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Abstract tation must take the hybrid nature of the system into ac-
count. This means that both point-to-point, one-sided and
The Message Passing Interface (MPI) is designed ascollective communication operations of MPI must be im-
an architecture independent interface for parallel progra  plemented to take advantage of the faster, shared-memory
ming in the shared-nothing, message passing paradigm. Webased communication within SMP-nodes. In addition, the
briefly summarize basic requirements to a high-quality im- topology functionalityof MPI [18, Chapter 6] can be im-
plementation of MP!I for efficient programming of SMP clus- plemented to perform process reordering based on user-
ters and related architectures, and discuss possible, exiid  supplied communication patterns to take better advantage
tensions of the topology functionality of MPI, which, while of the more powerful intra-node communication. With MPI,
retaining a high degree of architecture independence, can however, it is not possible for the userdrplicitly take the
make MPI more useful and efficient for message-passingcommunication structure of an SMP cluster into account.
programming of SMP clusters. We show that the discussedThis may be seen as both a strength and a weakness of MPI.
extensions can all be implemented on top of MPI with very  In this paper we first summarize requirements to high-
little environmental support. quality MPI implementations for efficient utilization of
SMP clusters and other systems with a hierarchical commu-
nication structure. In Section 3 we discuss the MPI topol-
ducti ogy functionality, which can be used to provide an archi-
1 Introduction tecture independent means of adapting to SMP-like archi-
tectures. We discuss the potential of this functionalityg a
Although designed for programming of distributed mem- also some of its shortcomings that could possibly be reme-
ory parallel systems in the message-passing paradigm, thelied without compromising or unnecessarily extending the
Message Passing Interfad®Pl) [6, 18] is also used for  existing MPI standard. In Section 4 we discuss means of in-
parallel programming on shared memory systems and hy-corporating explicit SMP-awareness into an MPI-like pro-
brid shared/distributed memory systems, such as clustergramming interface. We stress that the discussed “exten-
of SMP nodes. Alternatively, clusters of SMP nodes can sions to MPI” can all be implemented on top of MPI with
be programmed in a hybrid style, using OpenMP [4] or a only minimal environmental support needed.
thread-model within the SMP nodes and a message passing As ever so often there is a trade-off between precision
interface for the communication between nodes. Arguably, and efficiency of a proposed mechanism, and its ease of
the hybrid style can give better performance, since it reflec  use. The more precise a mechanism, the more knowledge
more closely the structure of the SMP system. On the otherand effort is required for its use. Thus, proposed exten-
hand, hybrid programming is difficult since it requires mas- sions to a library like MPI must consider questions like: Is
tering both the shared-memory and message passing proit worth the effort? Will the user accept the extended/new
gramming styles. For lack of a simple and broadly acceptedfunctionality? Are the performance benefits large enough?
model for programming of hybrid systems, a pure messagelt is worth noticing that the MPI standard as it is, is of-
passing paradigm is often preferred. Also, many existing ten criticized for being too large, and many aspects are not
application codes are pure MPI codes, and the extra effortused, either because of lack of user knowledge or because
required to rewrite these is considerable. Surprisingly, e of skepticism about the performance (warranted or not). An
periments indicate that pure MPI codes can often be as fasunfortunate consequence is that MPI implementers some-
as specialized hybrid codes [2, 9, 15, 17]. However, in or- times spend too little time on these more exotic parts of MPI
der to be efficient on an SMP cluster, the MPI implemen- (or was it the other way round?).



2 SMP-aware communication Thus a multilevel SMP system can be thought of as a tree of
processing nodes. The tree need not be balanced, i.e. some

