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Abstract

The Message Passing Interface (MPI) is designed as
an architecture independent interface for parallel program-
ming in the shared-nothing, message passing paradigm. We
briefly summarize basic requirements to a high-quality im-
plementation of MPI for efficient programming of SMP clus-
ters and related architectures, and discuss possible, mildex-
tensions of the topology functionality of MPI, which, while
retaining a high degree of architecture independence, can
make MPI more useful and efficient for message-passing
programming of SMP clusters. We show that the discussed
extensions can all be implemented on top of MPI with very
little environmental support.

1 Introduction

Although designed for programming of distributed mem-
ory parallel systems in the message-passing paradigm, the
Message Passing Interface(MPI) [6, 18] is also used for
parallel programming on shared memory systems and hy-
brid shared/distributed memory systems, such as clusters
of SMP nodes. Alternatively, clusters of SMP nodes can
be programmed in a hybrid style, using OpenMP [4] or a
thread-model within the SMP nodes and a message passing
interface for the communication between nodes. Arguably,
the hybrid style can give better performance, since it reflects
more closely the structure of the SMP system. On the other
hand, hybrid programming is difficult since it requires mas-
tering both the shared-memory and message passing pro-
gramming styles. For lack of a simple and broadly accepted
model for programming of hybrid systems, a pure message
passing paradigm is often preferred. Also, many existing
application codes are pure MPI codes, and the extra effort
required to rewrite these is considerable. Surprisingly, ex-
periments indicate that pure MPI codes can often be as fast
as specialized hybrid codes [2, 9, 15, 17]. However, in or-
der to be efficient on an SMP cluster, the MPI implemen-

tation must take the hybrid nature of the system into ac-
count. This means that both point-to-point, one-sided and
collective communication operations of MPI must be im-
plemented to take advantage of the faster, shared-memory
based communication within SMP-nodes. In addition, the
topology functionalityof MPI [18, Chapter 6] can be im-
plemented to perform process reordering based on user-
supplied communication patterns to take better advantage
of the more powerful intra-node communication. With MPI,
however, it is not possible for the user toexplicitly take the
communication structure of an SMP cluster into account.
This may be seen as both a strength and a weakness of MPI.

In this paper we first summarize requirements to high-
quality MPI implementations for efficient utilization of
SMP clusters and other systems with a hierarchical commu-
nication structure. In Section 3 we discuss the MPI topol-
ogy functionality, which can be used to provide an archi-
tecture independent means of adapting to SMP-like archi-
tectures. We discuss the potential of this functionality, and
also some of its shortcomings that could possibly be reme-
died without compromising or unnecessarily extending the
existing MPI standard. In Section 4 we discuss means of in-
corporating explicit SMP-awareness into an MPI-like pro-
gramming interface. We stress that the discussed “exten-
sions to MPI” can all be implemented on top of MPI with
only minimal environmental support needed.

As ever so often there is a trade-off between precision
and efficiency of a proposed mechanism, and its ease of
use. The more precise a mechanism, the more knowledge
and effort is required for its use. Thus, proposed exten-
sions to a library like MPI must consider questions like: Is
it worth the effort? Will the user accept the extended/new
functionality? Are the performance benefits large enough?
It is worth noticing that the MPI standard as it is, is of-
ten criticized for being too large, and many aspects are not
used, either because of lack of user knowledge or because
of skepticism about the performance (warranted or not). An
unfortunate consequence is that MPI implementers some-
times spend too little time on these more exotic parts of MPI
(or was it the other way round?).
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2 SMP-aware communication

