
A proposal for persistent, sparse, and non-blocking

collectives

May 30, 2008

1 Contributors

This is an open proposal and contributors are listed here (alphabetically):

• Torsten Hoefler

• Andrew Lumsdaine

• Christian Siebert

• Jesper Larsson Traeff

2 Persistent, sparse collectives

A number of issues cannot be addressed well by the interface provided by the standard set
of blocking collective operations of MPI. First, the irregular variants of the communication
collectives (MPI Gatherv etc.) are not scalable (to very large systems) because of the lists of
counts (and displacements) that have to be supplied, most of which can in many applications
be expected to be zero. Second, for these collectives, optimal implementations may require
computations of elaborate schedules. Such computations can only be amortized if a number
of calls are made using the same schedule, and thus requires a handle for when to perform
such precomputation and where to store the resulting schedule. Third, the currently defined
collective operations do not provide a non-blocking interface and make it thus practically
impossible to overlap communication and computation.

1



All those issues can be addressed by an interface for persistent collective operations. These
are defined in this section, and (even if it for some cases makes less sense) there is a persistent
counterpart to each of the blocking MPI collectives.

The first issue is handled by providing each operation with an extra group argument, and
semantically each operation is carried out only over the processes of the communicator also
belonging to the supplied group. In order to allow for optimizations (like routing through
intermediate processes not in the group) the calls are collective (see Section 2.1 below) over
all processes of the communicator. The operations are defined in analogy with the persistent
point-to-point operations, and the initialization calls are per default local. The order in
which data are received or sent, and handled locally at the processes is determined by the
order of the participating processes in group.

The second issue is handled by allowing the initialization calls to be collective. At this point
information can be exchanged, schedules computed, and cached for later reuse. Whether
such optimization should be performed, with what objective, and whether reuse should be
attempted is controlled by the info argument.

The third issue is resolved with non-blocking start and startall functions for persistent re-
quests (as they already exist for persistent point-to-point functions).

Sparse collectives, with efficient support of rapidly changing sparsity patterns is a sometimes
desired feature, since it creation of new communicators may for such cases be too expensive
(and precomputing a large set of communicators infeasible). Such functionality may be
supported through the interface functions provided in this chapter, and can be efficiently
supported by implementations through the “hints” provided through an info object. To
cope with sparse, collective operations occuring typically in “grid” structured computations,
three new collectives (both in regular and irregular variants) are defined in the same vein.
To interact better with the topology functionality, an improved interface for creating virtual
topologies, and extracting information from topologies, that can be used as input for the
new persisten collectives, is needed. This in addition solves many of the known (scalability)
problems with the existing topology functionality.

2.1 Syntax and Semantics

MPI Barrier init(group,info,comm,request)
IN group
IN info
IN comm
OUT request

Persistent barrier. The call is collective over all processes in the group of comm, but the

2



barrier semantics are guaranteed only for the processes in group. All processes must call
with the same group argument or MPI GROUP EMPTY .

MPI Bcast init(buffer, count, datatype, root, group, info, comm, request)
INOUT buffer
IN count
IN datatype
IN root
IN group
IN info
IN comm
OUT request

Persistent broadcast. Data are broadcast from the root process to the other processes in
group. The root process must be a member of group. Same rules as for blocking collectives
apply to datatype matching.

MPI Gather init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, group,
info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN root
IN group
IN info
IN comm
OUT request

Persistent gather.

MPI Gatherv init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, recvdisp, recvtype,
root, group, info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtype
IN root

3



IN group
IN info
IN comm
OUT request

Persistent, irregular gather.

MPI Scatter init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, group,
info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN root
IN group
IN info
IN comm
OUT request

Persistent scatter.

MPI Scatterv init(sendbuf, sendcounts, senddisp, sendtype, recvbuf, recvcount, recvtype,
root, group, info, comm, request)
IN sendbuf
IN sendcounts
IN senddisp
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN root
IN group
IN info
IN comm
OUT request

Persistent, irregular scatter.

MPI Allgather init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, group, info,
comm, request)
IN sendbuf
IN sendcount

4



IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent allgather.

MPI Allgatherv init(sendbuf, sendcount, sendtype, recvbuf, recvcounts, recvdisp, recvtype,
group, info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent, irregular allgather.

MPI Alltoall init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, group,
info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent alltoall.

