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Abstract. We discuss the mesh-partitioning load-balancing problem for
non-homogeneous communication systems, and investigate whether the
MPI process topology functionality can aid in solving the problem. An
example kernel shows that specific communication patterns can benefit
substantially from a non-trivial MPI topology implementation, achieving
improvements beyond a factor of five for certain system configurations.
Still, the topology functionality lacks expressivity to deal effectively with
the mesh-partitioning problem. A mild extension to MPI is suggested,
which, however, still cannot exclude possibly sub-optimal partitioning
results. Solving instead the mesh-partitioning problem outside of MPI
requires knowledge of the communication system. We discuss ways in
which such could be provided by MPI in a portable way. Finally, we
formulate and discuss a more general affinity scheduling problem.

1 Introduction

Applications involving large datasets are often parallelized using a data parti-
tioning approach, as in mesh-based solution of partial differential equations. This
leads to the following mesh-partitioning problem: A large mesh, represented as
an undirected, weighted problem graph G = (V, E, w) with edge (and possibly
vertex) weights w is to be mapped onto a smaller set of processors P , such as
to minimize application run time. This is approximated by minimizing com-
munication costs, which are assumed to be a function of the value of the edge
cut (sum of weights of edges in G crossing processor boundaries), while keeping
computational load evenly distributed. Although this commonly used model is
at best an approximation to the communication cost optimization problem (e.g.
network contention is very hard to capture, communication volume may easily
be overestimated, etc., see [4]), we will stick to it here.

Assuming a homogeneous, fully connected system, a common approach to
solving the mesh-partitioning problem is to partition G into |P | approximately
equal-sized subsets, minimizing the value of the edge cut, i.e. finding a mapping
π : V �→ P such that ∑

π(u) �=π(v)

w(u, v) is minimal (1)
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under the balancing condition (which can be relaxed) that

|π−1(p)| ≤ �|V |/|P |� (2)

This graph partitioning problem is NP-complete [3], but many good heuristics
exist [2,5,8,11], and are implemented in a number of libraries [7,10,16,17].

Most of these algorithms can be extended to handle non-homogeneous proces-
sor computing powers, but it is more difficult to handle systems with non-homo-
geneous communication systems, for instance with a mesh or torus topology, or
with a hierarchical structure like clusters of SMP nodes. The simple graph par-
titioning approach is not adequate here, since vertices of G with “heavy” edges
might end up on processors connected by “weak” communication links. There is
obviously no way a graph partitioner can exclude this possibility without addi-
tional knowledge of the underlying system. Different approaches to tackling this
problem have been proposed and discussed.

In [16] the authors model the communication system as a complete host graph
H = (P, C, c) with a cost function c on edges (p0, p1) ∈ C reflecting the “cost” of
communication between processors p0 and p1. Deriving the costs c(pi, pj) is not
straightforward and to some extent even application-dependent. The authors
favor a quadratic path length (QPL) metric, leading to a network cost matrix
(NCM) penalizing connections going over many hops of the physical network.
The mapping problem is then defined as a generalization of the partitioning
problem (1): Find π : V �→ P such that

∑

π(u) �=π(v)

w(u, v)c(π(u), π(v)) is minimal (3)

subject to the balancing condition (2).
To solve this problem, they extend their homogeneous multi-level heuristic

by mapping the coarsest problem graph to the host graph in an approximately
optimal way (the exact solution is equivalent to the quadratic assignment problem
and again NP-complete). The Kernighan-Lin heuristic used to derive partitions
of the finer problem graph levels is modified to take the modified cost function
and the resulting larger set of potential moves into account.

The same model of the communication system is used in [9]. However, they
first start with a complete conventional partitioning, and then use the host graph
to guide an incremental improvement of the partitioning. Still other heuristics
for solving the mapping problem were given in [5,6,10]. In contrast, the Dynamic
Resource Utilization Model (DRUM) [1] uses measurements to derive a hierar-
chical scalar characterization of compute nodes, merging both computing power
and network bandwidth into a single “power” value per node. As the hierarchy
is explicit in the abstract model, general-purpose partitioners such as Zoltan [17]
can be instrumented to use specific partitioning strategies at each level [1].