An SMP cluster is a collection of shared-memory pro-
cessing nodes interconnected by a communication network.
SMP clusters range from low-cost, off-the shelf systems
with few processors per node (2-way, 4-way clusters) in-
terconnected with a cheap commodity network (Fast Eth-
ernet), through medium- to high-performance clusters with
powerful interconnects (Myrinet, SCI, Giganet, Quadrics),
to the currently most powerful supercomputers like the
multi-way ASCI-machines, the Earth Simulator or the NEC
SX6-multi-node systems, all equipped with specialized,
high performance interconnects. A common characteris-
tic of these systems is a markedly hierarchical communi-
cation structure. Processors on the same shared-memory
node can communicate via the shared memory. Typically
the shared-memory intra-node bandwidth is higher than the
bandwidth achieved by the interconnect. Depending on the
power of the memory subsystem, many processor pairs on
the same shared-memory node can communicate more or
less simultaneously. In contrast, communication between
nodes is limited by the (small, fixed) number of network
cards (ports) per node, and processors on a node have to
share the bandwidth provided by the network. Often only
one processor on a node can be involved in inter-node com-
munication at a time. Although less common, SMP-like
systems can have more than two hierarchy-levels. Espe-
cially lower-end SMP clusters are often heterogeneous both
in the sense of having different types of processors on the
different nodes, and in the sense of having different num-
bers of processors per node.

For the purpose of this paper we make the following sim-
ple assumptions for general, multilevel SMP clusters:

1. Processors are grouped hierarchically into a tree of
processing nodes. A single node on level 0 represents
the complete SMP cluster. Single processors form sin-
gleton nodes at the bottom (deepest level) of the hier-
archy.

2. Processing nodes on leveli are assumed to be fully
connected and communication between nodes is uni-
form (same communication costs for any pair of level
i nodes).

3. Communication between nodes on leveli − 1 is more
expensive (higher latency, lower bandwidth, port re-
strictions) than communication between nodes on level
i

4. Communication between pairs of processors take place
via the cheapest communication medium connecting
them, that is on the deepest leveli such that both pro-
cessors belong to the same leveli processing node.

Thus a multilevel SMP system can be thought of as a tree of
processing nodes. The tree need not be balanced, i.e. some
processors can sit deeper in the hierarchy than others. In this
model a “standard” SMP cluster has three levels. The inter-
mediate level consists of the shared memory nodes, and As-
sumption 2 states that the communication between shared
memory nodes is uniform. Systems where this assumption
does not hold because of the interconnect, can sometimes
be modeled as systems with more than two levels. For in-
stance, fat-tree networks have a hierarchical structure that fit
into the model. Note, however, that networks like meshes
do not have a hierarchical structure in this sense. More for-
mal models needed for the detailed design and analysis of
communication algorithms for multilevel SMP systems can
be found in e.g. [1, 3].

Assumption 4 must be guaranteed by the programming
interface. For instance, an MPI implementation for an
SMP cluster should use the shared memory for commu-
nication between processors on the same shared-memory
node. For point-to-point communications, many (most?)
MPI implementations ensure this. The MPICH imple-
mentation [7] for instance has a (lock-free) shared mem-
ory device for intra-node communication, although many
other (MPICH-derived) implementations are better suited
to Linux-clusters.

The MPI collectives, which are often implemented on
top of point-to-point communication immediately benefit
from “SMP-aware” point-to-point communications. How-
ever, to deal with restrictions on inter-node communication
like the fact that only a small number of processors per node
can do inter-node communication at the same time, differ-
ent algorithms than algorithms designed under the assump-
tion of a flat system are needed to support efficient collec-
tive communication. Also the possibility that SMP clusters
can be heterogeneous need to be taken into account. At the
least algorithms for collective operations must be able to
deal with the fact that different processing nodes can have
different numbers of processors; this is so either by design,
or because the MPI communicator spans only part of the
system.

Hierarchical algorithms for collective operations like
barrier synchronization and broadcast are easy [10, 11, 12,
13], and are incorporated in many MPI implementations.
For example, broadcast from a root processor on level 0
can be done by the root broadcasting to chosen root pro-
cessors on the level 1 nodes, all of which do a broadcast
recursively [3].