MPI Alltoallv init(sendbuf, sendcounts, senddisp, sendtype, recvbuf, recvcounts, recvdisp,
recvtype, root, group, info, comm, request)

5



IN sendbuf
IN sendcounts
IN senddisp
IN sendtype
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent, irregular alltoall.

MPI Alltoallw init(sendbuf, sendcounts, senddisp, sendtypes, recvbuf, recvcounts, recvdisp,
recvtypes, group, info, comm, request)
IN sendbuf
IN sendcounts
IN senddisp
IN sendtypes
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtypes
IN group
IN info
IN comm
OUT request

Persistent, irregular alltoall (with possibly different types).

MPI Reduce init(sendbuf, recvbuf, recvcount, recvtype, root, group, info, comm, request)
IN sendbuf
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent reduce.

6



MPI Allreduce init(sendbuf, recvbuf, recvcount, recvtype, group, info, comm, request)
IN sendbuf
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent allreduce.

MPI Reduce scatter init(sendbuf, recvbuf, recvcounts, recvtype, group, info, comm, request)
IN sendbuf
OUT recvbuf
IN recvcounts
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent reduce-scatter.

MPI Scan init(sendbuf, recvbuf, recvcount, recvtype, group, info, comm, request)
IN sendbuf
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm
OUT request

Persistent, inclusive scan.

MPI Exscan init(sendbuf, recvbuf, recvcount, recvtype, group, info, comm, request)
IN sendbuf
OUT recvbuf
IN recvcount
IN recvtype
IN group
IN info
IN comm

7



OUT request

Persistent, exclusive scan.

MPI Exchange init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, sendgroup,
recvgroup, info, comm, request)
IN sendbuf
IN sendcount
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN sendgroup
IN recvgroup
IN info
IN comm
OUT request

Persistent exchange. Each process sends data to the processes in its sendgroup (in the
order of the processes in that group), and receives data from the processes in its recv-
group (in the order of the processes in that group). Different processes may supply dif-
ferent groups, but if process j is in the sendgroup of process i, then i must likewise
be in the recvgroup of process j. The result of the operation is as if, for each pro-
cess i an MPI Isend(sendbuf+j*sendcount*extent(sendtype),sendcount,sendtype,rank(j),...) for
each j in sendgroup where rank(j) is the rank of j in comm together with correspond-
ing MPI Irecv(recvbuf+j*recvcount*extent(recvbuf),recvcount,recvtype,rank(j),...) for each j

in recvgroup. Note that different processes will typically give different values for sendgroup
and recvgroup. In the limit where both sendgroup and recvgroup are the same as the group
of comm the function is equivalent to MPI Alltoall.

MPI Exchangev init(sendbuf, sendcounts, senddisp, sendtype, recvbuf, recvcounts, recvdisp,
recvtype, sendgroup, recvgroup, info, comm, request)
IN sendbuf
IN sendcounts
IN senddisp
IN sendtype
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtype
IN sendgroup
IN recvgroup
IN info

8



IN comm
OUT request

Irregular, persistent neighbor exchange.

MPI Neighbor Reduce init(sendbuf, recvbuf, count, datatype, sendgroup, recvgroup, info,
comm, request)
IN sendbuf
OUT recvbuf
IN recvcount
IN recvtype
IN sendgroup
IN recvgroup
IN info
IN comm
OUT request

Persistent neighbor reduction. Each process performs a reduction over data sup-
plied by the processes in the recvgroup. It contributes the data (stored in send-
buf+j*count*extent(datatype), count, datatype) to all processes in sendgroup (which may or
may not include itself). All processes in the union over all sendgroup and recvgroup must
supply data of the same signature.

MPI Neighbor Reducev init(sendbuf, sendcounts, senddisp, sendtype, recvbuf, count,
datatype, sendgroup, recvgroup, info, comm, request)
IN sendbuf
IN sendcounts
IN senddisp
IN sendtype
OUT recvbuf
IN recvcount
IN recvtype
IN sendgroup
IN recvgroup
IN info
IN comm
OUT request

MPI Neighbor Bcast init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, send-
group, recvgroup, info, comm, request)
IN sendbuf
IN sendcount
IN sendtype

9



OUT recvbuf
IN recvcount
IN recvtype
IN sendgroup
IN recvgroup
IN info
IN comm
OUT request

Persistent neighbor broadcast (or allgather). Each process performs a broadcast of data
stored in sendbuf to the processes in sendgroup. It receives data from the neighbors in
recvgroup. All processes in the union over all sendgroup and recvgroup must supply data of
the same signature.