An SMP cluster is a collection of shared-memory pro- Processors can sitdeeper in the hierarchy than othersisin th

cessing nodes interconnected by a communication network Medel a “standard” SMP cluster has three levels. The inter-
SMP clusters range from low-cost, off-the shelf systems Mediate level consists of the shared memory nodes, and As-
with few processors per node (2-way, 4-way clusters) in- sumption 2 states that the communication between shared

terconnected with a cheap commodity network (Fast Eth- Memory nodes is uniform. Sys'tems where this assumption
ernet), through medium- to high-performance clusters with does not hold because of the interconnect, can sometimes

powerful interconnects (Myrinet, SCI, Giganet, Quadrics) P& modeled as systems with more than two levels. For in-
to the currently most powerful supercomputers like the stance, fat-tree networks have a hierarchical structatdith

multi-way ASCI-machines, the Earth Simulator or the NEC into the model. Note, however, that networks like meshes
SX6-multi-node systems, all equipped with specialized, do not have a hierarchical structgre in th|_s sense. More_for—
high performance interconnects. A common characteris-Mal models needed for the detailed design and analysis of
tic of these systems is a markedly hierarchical communi- communlpatlon algorithms for multilevel SMP systems can
cation structure. Processors on the same shared-memor§€ foundin e.g. [1, 3].

node can communicate via the shared memory. Typically —Assumption 4 must be guaranteed by the programming
the shared-memory intra-node bandwidth is higher than theinterface. For instance, an MPI implementation for an
bandwidth achieved by the interconnect. Depending on theSMP cluster should use the shared memory for commu-
power of the memory subsystem, many processor pairs ornication between processors on the same shared-memory
the same shared-memory node can communicate more ofode. For point-to-point communications, many (most?)
less simultaneously. In contrast, communication betweenMPI implementations ensure this. The MPICH imple-
nodes is limited by the (small, fixed) number of network mentation [7] for instance has a (lock-free) shared mem-
cards (ports) per node, and processors on a node have tery device for intra-node communication, although many
share the bandwidth provided by the network. Often only other (MPICH-derived) implementations are better suited
one processor on a node can be involved in inter-node com40 Linux-clusters.

munication at a time. Although less common, SMP-like ~ The MPI collectives, which are often implemented on
systems can have more than two hierarchy-levels. Espetop of point-to-point communication immediately benefit
cially lower-end SMP clusters are often heterogeneous bothfrom “SMP-aware” point-to-point communications. How-

in the sense of having different types of processors on theever, to deal with restrictions on inter-node communicatio
different nodes, and in the sense of having different num- like the fact that only a small number of processors per node

bers of processors per node. can do inter-node communication at the same time, differ-
For the purpose of this paper we make the following sim- ent algorithms than algorithms designed under the assump-
ple assumptions for general, multilevel SMP clusters: tion of a flat system are needed to support efficient collec-

tive communication. Also the possibility that SMP clusters
1. Processors are grouped hierarchically into a tree ofcan be heterogeneous need to be taken into account. At the
processing nodes. A single node on level O representseast algorithms for collective operations must be able to
the complete SMP cluster. Single processors form sin- deal with the fact that different processing nodes can have
gleton nodes at the bottom (deepest level) of the hier- gifferent numbers of processors; this is so either by design
archy. or because the MPI communicator spans only part of the
system.

Hierarchical algorithms for collective operations like
barrier synchronization and broadcast are easy [10, 11, 12,
13], and are incorporated in many MPI implementations.
For example, broadcast from a root processor on level 0

3. Communication between nodes on leivel 1 is more can be done by the root broadcasting to chosen root pro-
expensive (higher latency, lower bandwidth, port re- cessors on the level 1 nodes, all of which do a broadcast

strictions) than communication between nodes on level "ecursively [3].
i This recursive decomposition is more difficult or not pos-
sible at all for other collectives. An explicitly hierarciail
4. Communication between pairs of processors take placealgorithm for theMPl _Al | t oal | collective is discussed
via the cheapest communication medium connecting and implemented in [16, 20]. Hierarchical algorithms for
them, that is on the deepest leveduch that both pro- MPI _Al | gat her and MPI _Al | gat her v are currently
cessors belong to the same levprocessing node. being implemented by the author [21].

2. Processing nodes on levehre assumed to be fully
connected and communication between nodes is uni-
form (same communication costs for any pair of level
i nodes).