This recursive decomposition is more difficult or not pos-
sible at all for other collectives. An explicitly hierarchical
algorithm for theMPI Alltoall collective is discussed
and implemented in [16, 20]. Hierarchical algorithms for
MPI Allgather and MPI Allgatherv are currently
being implemented by the author [21].
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3 The MPI topology functionality

The MPI topology mechanism provides a portable means
of adapting an application to the underlying communication
system. The mechanism allows the user to specify a com-
munication pattern (virtual topology) as a graph over pro-
cesses in which edges represent potential communication
between pairs of processes. By a call to a topology cre-
ation function, the MPI implementation is allowed to per-
form a process remapping which brings processes that will
presumably communicate closer to each other. An MPI im-
plementation for SMP clusters could attempt to map pro-
cesses that are direct neighbors in the virtual topology to
the same shared-memory node. MPI allows specification
of virtual topologies explicitly as communication graphs,
or implicitly as meshes/tori/hypercubes (Cartesian topolo-
gies) where communication is assumed to be along the di-
mensions of the mesh.

Implementations of the MPI topology mechanism for
multilevel SMP systems are described in [8, 19]. Both
are based on graph-partitioning,and worthwhile, sometimes
considerable improvements in communication performance
for synthetic benchmarks are reported. We note here that
exact graph partitioning is an NP-hard problem [5], and
finding an exact partition even for medium sized graphs is
prohibitively expensive. We also note that for a remapping
to have any effect on application performance, the imple-
mentation of point-to-point communication must be SMP-
aware (Assumption 4).

The MPI topology functionality is a weak mechanism in
that it allows only a very rough specification of communica-
tion patterns. We now discuss some of its shortcomings and
possible remedies. The remarks are mostly directed at the
functionality for creating graph topologies, but (except for
the scalability issue) are also relevant for Cartesian topolo-
gies. A graph topology is created by the collective MPI call

MPI_Graph_create(basecomm,
nnodes,index,edges,
reorder,
&graphcomm);

which returns a new communicatorgraphcomm spanning
nnodes processes. The processes in this communicator
may have been reordered relative to their order (that is,
mapping to processors) inbasecomm to better support the
given communication pattern. This in turn is described as an
undirected (symmetric) graph and given by the arguments
nnodes, index andedges (see [18, Chapter 6]). The
booleanreorder argument determines whether the MPI
implementation should attempt a process remapping.

Vagueness: The topology creation callsMPI Graph -
create andMPI Cart create are collective, and as for

other collective MPI calls the arguments provided by differ-
ent processes must “match”. For the graph creation call all
processes must supplythe full communication graph (al-
though not said so explicitly in the standard), presumably
with identical values for theindex andedges arrays. The
MPI standard is (deliberately?) vague about matching argu-
ments, and no explicit (coercion) rules are given. Likewise,
we assume that all processes in both graph and Cartesian
topology creation calls must give the same value for the
reorder argument.

Lack of precision:

• What is the communication volume between neighbor-
ing processes? Are some edges more heavily loaded
than other?

• What is the frequency of communication? Are some
edges used more frequently than others?

• When do communications happen? Are communica-
tions “simultaneous”, or separate in time?

• for Cartesian topologies: is communication along di-
mensions, or along diagonals or both?

Such information, which, if at all, is known only by the ap-
plication program, can clearly influence what the best pos-
sible remapping is for the given communication pattern.
Possible solution:allow weighted graphs, or multigraphs.
Multiple edges or weighted edges between processes can
be used to indicate heavier load (volume and/or frequency).
The ordering of the edges could be used to indicate the tim-
ing relations, although it seems complicated to give a con-
sistent and useful definition of such a functionality. The cre-
ation call for Cartesian topologies could be extended with
a diagonal flag, indicating whether communication is
along dimensions only, or also along diagonals in the grid.

Lack of accuracy:

• What is the optimization criterion that should be ap-
plied for the process reordering? Is minimizing the
total amount of communication between processing
nodes important? Or should rather the maximum num-
ber of communication edges out of any one processing
node be minimized?

