
Proposal for MPI-3:
Allowing MPI macro interfaces

Rainer Keller, Jeff Squyres, Rich Graham, Hubert Ritzdorf

HLRS, Cisco, ORNL, NEC

Abstract. The current MPI-2 standard disallows most functionality to
be implemented as macros. Whilst this allows function replacement in-
side binaries with tools based on the PMPI-interface, this restriction
hinders MPI-implementations to further reduce overhead of MPI-calls.
This paper proposes an extension to MPI-2, which would allow applica-
tions to pass hints to the MPI-implementation, which routines may be
optimized and further, what kind of MPI-functionality is not used in the
application.

1 Introduction

The MPI-2 [2] standard defines in section 4.17 a restriction on MPI implemen-
tations: Apart from the timing functions MPI Wtime and MPI Wtick, only the
conversion functions MPI Group f2c, etc. in section 4.12.4 may be implemented
as macros.

This is to guarantuee tools based on the profiling interface to hook wrappers
into the call-chain based on the profiling interface (PMPI). This functionality
however is mainly required for debugging and performance analysis purposes,
which is routinely perfomed in the earlier stages of programming life-cycle. The
general case, during application deployment, applications will not make use of
this functionality. Therefore, this requirement may unnecessarily hinder the per-
formance of applications.

By alleviating the rule, and allowing (certain) functions to be called as
macros, there are a certain optimization possibilities, not yet achievable through
compilers, or libraries. The most obvious reason would be the reduction of call
overhead. However, there are a few further possibilities for optimization as the
following will show.

2 Hints to allow macro-based inlining

In order to allow compilers to do a better job in optimizing code, is giving them
more information. For a library-based implementation such as MPI, one may
think of parameters as const, using restrict or augmenting the semantic of
functions with compiler attributes.

Allowing inlining of one or more levels of the MPI-implementation may enable
the compiler to delete code-paths, therefore reducing the amount of branches on



the fast-path (e. g. knowing source process is not MPI ANY SOURCE or destination
process is not MPI PROC NULL), or reducing copy operations of data-structures
(e. g. MPI Status).

3 Using specialized functionality

Furthermore, the user could specify application specific behaviour to select spe-
cialized functions:

3.1 All MPI functions as inline

#define MPI_HINT_INLINE
#include "mpi.h"

This allows the inlining of all MPI-functions. This will allow optimization of
MPI-internal states. However, this disables the usage of PMPI-enabled tools,
like performance analysers or debuggers.
Advice to Users:
In each module compiled, the user needs to specify this hint.
Advice to the implementor:
The implementor should document, which functions are inlinable.

3.2 No usage of multiple threads with MPI INIT THREAD

#define MPI_HINT_NO_THREADS
#include "mpi.h"

Together with MPI HINT INLINE, this hint may allow the compile time decision
to use or not use functionality for threaded execution in inlined functions.

3.3 No usage of MPI ANY SOURCE

#define MPI_HINT_NO_ANY_SOURCE
#include "mpi.h"

This hint may allow the selection of specialized recv-functions with a streamlined
code-path, which does not need to test for msg from other source processes.

4 Performance

The following performance results were gathered on two nodes of a dual-socket
Intel Xeon WoodCrest cluster (2,6 GHz) with an Infiniband DDR Interconnect
using the Netpipe-3.6.2 benchmark using the Open MPI implementation based
on SVN-trunk r17537. No other command-line parameters such as mpi pinning
were provided.



In the following, the hints MPI HINT INLINE and MPI HINT NO THREADS were
specified, and the MPI-calls MPI Send, MPI Recv, MPI Isend, MPI Irecv and
MPI Wait were patched to be inlined. Additionally, Open MPI provides the
means to circumenvent the modular component architecture [1]. In our case,
the ob1 Packet Management Layer (PML) was selected per default using the
configure-flag --enable-mca-direct=pml-ob1. By changing the implementa-
tion to inline the underlying packet management functions (e.g. mca pml ob1
irecv), further improvements were gained.

The Latency shows the 1-Byte output of Netpipe with no additional argu-
ments, the∞ Bandwidth is for 8 MB message size in Megabits/second. As expected,
the bandwidth does not change; the latency does not really improve, either...