3 The MPI topology functionality other collective MPI calls the arguments provided by differ
ent processes must “match”. For the graph creation call all
The MPI topology mechanism provides a portable meansprocesses must supptie full communication graph (al-
of adapting an application to the underlying communication though not said so explicitly in the standard), presumably
system. The mechanism allows the user to specify a com-With identical values for thendex andedges arrays. The
munication patternvirtual topology as a graph over pro- MPI standard is (deliberately?) vague about matching argu-
cesses in which edges represent potential communicatiodnents, and no explicit (coercion) rules are given. Likewise
between pairs of processes. By a call to a topology cre-we assume that all processes in both graph and Cartesian
ation function, the MPI implementation is allowed to per- topology creation calls must give the same value for the
form a process remapping which brings processes that willr eor der argument.
presumably communicate closer to each other. An MPI im-
plementation for SMP clusters could attempt to map pro-
cesses that are direct neighbors in the virtual topology to

the same shared-memory node. MPI allows specification o \what is the communication volume between neighbor-

Lack of precision:

of virtual topologies explicitly as communication graphs, ing processes? Are some edges more heavily loaded

or implicitly as meshes/tori/hypercubesgrtesian topolo- than other?

gieg where communication is assumed to be along the di-

mensions of the mesh. _ e What is the frequency of communication? Are some
Implementations of the MPI topology mechanism for edges used more frequently than others?

multilevel SMP systems are described in [8, 19]. Both

are based on graph-partitioning, and worthwhile, sometime ¢ When do communications happen? Are communica-

considerable improvements in communication performance tions “simultaneous”, or separate in time?

for synthetic benchmarks are reported. We note here that

exact graph partitioning is an NP-hard problem [5], and e for Cartesian topologies: is communication along di-

finding an exact partition even for medium sized graphs is mensions, or along diagonals or both?

prohibitively expensive. We also note that for a remapping

to have any effect on application performance, the imple- Such information, which, if at all, is known only by the ap-

mentation of point-to-point communication must be SMP- plication program, can clearly influence what the best pos-

aware (Assumption 4). sible remapping is for the given communication pattern.
The MPI topology functionality is a weak mechanismin Possible solutionallow weighted graphs, or multigraphs.

that it allows only a very rough specification of communica- Multiple edges or weighted edges between processes can

tion patterns. We now discuss some of its shortcomings andoe used to indicate heavier load (volume and/or frequency).

possible remedies. The remarks are mostly directed at theThe ordering of the edges could be used to indicate the tim-

functionality for creating graph topologies, but (excemt f  ing relations, although it seems complicated to give a con-

the scalability issue) are also relevant for Cartesianlwspo sistent and useful definition of such a functionality. The-cr

gies. A graph topology is created by the collective MPI call ation call for Cartesian topologies could be extended with

a di agonal flag, indicating whether communication is

MPI _Graph_cr eat e( baseconm along dimensions only, or also along diagonals in the grid.

nnodes, i ndex, edges,

reorder,

&graphcom ; Lack of accuracy:
which returns a new communicatgr ap'hcoin’mspanninlg e What is the optimization criterion that should be ap-
nnodes processes. The processes in this communicator  pjied for the process reordering? Is minimizing the
may have been reordered relative to their order (that is, total amount of communication between processing
mapping to processors) lseconmto better support the nodes important? Or should rather the maximum num-

given communication pattern. This in turn is described as an ber of communication edges out of any one processing
undirected (symmetric) graph and given by the arguments  ode be minimized?

nnodes, i ndex andedges (see [18, Chapter 6]). The

booleanr eor der argument determines whether the MPI e Are there Specia' requirementS, e.g. that certain pro-

implementation should attempt a process remapping. cesses not be remapped, because they are bound to

processors with special features, e.g. to a node with
Vagueness: The topology creation call®Pl _Gr aph_- especially large memory, or with special /0 capabili-
creat eandWPl _Cart _cr eat e are collective, and as for ties?