• Are there special requirements, e.g. that certain pro-
cesses not be remapped, because they are bound to
processors with special features, e.g. to a node with
especially large memory, or with special I/O capabili-
ties?
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Possible solutions:An MPI Info object could be used in
the topology creation call to give hints to the MPI imple-
mentation. A directive argument could be used to assert
that the calling process not be remapped. Alternatively, the
reorder argument could be used locally by each process
to indicate whether the calling process may be remapped or
not.

Difficulty of use/lack of scalability:

• Each calling process must give the complete commu-
nication graph. This is error-prone, and can be tedious
for the application programmer. For applications with
irregular communication patters each process probably
knows its immediate communication neighborhood,
but will (most?) often not know the whole commu-
nication graph. In such cases extra communication is
needed in the application program to build the com-
munication graph. The requirement that the same (iso-
morphic or identical) graph is given by each process
also takes care to ensure. The construct is also non-
scalable (graphs may grow as the square of the number
of processes) but this is probably the less significant
drawback.

• How much time should be be invested in finding a good
remapping (see NP-completeness remark above)?

• What is the performance benefit?

Possible solutions:Put the burden of building the full com-
munication graph on the MPI implementation: each process
should only supply its list of neighbors. This cannot lead to
errors since rules for how MPI should construct a consistent
communication graph can easily be specified. This solution
is furthermore scalable. AnMPI Info object could again
be used to instruct the MPI implementation on how much
time should be invested in the remapping. Alternatively,
runtime option or environment variable could be used. The
performance benefit issue can partially be handled by being
able to query communicators: do processesi andj reside
on the same shared-memory node? A performance bene-
fit can be expected if the new communicator maps many
neighboring processes (in the virtual topology) to the same
shared memory node. A concrete proposal in this direction
is given in Section 4.

3.1 Alternative topology interfaces

In this section we describe alternative interfaces for
graph and Cartesian topology creation functions that ad-
dress the issues raised above. The interfaces can trivially
be implemented on top of the MPI topology functionality,
but a serious implementation, producing a better remapping

than an already existing MPI implementation of the topol-
ogy functionality (which may be possible because more in-
formation is supplied) takes a serious effort, and will require
environmental support, possibly in the form outlined in Sec-
tion 4.

The following graph creation function allows a higher
degree of precision, allows more accuracy, is more scalable
and might be more convenient to use for some applications:

int Graph_create(MPI_Comm basecomm,
int degree,
int neighbors[],
int reorder,
MPI_Info mapinfo,
MPI_Comm *graphcomm)

Instead of all processes supplying the full graph, each
process gives only its own list of processes with which it
wants to communicate. The number of neighbors is given
asdegree, and we allow the same neighbor to appear mul-
tiple times inneighbors. Neighbor multiplicity is used
indicate a higher communication load between the process
and that neighbor. A process that should not appear in the
resultinggraphcomm gives−1 asdegree argument (0
indicates a process with no neighbors that will appear in the
resultinggraphcomm communicator). There is no sym-
metry requirement for the neighbor lists: a consistent, sym-
metric (multi-)graph is built by the implementation. The
reorder argument has local semantics; areorder value
of 0 means that the calling process should remain fixed (that
is, bound to the same processor as inbasecomm). An
MPI Info argument can be used to provide further hints
to the MPI implementation, for example on the optimiza-
tion criteria to be used.

A trivial implementation of this interface that already
might be useful in cases where the user does not want to
bother with building the whole communication graph is as
follows: The neighborlists are gathered by all processes
(by anMPI Allgather and anMPI Allgatherv call).
Each process constructs the full communication graph, and
after a minimum all-reduction over thereorder argu-
ments, the existingMPI Graph create function creates
the requiredgraphcomm communicator. More ambitious
implementations will of course want to do more.

The complete communication graph implicitly con-
structed by theGraph create call can be queried by the
already present topology query functions of MPI.