In all cases cited above, the description of the hardware architecture and
the related network performance parameters have to be set up manually. The
network models discussed so far represent compromises, aiming to be simple
enough for the underlying optimization approach. The NCM ignores hierarchical
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structures, thus excluding level-specific partitioning. On the other hand, the
averaging DRUM model loses some fine-grained local structure and seems less
suited for e.g. mesh architectures.

Applications requiring graph partitioning are frequently using the Message-
Passing Interface (MPI) for process communication. MPI, being strictly a com-
munication interface, has no functionality for solving the mesh-partitioning
problem. Since the MPI interface has no notion of “cost” of communication, MPI
also cannot supply the knowledge of the underlying system required to construct
the weighted host graph needed by a partitioning/mapping package. However,
the internal assumptions about the underlying system present in any MPI imple-
mentation could potentially be made useful to solve the mesh-partitioning prob-
lem. This could be done either implicitly via the graph topology functionality of
MPI, using the two-stage approach to the mesh-partitioning problem discussed
and evaluated in sections 2 and 3. An orthogonal solution, discussed in Section 4,
is to make the assumptions of the MPI implementation explicitly accessible in an
abstract, portable and non-constraining fashion, to be used to construct the de-
sired host graph for a mapping package. Finally, in Section 5, we take a broader
view and ask if graph partitioning does not solve a too narrow problem altogether.

2 Mesh-Partitioning with MPI Process Topologies

Although not capable of solving the mesh-partitioning problem, MPI defines
functionality to solve a process re-mapping problem that could be used as the
second stage in a two-stage approach: first partition the mesh into |P | subsets
Vi, i = 0, . . . |P | − 1 assuming a homogeneous communication system, second
find an optimal mapping of the |P | subsets onto the set of processors.

The graph topology functionality of MPI [12, Chapter 6] makes it possible
to specify a non-weighted communication graph, abstracting the communication
pattern of the |P | processes. The MPI implementation in turn can use this
information to create a new communicator representing a process remapping
which is best suited for the given communication graph on the given system.
It is up to the MPI implementation to provide a suitable remapping (which
could be just the identity mapping). While the two-stage approach has often
been discussed, e.g. in [16], using the MPI topology functionality for the second
process remapping step has apparently not been considered previously.

Assuming that the MPI implementation at hand has a non-trivial implemen-
tation of the topology functionality, the problem arises how to specify the com-
munication graph of the |P | processes. Putting an edge between two processes
whenever there is an edge in G between two partitions is likely to lead to a
communication graph overstating weak connections, possibly to the point of be-
ing a complete graph without information. Using edge weights corresponding
to communication load between partitions would be an informative alternative,
but is unfortunately not permitted by the MPI functionality. Instead, an edge
could be put if the total weight of edges between two partitions exceeds a certain
threshold.
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Node0 Node1 Node2 Node3 Node0 Node1

Fig. 1. Algorithm with hybercubic communication pattern. Communication intensity
and/or volume decrease with increasing hypercube dimension. Heavier edges denote
heavier communication. Left: optimal mapping of the algorithm onto a 2 + 2 + 2 + 2
processor SMP cluster. Right: optimal mapping onto a 4 + 4 processor cluster.

As the examples below will show both the threshold solution and the two-
stage approach itself have limitations. We assume an SMP system with a marked
difference in communication performance between processes on the same vs. on
different SMP nodes. Similar examples can be constructed for systems with
other, non-homogeneous interconnects.

The first example shows that unweighted graphs and thresholds are too weak
to enforce an optimal mapping, unless complete knowledge of the underlying
system is available, thus defying the idea of a portable, system-independent so-
lution to the mesh-partitioning problem: Selecting the correct threshold a priori
without knowledge of the target system configuration is not possible.

Example 1. Consider a hypercube algorithm with strong communication along
dimension 0, less strong along dimension 1, etc. that we want to map onto an
SMP system. Clearly, the processors should be mapped such that as many of
the lower-dimensional, heavily communicating edges are inside SMP nodes, with
higher-dimensional, weaklier communicating edges between nodes, cf. Figure 1.