MPI Neighbor Bcastv init(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
sendgroup, recvgroup, info, comm, request)
IN sendbuf
IN sendcounts
IN senddisp
IN sendtype
OUT recvbuf
IN recvcounts
IN recvdisp
IN recvtype
IN sendgroup
IN recvgroup
IN info
IN comm
OUT request

2.2 Semantic issues

The persistent initalization calls all return a request argument which is later used to start
the collective operation. The operation is completed by a wait or test call. An MPI Start
call of a persistent request is collective in the sense that eventually all other processes in
the group of the communicator over which the persistent call was initialized must perform
a start call for the same opertation. [More explanation needed]

Persistent collective operations do not match the blocking collectives.

Examples:

10



proc 1 proc 2

MPI_Gather_init(&req1) MPI_Gather_init(&req2)

...

MPI_Start(&req1) MPI_Start(&req2)

... MPI_Wait(&req2)

MPI_Wait(&req1)

Legal!

proc 1 proc 2

MPI_Gather_init(&req[0]) MPI_Gather_init(&req[1])

MPI_Scatter_init(&req[1]) MPI_Scatter_init(&req[0])

MPI_Start(&req[0]) MPI_Start(&req[1])

MPI_Start(&req[1]) MPI_Start(&req[0])

... MPI_Wait(&req[1])

MPI_Waitall(2,req) ...

MPI_Wait(&req[0])

Legal!

proc 1 proc 2

MPI_Gather_init(&req[0]) MPI_Gather_init(&req[1])

MPI_Scatter_init(&req[1]) MPI_Scatter_init(&req[0])

MPI_Start(&req[0]) MPI_Start(&req[0])

MPI_Start(&req[1]) MPI_Start(&req[1])

... MPI_Wait(&req[1])

MPI_Waitall(2,req) ...

MPI_Wait(&req[0])

Illegal!

Startall: Request matching with similar tags and sources is defined like in the point-to-point
case (undefined?).

Cancelation is not allowed, and a call to MPI Cancel with a persistent collective request is
illegal.

11



2.3 Hints

Provided through the info argument.

The following information is predifined:

enforce make the initialization call collective and enforce optimization of schedule...

nonblocking optimized for non-blocking/overlap behavior

blocking Blocking behavior (at wait call) expected, no optimization for overlap

reuse some arguments of this persistent operation will be reused by a later persistent init
(forward hint to cache information and algorithm).

previous try to reuse arguments from a previous persistent init operation (backward hint
to look in cache)

2.4 Efficiency

This functionality gives more flexibility to the application programmer, and may allow imple-
mentations to allow for more overlap (non-blocking), non-balanced applications, applications
with localized, rapidly changing collective patters, and can therefore not be expected to per-
form as efficiently as the blocking collective operations.

3 New topology functionality

Achieves several things: permits for reordering, permits for precomputation of routing tables,
allocation of queue-pairs... Therefore the topology information is not necessarily identical to
the neighborhood later used in a collective exchange operations, and the two concerns are
kept separate.

MPI Cart create()

MPI Cart neighbor group(selected dims,distance,comm,group)
IN selected dims
IN distance (nonnegative integer)
IN comm
OUT group

12



Returns the group of neighbors of the selected dims (1 if dimension should be included, 0 if
not) that are distance hops away from the calling process. The call is local. The array dims
must have the size of the Cartesian topology associated with comm. The call is erroneous if
comm is not a Cartesian communicator. The order in which the neighbors are returned is
not fixed

Example:

MPI Graph create(comm,outgroup,,reorder,info,graphcomm)
IN comm
IN outgroup
IN reorder (integer)
IN info
OUT graphcomm

outgroup is the (ordered) set of neighbors. reorder determines whether the calling process
may be reordered (if 0 the process should no be reordered). Values of info: “latency”
(optimize for latency, count can be taken to roughly bound the number of communication
calls), “bandwidth” (optimize for bandwidth, count can be taken to bound the total data
volume), “maxcut” (if partitioning is used, minmize the maximum cut...), “totalcut” (...)

MPI Graph neighbor groups(graphcomm,outgroup,ingroup)
IN graphcomm
OUT outgroup
OUT ingroup

Note that the order of processes in the outgroup returned MPI Graph neighbor groups need
not be the same as the order supplied in the MPI Graph create call.

13