Similarly for Cartesian topologies:

int Cart_create(MPI_Comm basecomm,
int ndims, int dims[],
int periods[],
int diagonal,
int multiplicity[],
int reorder,
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MPI_Info mapinfo,
MPI_Comm *cartcomm)

The newdiagonal argument indicates to the underly-
ing implementation whether communication may be also
along diagonals or is solely along the dimensions. The
multiplicity argument is used to specify the load of
the communication along each dimension for the calling
process; ifdiagonal is set to 1, multiplicities must also
be given to the diagonals (an ordering of the diagonals must
of course be defined). ANULL value can be given, indi-
cating that all communication edges have the same load.
All processes inbasecomm must give the same values for
ndims, dims andperiods, while the remaining input
parameters are local, and may differ.

To decide whether such changes to the MPI topology
mechanism are worthwhile to pursue further, collaboration
with users is indispensable. As mentioned, a non-trivial
implementation of a topology interface along the lines dis-
cussed above is possible on top of MPI if information about
the SMP system can be made available. Needed is essen-
tially the distribution of the processes inbasecomm over
the processing nodes. In Section 4 it is shown how this in-
formation can be provided.

3.2 Additional functionality

Whenever processes are remapped as a result of a
call to a topology creation function (or other communi-
cator creation function), data redistribution from old to
new communicator may become necessary, especially
if new communicators are created repeatedly during the
execution of the application program. For instance, an
MPI Graph create(basecomm,...,&graphcomm)
call returns a new communicator which is asub-
communicator of basecomm in the sense that all
processes in the new communicator are also in the old
communicator. In the MPI setting, data redistribution
means that the process with rank 0 inbasecomm sends its
data to the process which has rank 0 ingraphcomm, the
process with rank 1 in thebasecomm sends its data to the
process with rank 1 ingraphcomm, and so on.

In general, processes in a super-communicator have to
send data to processes with the same rank (if they are there
- the sub-communicator may have fewer processes than
the super-communicator) in a sub-communicator. Thus, it
would be convenient to be able to compare two commu-
nicators with the purpose of determining whether one is a
sub-communicator of the other. MPI already has a compar-
ison function for communicators [18, Chapter 5]. A call

MPI_Comm_compare(comm1,comm2,&result);

with communicatorscomm1 and comm2 returns in
result either MPI IDENT, MPI CONGRUENT,

MPI SIMILAR, orMPI UNEUQAL. It is easy to extend this
with further result values;MPI SUBCOMM if comm1 is a
sub-communicator ofcomm2, MPI SUBCOMM STRICT if
comm1 is a sub-communicator ofcomm2 and furthermore
the ordering of the processes incomm1 is as incomm2,
MPI SUPERCOMM if comm1 is a super-communicator
of comm2, and finally MPI SUPERCOMM STRICT if
comm1 is a strict super-communicator ofcomm2. A
comparison function with this extended functionality
can easily be implemented using the group manipu-
lation functions MPI Group intersection and
MPI Group compare. A full implementation of such
a function, called MPI Comm relate, is given in
Appendix A.

For the data redistribution letbasecomm andsubcomm
be the given communicators. Since not all processes of
basecomm may be insubcomm, redistribution has to
take place inbasecomm. The process with ranki in
basecomm has to send data to the process with ranki

in subcomm, provided thati is smaller than the size of
subcomm. Let this process have ranki′ in basecomm.
We call i′ the to-rank of processi (in basecomm). The
from-rankof processi′ (which has ranki in subcomm) is
i (in basecomm), and processi′ has to receive data from
processi (both inbasecomm). Processes inbasecomm
that are not also insubcomm have no from-rank, and pro-
cesses inbasecomm with rank greater than the number of
processes insubcomm have no to-rank.