Possible solutionsAn MPI _I nf o object could be used in  than an already existing MPI implementation of the topol-
the topology creation call to give hints to the MPI imple- ogy functionality (which may be possible because more in-
mentation. A directive argument could be used to assertformation is supplied) takes a serious effort, and will riegju
that the calling process not be remapped. Alternativedy, th environmental support, possibly in the form outlined in-Sec
reor der argument could be used locally by each processtion 4.

to indicate whether the calling process may be remapped or The following graph creation function allows a higher

not. degree of precision, allows more accuracy, is more scalable
and might be more convenient to use for some applications:
leflCUlty of use/lack of Scalab”ity: int & aph_Cr eat e( MPI _(_bmn basecon‘rn
. . i nt degree,
e Each calling process must give the complete commu- . g
N T ) i nt nei ghbors|[],
nication graph. This is error-prone, and can be tedious int reorder

for the application programmer. For applications with VI
irregular communication patters each process probably
knows its immediate communication neighborhood,
but will (most?) often not know the whole commu- Instead of all processes supplying the full graph, each
nication graph. In such cases extra communication is process gives only its own list of processes with which it
needed in the application program to build the com- wants to communicate. The number of neighbors is given
munication graph. The requirement that the same (iso-asdegr ee, and we allow the same neighbor to appear mul-
morphic or identical) graph is given by each process tiple times innei ghbor s. Neighbor multiplicity is used
also takes care to ensure. The construct is also non-4ndicate a higher communication load between the process
scalable (graphs may grow as the square of the numbeiand that neighbor. A process that should not appear in the
of processes) but this is probably the less significant resultinggr aphcommgives —1 asdegr ee argument (0O
drawback. indicates a process with no neighbors that will appear in the
) . o resultinggr aphconmmcommunicator). There is no sym-

e How muchtime should be be invested in finding agood metry requirement for the neighbor lists: a consistent,-sym
remapping (see NP-completeness remark above)?  metric (multi-)graph is built by the implementation. The

r eor der argumenthas local semantics;@or der value

of 0 means that the calling process should remain fixed (that

Possible solutiongut the burden of building the full com- S, bound to the same processor asbmsecomm). An
munication graph on the MPI implementation: each processMP! -I nf o argument can be used to provide further hints
should only supply its list of neighbors. This cannot lead to to the MPI implementation, for example on the optimiza-
errors since rules for how MPI should construct a consistenttion criteria to be used.

communication graph can easily be specified. This solution A trivial implementation of this interface that already
is furthermore scalable. ANPI _I nf o object could again might be useful in cases where the user does not want to
be used to instruct the MPI implementation on how much Pother with building the whole communication graph is as
time should be invested in the remapping. Alternatively, follows: The neighborlists are gathered by all processes
runtime option or environment variable could be used. The (by anMPI _Al'l gat her and anVPl _Al | gat her v call).
performance benefit issue can partially be handled by beingEach process constructs the full communication graph, and
able to query communicators: do processesd; reside after a minimum all-reduction over theeor der argu-

on the same shared-memory node? A performance beneMents, the existing/Pl _Gr aph_cr eat e function creates

fit can be expected if the new communicator maps manythe requiredgr aphcommcommunicator. More ambitious
neighboring processes (in the virtual topology) to the sameiMmplementations will of course want to do more.

shared memory node. A concrete proposal in this direction  The complete communication graph implicitly con-
is given in Section 4. structed by th&x aph_cr eat e call can be queried by the

already present topology query functions of MPI.
Similarly for Cartesian topologies:

_I'nfo mapi nf o,
MPI _Conm * gr aphconm

e What is the performance benefit?

3.1 Alternative topology interfaces
int Cart_create( Ml _Conmm baseconm

In this section we describe alternative interfaces for int ndinms, int dims[],
graph and Cartesian topology creation functions that ad- int periods[],
dress the issues raised above. The interfaces can trivially i nt di agonal ,
be implemented on top of the MPI topology functionality, int multiplicity[],
but a serious implementation, producing a better remapping i nt reorder,



MPI _| nfo mapi nfo,
MPI _Conmm *cart conm

MPI _SI M LAR, or MPI _UNEUQAL. It is easy to extend this
with further result valuesMPl _SUBCOW if comml is a
sub-communicator of onm2, MPI _SUBCOVMSTRI CT if
conml is a sub-communicator aform? and furthermore
the ordering of the processes éomnrl is as incom®,
MPI _SUPERCOW if comml is a super-communicator
of comm®2, and finally MPI _.SUPERCOMMSTRI CT if