1-Byte Latency ∞ Bandwidth File-Size in Bytes
Options Std. Inlined Std. Inlined Std. Inlined

None 3.31 µs 3.29 µs 9686.58Mbps 9681.34 Mbps 43455B 81499B

Direct PML-OB1 3.33 µs 3.29 µs 9682.17Mbps 9678.00 Mbps 43479B 132887B

+No MPI Checks 3.33 µs 3.26 µs 9672.47Mbps 9679.80 Mbps 43503B 118124B
Table 1. Timing with various combinations of Configure-options

5 Consequences of Non-conformance

MPI-implementations not implementing this feature do not change in behaviour.
Similarly any application compiled with a certain version of an MPI implementa-
tion using the functionality will still function with any binary compatible version
of the same MPI implementation. The only restriction is the loss of PMPI func-
tionality.

Naturally, MPI implementations will need to expose certain levels of their
source base to the user. This might involve cleaning up header files, separat-
ing files by functionality or, in the case of commercial MPI implementations,
obfuscating source code of header files.

6 Further Issues

These issues were raised in email discussions:

1. Add MPI Info as argument to MPI Init
Providing this (or similar) information upon startup at runtime would be
feasible in some cases. There are advantages and some disadvantages (are
there more):
+ Consistent with the previous style to extend the API



+ Allow runtime changing of the app, instead of compile once and run
forever

+ Keep the possibility of the PMPI-interface wrapping the app
- No inlining and further optimization by the compiler
- Need all the MPI Info functionality before MPI Init, therefore
- Possibly not all information available (e.g. do we have the shared library

with functions that optimize MPI HINT NO ANY SOURCE??)
- Still the issue with other (PMPI?) libraries that *might* use MPI ANY
SOURCE... (see issues 2 and 3).

Probably, both ways (compile-time hints and run-time info) could co-exist.
If so, they should however provide similar ”hints” or assertions (or whatever
they will be called ,-])

2. The user specifies MPI HINT NO ANY SOURCE, but calls into libraries, that
*may* use MPI ANY SOURCE.
As far as I understand, this is not an issue when combining MPI HINT NO
ANY SOURCE with MPI HINT INLINE at compile-time?
As noted, the MPI-library would need to have specialized internal recv-
functions (in ompi another path down the PML...):
– In the case of MPI HINT INLINE, this would be trivial at compile-time

and both the user-app and the library could co-exist.
– Without MPI HINT INLINE, the MPI-library would need to

#define MPI_Recv MPI_Recv_no_any_source
#define MPI_Sendrecv and so on...

which would disallow the PMPI-Interface once again ,-]
3. A hint like MPI HINT NO ANY SOURCE should be per-communicator.

While I agree with You, that this could be feasible, I believe that this is the
sort of differentation that makes the fast-path handling so difficult in the
first place ,-] So, one would need per-communicator P2P recv-functions (and
send?) functions.
+ The MPI-lib would have all the information for MPI Info at run-time.
- Additional communicator creation routines with MPI Info (too cumber-

some??)
- The user should be aware, that he may *not* use a MPI HINT ANY SOURCE

on a communicator and *then* pass the communicator to libraries (as
they may use MPI ANY SOURCE). So, this would be an advice to users...

4. Adding MPI-semantic awareness into compilers.

5. Code size increase of MPI HINT INLINE?
As of now, the code size by MPI HINT INLINE will be a major concern. I have
to investigate, how I may decrease the size of the include-files...

6. Noise in the measurment, Understanding the data.
The measurement was done on an (empty?) cluster of Intel Xeon Wood-
crest over IB-DDR HCAs from Mellanox (25204) without HCA-memory...
The nodes are not shared. but there still may be other users on the cluster
influencing the measurements... The timings were done with netpipe-3.6.2.



They are not stable, depending on which nodes I receive (on the same leafe-
node??), so they vary +0.04usecs when I am on different nodes. When on
the same two compute nodes, the measurements are ”stable” (+/-0.02 usecs)
but at least constistent in that the inline stuff seems to be a bit faster... Nev-
ertheless, this is a weak point, still!

7. Moving to wider group (like MPI3-subsetting).

References

1. Edgar Gabriel and et al. Open MPI: Goals, Concept, and Design of a Next Gen-
eration MPI Implementation. In D. Kranzlmüller, P. Kacsuk, and J.J. Dongarra,
editors, Proceedings of the 11th European PVM/MPI Users’ Group Meeting, vol-
ume 3241 of Lecture Notes in Computer Science (LNCS), pages 97–104, Budapest,
Hungary, September 2004. Springer.

2. Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997. http://www.mpi-forum.org.