A convenient utility function for data redistribution from
super- to sub-communicator computes thetorank and
fromrank of the calling process. This is the task of a new
collective function:

int MPI_Comm_map(MPI_Comm basecomm,
MPI_Comm subcomm,
int *torank,
int *fromrank)

If the calling process is not insubcomm it does not have
a handle to this communicator, and givesMPI COMM NULL
as parameter. Non-existing to- or from-ranks are returned as
MPI PROC NULL. An implementation ofMPI Comm map
is given in Appendix B, which also explains why the func-
tion cannot be implemented with local semantics.

A new collective operation

int MPI_Permute(void *inbuf, int incount,
MPI_Datatype intype,
int fromrank,
void *outbuf,int outcount,
MPI_Datatype intype,
int torank,
MPI_Comm comm)

can now be used to perform the redistribution. As in MPI
other collectives type signatures between sending and re-
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ceiving processes must match. The implementation is triv-
ial:

MPI_Sendrecv(output,outcount,outtype,
torank,MPI_PERMUTE_TAG,
inbuf,incount,intype,
fromrank,MPI_PERMUTE_TAG,
comm,&status);

However, for special networks better, specialized algo-
rithms for permutation routing exist, and could be exploited
in the implementation. Therefore, and for sheer conve-
nience, it might be useful to have the redistribution collec-
tive be part of the communications library.

4 Explicitly SMP-aware MPI programming

The topology mechanism makes it possible for the MPI
implementation to adapt a virtual communication topology
to fit better with the SMP system. Experiments indicate
that it can be implemented to give significant performance
benefits for applications with communication patterns with
some degree of locality [19]. The mechanism, however,
gives no solution to the orthogonal situation in which the
user wants toexplicitly take the SMP-structure into account
whensetting up his communication pattern. In this situa-
tion, it would be desirable to be able to query the system as
to how many nodes are available, which processes in a given
communicator are on a given shared-memory node etc. For
this situation some amount of SMP-topology information
could be incorporated into the communications library. An
easy and useful way of doing this is to provide a hierarchy of
communicators reflecting the hierarchical communication
structure of the SMP cluster. At the bottom of this hierar-
chy, each process belong to aMPI COMM SELF communi-
cator. An attributeMPI DEPTH of this communicator could
give the depth of the process in the hierarchy. At the top
of the hierarchyMPI COMM WORLD represents the whole
SMP cluster. MPI COMM WORLD might have an attribute
MPI MAX DEPTH giving the maximum depth of a proces-
sor in the system (as determined byMPI COMM WORLD).
For each intermediate processing node, there is a communi-
catorMPI COMM NODE[i], wherei is a level between 0
andMPI MAX DEPTH − 1. Any given process thus belongs
to a hierarchy of communicators, like this:

MPI COMM WORLD = MPI COMM NODE[0]
⊇

· · ·

⊇

MPI COMM NODE[i]
⊇

· · ·

⊇

MPI COMM NODE[MPI DEPTH] = MPI COMM SELF

For SMP like systems, the processes on the same shared-
memory node as any given process are contained in that
process’MPI COMM NODE[MPI DEPTH-1] communica-
tor (which always exist; for non-hierarchical systems sim-
ply asMPI COMM WORLD). This communicator identifies
the processes on the node, as well as the number of pro-
cesses on the node. Thus, this functionality is sufficient
for providing the information needed for a non-trivial im-
plementation of the extended topology remapping functions
Graph create andCart create on top of MPI.

A useful hierarchy inquiry function returns for any two
processesi and j in a communicatorcomm the level on
which i andj can communicate most cheaply. The inter-
face could take the form

int MPI_Comm_level(MPI_Comm comm,
int i, int j,
int *level)

and would compute the deepestlevel such that processes
i andj both belong toMPI COMM NODE[level].

This inquiry function could be used together with the
topology functionality to get an idea of the quality of the
remapping produced. Letgraphcomm be the commu-
nicator returned by a call toMPI Graph create. If
processesi and j have the same depth, and the call to
MPI Comm level returns alevel equal toMPI DEPTH−

1, then the two processes are on the same shared memory
node. If a smaller level is returned,i and j are on more
remote nodes, and communication between these processes
is more expensive. Agraphcomm where many neighbor-
ing processes are mapped to the same shared-memory node,
will probably be better than communicators where this is
not the case.