The newdi agonal argument indicates to the underly-
ing implementation whether communication may be also
along diagonals or is solely along the dimensions. The
mul ti plicity argumentis used to specify the load of

the communication along each dimension for the calling commi is a strict super-communicator afonm®. A

process; ifdi agonal is set to 1, multiplicities must also . . : . . .
. . : . comparison function with this extended functionality
be given to the diagonals (an ordering of the diagonals must

of course be defined). AULL value can be given, indi- can easily be implemented using the group manipu-

cating that all communication edges have the same IoadIation functions MPI Group.i ntersection and
All r%cesses irhasecommmust g/e the same values for Ml .Group.compare. A full implementation of such

p . : 9 ST a function, called MPI _Conmr el ate, is given in
ndi ns, di s andperi ods, while the remaining input Appendix A

parameters are local, and may differ.

To decide whether such changes to the MPI topology
mechanism are worthwhile to pursue further, collaboration
with users is indispensable. As mentioned, a non-trivial
implementation of a topology interface along the lines dis-
cussed above is possible on top of MPI if information about
the SMP system can be made available. Needed is esse
tially the distribution of the processes lraseconmover
the processing nodes. In Section 4 it is shown how this in-

For the data redistribution lblaseconmandsubconm
be the given communicators. Since not all processes
basecomm may be insubconm redistribution has to
take place inbasecomm The process with rank in
baseconm has to send data to the process with rank
nip subcomm provided thati is smaller than the size of
subcomm Let this process have rank in baseconm
We calli’ the to-rank of process (in baseconm). The

from-rankof process’ (which has rank in subcomj is

of

formation can be provided.
3.2 Additional functionality

Whenever processes are remapped as a result of

1 (in basecomm), and process$ has to receive data from
process (both inbaseconm). Processes ibaseconm

that are not also isubcommhave no from-rank, and pro-
cesses iasecommwith rank greater than the number of

%rocesses isubconmmhave no to-rank.

caltl :O ? tct)ip(;IC}g)r/l (;ire:tlog f[unft'gintr(i%r Stue;rcg]mTéJQ" A convenient utility function for data redistribution from
cator creation function), data redistribution from old to super- to sub-communicator computes ther ank and

new communlcgtor may become necessary, espemallyf r onr ank of the calling process. This is the task of a new
if new communicators are created repeatedly during theCollective function:

execution of the application program. For instance, an
MPI _Gr aph_cr eat e( basecomm . .., &r aphconm

call returns a new communicator which is sub-
communicator of baseconm in the sense that all
processes in the new communicator are also in the old
communicator. In the MPI setting, data redistribution
means that the process with rank (hiasecommsends its
data to the process which has rank Qginaphconm the

process with rank 1 igr aphconm and so on. is given in Appendix B, which also explains why the func-
In general, processes in a super-communicator have tjon cannot be implemented with local semantics.
send data to processes with the same rank (if they are there A new collective operation

- the sub-communicator may have fewer processes than . ) ) )

the super-communicator) in a sub-communicator. Thus, it! "t MPI_Pernute(void *inbuf, int incount,
would be convenient to be able to compare two commu- WPl _Dat atype i ntype,
nicators with the purpose of determining whether one is a int fronrank,
sub-communicator of the other. MPI already has a compar- void *outbuf,int outcount,

ison function for communicators [18, Chapter 5]. A call NP![ _Pat at )k/pe i ntype,
in or ank,
MPI _Comm conpar e(commi, comm®?, & esul t); MPI _Conm conm)

can now be used to perform the redistribution. As in MPI
other collectives type signatures between sending and re-

i nt MPI _Conm nap(MPI _Conm baseconm
MPI _Conmm subconmm
int *torank,

i nt *fronrank)

If the calling process is not isubconmit does not have
a handle to this communicator, and gid _COMM.NUL L
as parameter. Non-existing to- or from-ranks are retursed a

with communicatorsconml and com® returns in
resul t either Pl _I DENT, MPI _.CONGRUENT,



ceiving processes must match. The implementation is triv-  For SMP like systems, the processes on the same shared-

ial: memory node as any given process are contained in that

processMPl _COVMMLNCDE[ MPI _DEPTH- 1] communica-

tor (which always exist; for non-hierarchical systems sim-

ply as MPI _COVWMMWORLD). This communicator identifies

the processes on the node, as well as the number of pro-

cesses on the node. Thus, this functionality is sufficient

for providing the information needed for a non-trivial im-
However, for special networks better, specialized algo- plementation of the extended topology remapping functions

rithms for permutation routing exist, and could be expldite Gr aph_cr eat e andCart _cr eat e on top of MPI.

