recvtype, int root, MPI Comm comm, MPI Request* request)

void MPI::Comm::Igather(const void* sendbuf, int sendcount, const MPI::Datatype& sendtype,

void* recvbuf, int recvcount, const MPI::Datatype& recvtype, int root, MPI::Request *request)

const = 0

MPI IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,RECVTYPE,
ROOT, COMM, REQUEST, IERR)
<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR,
REQUEST

2.2.4 Other Collective Routines

All other defined collective routines can be executed in a non-blocking manner as shown above. The operation
MPI <OPERATION> is renamed to MPI I<OPERATION> and a request-reference is added as last element to the
argument list. All collective routines are shown in Table 2.2.4.

MPI IBARRIER MPI IBCAST
MPI IGATHER MPI IGATHERV
MPI ISCATTER MPI ISCATTERV
MPI IALLGATHER MPI IALLGATHERV
MPI IALLTOALL MPI IALLTOALLV
MPI IALLTOALLW MPI IREDUCE
MPI IALLREDUCE MPI IREDUCE SCATTER
MPI ISCAN MPI IEXSCAN

Table 1: Proposed non-blocking collective functions

General advice to users. Non-blocking collective operations can be used to avoid explicit
application synchronization and to overlap communication and computation in programs.
A common scheme for this would be “double buffering” (explained in Section 2.2.2) which
can easily be used to optimize programs written in the BSP model.

General advice to implementers. Most non-blocking operations will be used to overlap
communication with computation. The implementation of these operations should cause as
low CPU overhead as possible to free the CPU for the user process.

2.3 Environment and Limits

The number of outstanding (nested) non-blocking collective operations may be limited, especially on hardware
supported implementations. A new attribute, called MPI ICOLL MAX OUTSTANDING is attached to each com-
municator. The user can access this attribute with MPI COMM GET ATTR, described in the MPI-2 Standard
Chapter 8.8. MPI ICOLL MAX OUTSTANDING must have the same value on all processes in the communicator.

However, the implementation should support at least 32767 outstanding operations. A software implementation
could use non-blocking send-receive to enable non-blocking collective operations, where each outstanding operation
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uses exactly one tag value. A hardware implementation can fall back to this software implementation if its
capabilities are exhausted.
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