A communicator hierarchy as sketched here can be made
available using existing MPI operations with some environ-
mental support/knowledge provided by the user. The MPI
functionMPI Get processor name returns a processor
name/identification for the calling process. Assuming that
this identifies the shared-memory node to which the calling
process belongs, the communicators in the hierarchy can be
created by a sequence of

MPI_Comm_split(MPI_COMM_NODE[i-1],
shared_node_id[i],rank,
&MPI_COMM_NODE[i]);

calls, whereshared node id[i] is an integer id of the
level i processing node of the calling process, extracted
from the processor name. Note that the use of processor
names as returned byMPI Get processor namemakes
this solution non-portable, since MPI does not prescribe a
naming convention which allows to extract the desired id’s
in a portable fashion.
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A different proposal of how to incorporate SMP aware-
ness explicitly into MPI communicators is described in [14].
This proposal is orthogonal to the one presented here, and
describes the hierarchy implicitly by having cluster at-
tributes associated with each communicator which identi-
fies the assignment of processes to SMP nodes. It is not
immediately clear that this approach suffices for multi-level
hierarchical systems.

Explicit incorporation of communication hierarchy into
a communication library like MPI to some extent compro-
mises the architecture independence of the standard. Con-
sideration must be applied.

5 Conclusion

We discussed requirements to high-quality MPI imple-
mentations for the efficient utilization of SMP clusters, and
suggested further functionality for more convenient and ef-
ficient programming of SMP clusters. The extensions could
presumably be made to fit with the existing MPI standard,
but can also be implemented as a separate library on top
of MPI. The suggestions of this paper are meant to gener-
ate discussion, and should not be taken as actual proposals
for extending the MPI standard. Whether they are worth
pursuing further must be decided in close cooperation with
actual SMP cluster users with serious message passing ap-
plications.
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A Extended communicator comparison
function

An extended communicator comparison function
MPI Comm relate is given in Figure 1. In addition
to the existing result values provided by the MPI stan-
dard [18, Chapter 5] four new values are introduced
for identifying (strict) sub/super-communicator relation-
ships. A communicatorcomm1 is a sub-communicator
of comm2 if all processes incomm1 are also incomm2;
the relationship isstrict if furthermore the ordering of
the processes incomm1 is the same incomm2. The
implementation relies on process group intersections: a
set A is a subset ofB iff A = A ∩ B. Because MPI

process groups are ordered sets, and because of the se-
mantics of MPI Group intersection, two calls to
MPI Group intersection are necessary to determine
whether the sub/super-communicator relationship is strict.
As for MPI Comm compare the function cannot be called
with MPI COMM NULL as either of the communicator
arguments.

B An implementation of the computation of
communicator mapping information

In this appendix we give an implementation of a collec-
tive operation for computing a mapping between ranks in a
base communicator and a sub-communicator. The function
computestorank andfromrank as required by the re-
distribution operation described in the main text. The code
is shown in Figure 2.

Recall that torank is only defined for processes
in basecomm whose rank is smaller than the size of
subcomm. Not all processes, however, have a handle to
the latter communicator, so the size ofsubcomm has to
be distributed among allbasecomm processes. We use
the non-rooted (symmetric)MPI Allreduce collective
for this. This partly explains whyMPI Comm map can-
not be implemented with local semantics. Processes that
are both insubcomm andbasecomm can compute both
theirtorank andfromrank locally, using group transla-
tion functions to translate among processes in the two com-
municators. For instance, thetorank of processrank
(in basecomm) is the rank of the process inbasecomm
that has rankrank in subcomm. Processes that are not
in subcomm, and whose rank (inbasecomm) is smaller
than the size ofsubcomm determine theirtorank by
receiving with MPI ANY SOURCE from the correspond-
ing process. Thetorank of these processes cannot oth-
erwise be determined without communication, thus the
map-computation needs collective participation by all pro-
cesses inbasecomm. In order to makeMPI Comm map
a safe library function, aComm dup is performed on the
basecomm used for communication.
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#define MPI_SUBCOMM MPI_UNEQUAL+1
#define MPI_SUBCOMM_STRICT MPI_UNEQUAL+2
#define MPI_SUPERCOMM MPI_UNEQUAL+3
#define MPI_SUPERCOMM_STRICT MPI_UNEQUAL+4