in the implementation. Therefore, and for sheer conve- A yseful hierarchy inquiry function returns for any two

nience, it might be useful to have the redistribution collec processes andj in a communicatoconmthe level on

tive be part of the communications library. which i andj can communicate most cheaply. The inter-

face could take the form

MPI _Sendr ecv(out put, out count, out type,
t orank, MPl _PERMUTE TAG,
i nbuf, i ncount, intype,
fronrank, MPl _PERMUTE_TAG
comm &st at us) ;

4 Explicitly SMP-aware MPI programming

int MPI_Conmm | evel (MPI _Conmm conm

The topology mechanism makes it possible for the MPI int i, intj,

implementation to adapt a virtual communication topology int *level)
to fit better with the SMP system. Experiments indicate
that it can be implemented to give significant performance
benefits for applications with communication patterns with
some degree of locality [19]. The mechanism, however
gives no solution to the orthogonal situation in which the )
user wants texplicitly take the SMP-structure into account remapping produced. Legr aphconm be the commu-
whensetting up his communication pattern. In this situa- nicator re'Furned' by a call Pl Graphcreate. |If
tion, it would be desirable to be able to query the system asProcesses and j have the same depth, and the call to
to how many nodes are available, which processes in a giverP! -Comml evel retunsd evel equaltaMPI_DEPTH—
communicator are on a given shared-memory node etc. For» then the two processes are on the same shared memory
this situation some amount of SMP-topology information node. If a smaller level is rgturned,and] are on more
could be incorporated into the communications library. An remote nodes, and communication between these processes

easy and useful way of doing this is to provide a hierarchy of IS MOre expensive. Ar aphconmwhere many neighbor-
communicators reflecting the hierarchical communication N9 Processes are mapped to the same shared-memory node,
structure of the SMP cluster. At the bottom of this hierar- Will Probably be better than communicators where this is
chy, each process belong tdvRl _COVMM SELF communi- ~ notthe case.. ,

cator. An attributdPl _DEPTH of this communicator could A communicator hierarchy as sketched here can be made
give the depth of the process in the hierarchy. At the top available using existing MPI ope.rat|ons with some environ-
of the hierarchyMPI _COMMMWORLD represents the whole mental support/knowledge provided by the user. The MPI
SMP cluster. VPl _COMMWORLD might have an attribute ~ functionVPl _Get _pr ocessor _name returns a processor
MPI _MAX_DEPTH giving the maximum depth of a proces- name/identification for the calling process. Assuming that
sor in the system (as determined bl _COMMMWORLD). this identifies the shared-memory node to which the calling
For each intermediate processing node, there is a communiP"0cess belongs, the communicators in the hierarchy can be
catorMPl _COMMINGDE] i |, wherei is a level between 0 Créated by a sequence of

andMPI_MAX DEPTH — 1. Any given process thus belongs . .
to a hierarchy of communicators, like this: MPI_Corm spl i t (MM —COVM—NOD.E[ ! .'1] '
shared_node id[i], rank,

and would compute the deepéstvel such that processes
i andj both belong tavPI _COMMINCDE] | evel ] .

This inquiry function could be used together with the
" topology functionality to get an idea of the quality of the

MPI _COVMMWORLD = MPI _COMM.NODE] 0] &WVPl _COVM NODE[ i ]);

D
. calls, whereshar ed_node.i d[ i ] is an integer id of the
2 level i processing node of the calling process, extracted

MPI _COVMNODE] i ] from the processor name. Note that the use of processor
) names as returned Pl _Get _pr ocessor _nane makes
e this solution non-portable, since MPI does not prescribe a
) naming convention which allows to extract the desired id’s

MPl _COMMLNCDE[ MPI _DEPTH| = MPI _.COVM.SELF in a portable fashion.