Consider first the two-dimensional case of 4 processes to be mapped onto a
2 + 2 processor cluster. Selecting a threshold resulting in edges along dimension
0 only, would make it possible for the MPI implementation to place pairs of
connected processors on the same node, such that the heaviest communication
takes place inside SMP nodes. On the other hand, selecting a lower threshold and
having edges both along dimension 0 and dimension 1 would make it impossible
for the MPI implementation to make the right decision since each process would
be marked as communicating with two other processes.

Moving to three dimensions, for a 4 + 4 processor cluster the best threshold
would put edges along dimension 0 and 1. For a 2 + 2 + 2 + 2 processor cluster
the best threshold would put edges only along dimension 0. �

The problem is aggravated for systems with more than two layers of commu-
nication. In such cases even with knowledge of the underlying system, it is in
general not possible with an unweighted graph to provide enough information
to the MPI implementation to permit an optimal solution.

Hierarchical structures are found e.g. in multi-physics codes, where coupling
within the “single-physics” cores occurs much more often than across sub-problem
boundaries. If such problems are part of a larger application, we get yet another
weaker level of coupling. Concrete examples are found in climate research, where
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Fig. 2. Weighted 8 node tree (left). The optimal partition (middle) has cut weight
2a+b. No matter how the 4 sets of this partition are mapped onto the 2+2 processors,
at least one a-edge crosses SMP nodes. A worse partition with cut weight 2a+3b (right)
can be mapped such that the weight of edges crossing SMP nodes is only 3b.

different models are coupled to achieve a more comprehensive global model [15].
For instance, we may have 3D/3D coupling of flow and chemistry components for
both air and ocean, each coupling to their respective spatial neighbor partitions
and a coupling occurring with lower frequency via the ocean/air interface.

A natural modification of the MPI graph topology mechanism would be to
allow weighted graphs to model the intensity of communication along the edges.
As the next examples show, the two-stage approach is strictly weaker than a
direct solution of the processor mapping problem: A graph partitioner without
knowledge of the target system (as modeled by the host graph) cannot compute
the most suitable partition for the system.

Example 2. We consider a weighted tree of 8 nodes as shown in Figure 2. There
are two different edge weights a and b with a > b. The minimum cut partition
has cut weight 2a + b but is not optimal for mapping onto a 2 + 2 processor
SMP cluster, since at best an a and a b edge cross between nodes. Instead,
the suboptimal partition with cut weight 2a + 3b is better suited, since the
weight of the edges between processes on different SMP nodes can be arranged
to be only 3b. For appropriate values of bandwidth and edge weights, the ratio
in communication load between the two partitionings can become arbitrarily
large. �

Example 3. Example 2 may seem artificial. Figure 3 shows that the two-stage
approach can give arbitrarily bad results even for mesh-based graphs. �

From the examples two conclusions can be drawn:

1. The non-weighted MPI topology functionality does not provide enough in-
formation for optimal process remapping in case of different communication
requirements between different processes. This could easily be remedied by
allowing weighted communication graphs in the MPI functionality. This and
other problems (lack of scalability, lack of control of optimization criterion,
etc.) was discussed in [14].

2. Even with weighted graphs the two-stage approach to mesh-partitioning may
deliver arbitrarily bad solutions. In [16], the two-stage approach is shown to
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Fig. 3. Left: “Jagged” mesh. Middle: Homogeneous optimal 4-way partitioning. Right:
Optimal partitioning for a 2+2 SMP cluster {P0, P1}, {P2, P3}, having minimal cou-
pling between both SMP nodes.

be worse by a factor of about 2-3 on average for benchmark meshes on cluster
architectures, using weighted edge cut as measurement (no actual timings
are given).

Even though the two-stage approach is inferior to a direct solution, it can be
a viable and user-friendly option in cases where the partitioning of the problem
is fixed, as the next section will show.

3 An Application Kernel

To illustrate the possible performance benefits achievable by mesh partitioning
using the (theoretically sub-optimal) two-stage approach with the final process
remapping done by the MPI topology functionality, we consider a communication
kernel with the hypercube communication pattern described in Example 1. This
pattern is assumed to be the outcome of the first stage mesh partitioning, and
the second stage consists in a process remapping to fit the target system. This
is carried out by defining a communication graph which can be input to MPI to
perform the appropriate process remapping. The kernel is written such that the
process to processor mapping implied by MPI COMM WORLD (where MPI processes
are distributed consecutively in increasing MPI rank order over the SMP nodes)
is unsuited for SMP systems: the most frequent communication will be between
processes on different nodes. In the kernel the communication frequency along
hypercube edges increases exponentially with decreasing dimension of the edge.
Increase factor as well as size of the data sent along the dimensions can be varied,
but will not be of concern here.