int MPI_Comm_relate(MPI_Comm comm1, MPI_Comm comm2, int *result)
{
MPI_Group group1, group2, inter;
int groupresult;

MPI_Comm_compare(comm1,comm2,result);
if ((*result)==MPI_UNEQUAL) {

MPI_Comm_group(comm1,&group1);
MPI_Comm_group(comm2,&group2);

MPI_Group_intersection(group1,group2,&inter);
MPI_Group_compare(inter,group2,&groupresult);
if (groupresult==MPI_SIMILAR) *result = MPI_SUPERCOMM;
else if (groupresult==MPI_IDENT) *result = MPI_SUPERCOMM_STRICT;
else {
MPI_Group_free(&inter);
MPI_Group_intersection(group2,group1,&inter);
MPI_Group_compare(inter,group1,&groupresult);
if (groupresult==MPI_SIMILAR) *result = MPI_SUBCOMM;
else if (groupresult==MPI_IDENT) *result = MPI_SUBCOMM_STRICT;
else *result = MPI_UNEQUAL;

}
MPI_Group_free(&inter);
MPI_Group_free(&group1);
MPI_Group_free(&group2);

}

return MPI_SUCCESS;
}

Figure 1. Implementation of the MPI Comm relate operation.
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#define COMM_MAP_TAG 999

int MPI_Comm_map(MPI_Comm basecomm, MPI_Comm subcomm, int *torank, int *fromrank)
{
MPI_Comm mapcomm; /* for map-internal communication */
MPI_Group basegroup, subgroup;
int rank, subrank, subfrom, subsize;
int *subinbase;
MPI_Status status;

MPI_Comm_rank(basecomm,&rank);

if (subcomm!=MPI_COMM_NULL) {
MPI_Comm_group(basecomm,&basegroup);

MPI_Comm_group(subcomm,&subgroup);
MPI_Group_rank(subgroup,&subrank);
MPI_Group_size(subgroup,&subsize);

*fromrank = subrank;
} else {

subsize = 0;
*fromrank = MPI_PROC_NULL;

}

MPI_Allreduce(MPI_IN_PLACE,&subsize,1,MPI_INT,MPI_MAX,basecomm);

MPI_Comm_dup(basecomm,&mapcomm);
if (subcomm==MPI_COMM_NULL) {

if (rank<subsize) {
MPI_Recv(torank,1,MPI_INT,MPI_ANY_SOURCE,COMM_MAP_TAG,mapcomm,&status);
if (*torank!=status.MPI_SOURCE)

fprintf(stderr,"Rank %d error in source, expected %d actual %d\n",
rank,*torank,status.MPI_SOURCE);

} else *torank = MPI_PROC_NULL;
} else {

if (rank<subsize) {
MPI_Group_translate_ranks(subgroup,1,&rank,basegroup,torank);

} else *torank = MPI_PROC_NULL;

MPI_Group_translate_ranks(basegroup,1,&subrank,subgroup,&subfrom);
if (subfrom==MPI_UNDEFINED) {
MPI_Send(&rank,1,MPI_INT,subrank,COMM_MAP_TAG,mapcomm);

}
MPI_Group_free(&subgroup);
MPI_Group_free(&basegroup);

}
MPI_Comm_free(&mapcomm);

return MPI_SUCCESS;
}

Figure 2. Implementation of the MPI Comm map collective.
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