A different proposal of how to incorporate SMP aware- [4] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. Mc-
ness explicitly into MPl communicatorsis described in [14] Donald, and R. Menon. Parallel Programming in
This proposal is orthogonal to the one presented here, and OpenMPR Morgan Kaufmann Publishers, 2001.
describes the hierarchy implicitly by having cluster at-
tributes associated with each communicator which identi- [5] M- R. Garey and D. S. Johnson. Computers
fies the assignment of processes to SMP nodes. Itis not ~ @nd Intractability: A Guide to the Theory of NP-
immediately clear that this approach suffices for multelev CompletenessFreeman, 1979. With an addendum,
hierarchical systems. 1991.

Explicit incorporation of communication hierarchy into
a communication library like MPI to some extent compro-
mises the architecture independence of the standard. Con-
sideration must be applied.

[6] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk,
B. Nitzberg, W. Saphir, and M. SniMPI — The Com-
plete Referencevolume 2, The MPI Extensions. MIT

Press, 1998.
5 Conclusion [7] W. Gropp, E. Lusk, N. Doss, and A. Skjellum. A high-
performance, portable imlementation of the MPI mes-
We discussed requirements to high-quality MPI imple- sage passing interface standaRarallel Computing
mentations for the efficient utilization of SMP clustersgan 22(6):789-828, 1996.

suggested further functionality for more convenient and ef [8] T. Hatazaki. Rank reordering strategy for MPI topol-
ficient programming of SMP clusters. The extensions could ogy creation functions. Ifth European PVM/MPI
presumably be made to fit with the existing MPI standard, User's Group Meetingvolume 1497 of ecture Notes
but can also be implemented as a separate library on top in Computer Scienc@ages 188—195, 1998

of MPI. The suggestions of this paper are meant to gener- ’ '

ate discussion, and should not be taken as actual proposals[9] D. S. Henty. Performance of hybrid message-passing

for extending the MPI standard. Whether they are worth and shared-memory parallelism for discrete ele-
pursuing further must be decided in close cooperation with ment modeling. InSupercomputing2000. See
actual SMP cluster users with serious message passing ap-  ht t p: / / ww. sc2000. or g/ pr oceedi ngs/
plications. t echpapr/i ndex. ht m#04.
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Extended communicator comparison

function

An extended communicator comparison function
MPI _Conmyr el at e is given in Figure 1. In addition
to the existing result values provided by the MPI stan-
dard [18, Chapter 5] four new values are introduced
for identifying (strict) sub/super-communicator relaio
ships. A communicatocomnil is a sub-communicator
of comm® if all processes ircomi are also incom?®;
the relationship isstrict if furthermore the ordering of
the processes imoml is the same incorm®. The

process groups are ordered sets, and because of the se-
mantics of MPI _Gr oup_i nt er secti on, two calls to

MPI _Group.i nt er sect i on are necessary to determine
whether the sub/super-communicator relationship iststric
As for MPlI _Commconpar e the function cannot be called
with MPI _COMMNULL as either of the communicator
arguments.

B An implementation of the computation of
communicator mapping information

In this appendix we give an implementation of a collec-
tive operation for computing a mapping between ranks in a
base communicator and a sub-communicator. The function
computed or ank andf r ont ank as required by the re-
distribution operation described in the main text. The code
is shown in Figure 2.

Recall thattorank is only defined for processes
in basecomm whose rank is smaller than the size of
subcomm Not all processes, however, have a handle to
the latter communicator, so the size efibcommhas to
be distributed among albasecomm processes. We use
the non-rooted (symmetridyPl _Al | r educe collective
for this. This partly explains whywPl _Commmap can-
not be implemented with local semantics. Processes that
are both insubcommandbasecommcan compute both
theirt or ank andf r ont ank locally, using group transla-
tion functions to translate among processes in the two com-
municators. For instance, theor ank of process ank
(in baseconm) is the rank of the process imaseconm
that has rank ank in subcomm Processes that are not
in subconm and whose rank (ibaseconm) is smaller
than the size osubconm determine theirt or ank by
receiving with MPI _ANY_SOURCE from the correspond-
ing process. Thée or ank of these processes cannot oth-
erwise be determined without communication, thus the
map-computation needs collective participation by all-pro
cesses irbaseconm In order to makeévPl _Conmmurap
a safe library function, Zommdup is performed on the
basecommused for communication.