In order to gain any effect a non-trivial implementation of the MPI graph topol-
ogy functionality is required. This is fulfilled by MPI/SX [13], and the measure-
ments shown in Table 1 have been conducted on a four node, 32 processor NEC
SX-8 system. The difference in communication bandwidth between processes on
the same SMP node and processes on two different nodes is about a factor of two,
but more importantly, if several processes on a node attempt to communicate with
processes on other nodes at the same time, the communication is serialized. Thus,
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Table 1. Running time (in micro-seconds) for the hypercube kernel on an NEC SX-8.
The first two columns describe the SMP configuration, and the remainder give the
running time on various MPI process distributions: MPI COMM WORLD communicator,
a random communicator, and communicators created by the topology functionality.
Here topo[i] denotes a communication graph with edges along hypercube dimensions
0, . . . , i − 1. The largest improvements over MPI COMM WORLD the distribution is shown
in bold, and ranges from a factor of two to a factor of more than 5.

Processes Distribution WORLD random topo[1] topo[2] topo[3] topo[4] topo[5]
8 8 5632 5620 5627 5958 5639

4 + 4 21021 22399 6653 6517 20987
2 + 2 + 2 + 2 18402 20379 6223 6221 18970

16 8 + 8 321742 223179 66703 55329 68053 321769
4 + 4 + 4 + 4 221754 185305 62101 51588 65404 222387
1 + 7 + 1 + 7 291283 212762 166729 160646 166331 291008
2 + 6 + 2 + 6 265642 225786 65491 159097 65844 295374
3 + 5 + 3 + 5 239661 221891 170463 157388 164895 271440

8 + 4 + 4 320393 218326 68943 53494 66942 320363
32 8 + 8 + 8 + 8 1090388 1197901 460068 228929 251979 532812 1093170

mapping heavily communicating processes to the same node is doubly beneficial.
As detailed in Example 1, in the absence of edge weights in the MPI topology
functionality, graph edges must be chosen to reflect the SMP system. Too few
edges (e.g. only along hypercube dimension 0) can give sub-optimal improvement,
and too many edges makes too many processes indistinguishable such that a good
remapping cannot be guaranteed.

Table 1 gives some results of running the kernel on various number of processes
and distributions over the SMP nodes. In each case good results are achieved
when each subcube of the communication graph fits onto one SMP node. Bad
results are generally achieved when the subcubes are too large for the SMP nodes
(e.g. column topo[4], corresponding to communication graphs with 16 process
subcubes to be mapped onto 8 process SMP nodes), and good or even best
results are achieved with smaller sized subcubes than the size of the SMP nodes
(most of the best results are in column topo[2]). The best overall improvements
exceed a factor 5 for distributions with 16 and 32 processes.

4 Portable MPI Topology Introspection

As shown, using the MPI topology functionality to solve the mesh-partitioning
problem has inherent limitations, even if weighted graphs would be allowed. The
alternative is to do the mesh-partitioning completely outside of MPI. This requires
information on the communication system, either a priori, by measuring, or both.
Measuring alone is of limited value on a loaded system, and in general has difficul-
ties capturing effects of contention (cf. end of Section 5 for possible solutions).

Instead, we propose to leverage the implicit knowledge on the system which
is present in any MPI implementation (no matter how rudimentary). For an
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MPI communicator we model the part of the communication system used by
the processes in the communicator as a complete graph with multiple weight
functions. Nodes correspond to processes, with edge weights modeling either
the number of abstract hops between two processes, or the relative bandwidth,
or relative latency, . . . . A hop measures the number of communication layers
between two processes. Processes on the same node of an SMP cluster would
be one hop distant (the number of hops from a process to itself being 0), and
processes on different node would be two hops distant. In a 1D linear array, each
process (in MPI COMM WORLD) has two neighbors which are one hop away, two
neighbors that are two hops away and so on.

We believe that it is possible to make this abstract representation available
to an MPI application (e.g. mesh-partitioner) in a meaningful and portable way,
regardless of the actual system. We suggest the following functionality.