implementation relies on process group intersections: a

set A is a subset ofB iff A = A N B. Because MPI



#define MPI _SUBCOWM MPI _UNEQUAL+1
#define MPI_SUBCOW STRICT  MPI _UNEQUAL+2
#define MPI _SUPERCOMM MPI _UNEQUAL+3
#define MPI _SUPERCOWMM STRI CT MPI _UNEQUAL+4

i nt

{

MPI _Comm rel ate( MPl _Conmm comil, MPI _Conmm comm®, int *result)

MPI _Group groupl, group2, inter;
int groupresult;

MPI _Conmm conpar e(conmil, comm®?, resul t);
if ((*result)==MPI _UNEQUAL) {

}

MPI _Comm gr oup( comi, &gr oupl);
MPI _Comm gr oup(com®, &gr oup?2) ;

MPI _Group_intersection(groupl, group2, & nter);
MPI _Group_conpare(inter, group2, &roupresul t);
i f (groupresult==MPI_SIM LAR) *result = MPI _SUPERCOVW
el se if (groupresult==MPlI | DENT) *result = MPI_SUPERCOW STRI CT;
el se {
MPI _Group _free(& nter);
MPI _Group_intersection(group2, groupl, & nter);
MPI _Group_conpare(inter, groupl, &roupresult);

if (groupresult==MPI_SIM LAR) *result = MPI _SUBCOWM
el se if (groupresult==MPI | DENT) *result = MPI _SUBCOWM STRI CT;
el se *result = MPI _UNEQUAL;

}

MPI _Group_free(& nter);
MPI _G oup_free(&groupl);
MPI _G oup_free(&group2);

return MPlI_SUCCESS;

}

Figure 1. Implementation of the MPI _Conmyr el at e operation.



#defi ne COMM_MAP_TAG 999

i nt MPI _Conm nap(MPI _Conm baseconm MPI _Conmm subcomm int *torank, int *fronrank)
{

MPI _Comm mapcomm /* for map-internal conmunication */

MPI _Group basegroup, subgroup;

int rank, subrank, subfrom subsize;

i nt *subi nbase;

MPI _St at us st at us;

MPI _Comm r ank( baseconm &r ank) ;

i f (subconm =MPI _COVM NULL) {
MPI _Conmm gr oup( baseconm &basegr oup) ;

MPI _Comm gr oup( subcomm &subgr oup) ;
MPI _Group_rank(subgroup, &ubr ank) ;
MPI _Group_si ze(subgroup, &ubsi ze);

*fronmrank = subrank;
} else {

subsi ze =

*fronrank

}

MPI _Al | reduce( MPl _I N_PLACE, &subsi ze, 1, MPl _|I NT, MPI _MAX, basecomm) ;

0;
= MPl _PROC_NULL;

MPI _Comm dup( basecomm &mapconmm) ;
i f (subcome=MPI _COVM NULL) ({
i f (rank<subsize) {
MPI _Recv(torank, 1, MPl _| NT, MPI _ANY_SOURCE, COMM MAP_TAG mapconm &st at us) ;
if (*torank!=status. MPl _SOURCE)
fprintf(stderr,"Rank %l error in source, expected % actual %\ n",
rank, *t or ank, st at us. MPI _SOURCE) ;
} else *torank = MPI _PROC NULL;
} else {
i f (rank<subsize) {
MPI _Group_transl ate_ranks(subgroup, 1, & ank, basegr oup, t or ank) ;
} else *torank = MPI _PROC NULL;

MPI _Group_transl ate_ranks(basegroup, 1, &ubr ank, subgr oup, &ubfrom ;
i f (subfrom=MPl _UNDEFI NED) {
MPI _Send( & ank, 1, MPl _|I NT, subr ank, COW MAP_TAG nmapconm) ;
}
MPI _G oup_free(&subgroup);
MPI _Group_free(&basegroup);
}
MPI _Comm free(&rapconm) ;

return MPI_SUCCESS;
}

Figure 2. Implementation of the MPI _Conmnap collective.
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