– Functions returning the number of neighbors of the calling process that are
exactly n hops away, the list of such neighbors, and the maximal hop distance
to any other process in the communicator.

– Functions returning the hop distance, relative bandwidth and relative latency
between the calling process and any other process in the communicator.
Relative bandwidth, e.g., could be expressed as the ratio to the bandwidth for
the process communicating with itself. This issue is bound to be contentious.

– A function returning the maximum number of simultaneous communication
operations to processes at a given hop distance.

– Possibly more involved functions for estimating the effects of contention, e.g.
returning the load of the communication path between the calling process
and any other process in the communicator, given that (a) the two processes
are the only processes communicating, (b) the load under the worst bisection
with the two processes belonging to different parts.

These proposals are portable in the sense that each processor is only required
to be able to return information about its own neighborhood (relative to the
given communicator). A trivial implementation is possible, and would map all
processes as being one hop away.

This functionality would clearly make it possible to build the concrete graphs
as used in the NCM approach [16], or to construct hierarchical models like
DRUM, as well as other imaginable representations. For instance, a hierarchical
graph can be built by an application as follows:

1. Get all neighbors with hop distance 1,
2. Compute local graph components
3. While the graph is not connected:

(a) introduce a new hierarchical node for the current component
(b) Get all neighbor graph components for the next larger hop distance n
(c) Compute the resulting larger components
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5 Beyond Partitioning: Affinity Scheduling

The discussion so far assumed that a host graph H = (P, C) is given. In gen-
eral, however, H is only a subgraph of the (available part of the) global machine
graph HG, and is selected by a system scheduler, typically based on the number
of compute nodes specified by the user. This places the burden of specifying an
adequate subset of the machine on both the user (who may not know about it),
and the scheduler (who does not know about the application). Giving the sched-
uler more knowledge about the resource requirements of an application, it could
choose an optimal subset of the machine matching high-level user preferences:

– The user could demand just enough processors to finish within one hour
– The application is partitioned into largely independent tasks and can there-

fore be distributed to weakly connected nodes
– It is found that the application will not achieve good parallel performance

on the currently available set of nodes, and it is scheduled for a later time

These tasks cannot by solved in the narrow frame of graph mapping. Instead,
we propose to consider the following optimal subgraph scheduling problem: Given
the time dependent global machine graph HG(t) = (PG(t), CG(t)), t > 0 (“free
processors at time t”), a utilization cost function K = K(P, τ, t) (cost for using
processor set P ⊂ PG(t) for duration interval [t, t + τ ]), and a user preference
function Φ = Φ(K, t) (preference of finishing the task until time t with total cost
K), find a starting time t0 and a mapping π : V �→ PG(t0) such that

Φ (K(π(V ), t0, Tapp), t0 + Tapp) is minimized (Tapp = Tapp(π(V )) (4)

Here, the total (expected) time Tapp is an application-specific performance es-
timation based on the partitioning and the available network (sub)topology. In
(4), a hidden constraint is that the subgraph HG(t) must be available for all
times t = t0 + τ, 0 ≤ τ ≤ Tapp(π(V )).

For homogeneous architectures, K(P, τ, t) = αPτ and Φ(K, T ) = KT would
be reasonable choices. Changing Φ, a user could slant the result in favor of
cheaper or faster computation. Information about HG(t) is generally available
only in the system scheduler, thus, a solution to problem (4) would have to
access this information. Using scheduler information together with actual net-
work measurements might also permit to estimate the bandwidth available to
new applications, thus combining the advantages of static and dynamic network
information.

6 Summary

We investigated two orthogonal paths to solving the mesh-partitioning prob-
lem for systems with a non-homogeneous communication system. A two-stage
approach, consisting of ordinary graph partitioning followed by a remapping re-
lying on the MPI topology functionality, and probably requiring the least change
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on behalf of the application, is limited by the restriction to non-weighted commu-
nication graphs of the MPI standard. As an orthogonal approach, we discussed
additional, portable, system-independent MPI functionality, which could aid the
application programmer in constructing the desired graph model of the system
to be used as input to sophisticated mesh-partitioners. An artificial, but not
unrealistic kernel showed the large potential gains by performing an appropriate
process mapping.
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