
16 CHAPTER 2. MPI TERMS AND CONVENTIONS

width and encode address values in the same manner such that address values in one
language may be passed directly to another language without conversion. There is the MPI
constant MPI_BOTTOM to indicate the start of the address range.

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset whereas in C++ one uses MPI::Offset. These types
must have the same width and encode address values in the same manner such that offset
values in one language may be passed directly to another language without conversion.ticket265.

2.5.8 Counts

Derived datatypes can be created representing more elements than can be encoded in a C int
or Fortran INTEGER. MPI_GET_COUNT, MPI_GET_ELEMENTS , and associated functions
cannot properly express these quantities. To overcome this limitation, these quantities are
declared to be INTEGER (KIND=MPI_COUNT_KIND) in Fortran. In C, one uses
MPI_Count. These types must have the same width and encode values in the same manner
such that count values in one language may be passed directly to another language without
conversion. The size of the MPI_Count type is determined by the MPI implementation with
the restriction that it must be minimally capable of encoding a C int, Fortran INTEGER, and
any value that may be stored in a variable of type MPI_Aint.

Rationale. MPI_Count explicitly specifies the number of elements in a datatype, and
therefore implicitly specifies the bounds of that datatype. The number of elements in
a datatype is specified at creation time using a C int or Fortran INTEGER. The extent
of a datatype is expressed using an MPI_Aint. (End of rationale.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, ISO
C, and C++, in particular. (Note that ANSI C has been replaced by ISO C.) The C++
language bindings have been deprecated. Defined here are various object representations,
as well as the naming conventions used for expressing this standard. The actual calling
sequences are defined elsewhere.

MPI bindings are for Fortran 90, though they are designed to be usable in Fortran 77
environments.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C and C++, however, we expect that C and C++ programmers will
understand the word “argument” (which has no specific meaning in C/C++), thus allowing
us to avoid unnecessary confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid the “mpi_” and
“pmpi_” prefixes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Acknowledgments
	Introduction to MPI
	Overview and Goals
	Background of MPI-1.0
	Background of MPI-1.1, MPI-1.2, and MPI-2.0
	Background of MPI-1.3 and MPI-2.1
	Background of MPI-2.2
	Background of MPI-3.0
	Who Should Use This Standard?
	What Platforms Are Targets For Implementation?
	What Is Included In The Standard?
	What Is Not Included In The Standard?
	Organization of this Document

	MPI Terms and Conventions
	Document Notation
	Naming Conventions
	Procedure Specification
	Semantic Terms
	Data Types
	Opaque Objects
	Array Arguments
	State
	Named Constants
	Choice
	Addresses
	File Offsets
	Counts

	Language Binding
	Deprecated Names and Functions
	Fortran Binding Issues
	C Binding Issues
	C++ Binding Issues
	Functions and Macros

	Processes
	Error Handling
	Implementation Issues
	Independence of Basic Runtime Routines
	Interaction with Signals

	Examples

	Point-to-Point Communication
	Introduction
	Blocking Send and Receive Operations
	Blocking Send
	Message Data
	Message Envelope
	Blocking Receive
	Return Status
	Passing MPI_STATUS_IGNORE for Status

	Data Type Matching and Data Conversion
	Type Matching Rules
	Type MPI_CHARACTER

	Data Conversion

	Communication Modes
	Semantics of Point-to-Point Communication
	Buffer Allocation and Usage
	Model Implementation of Buffered Mode

	Nonblocking Communication
	Communication Request Objects
	Communication Initiation
	Communication Completion
	Semantics of Nonblocking Communications
	Multiple Completions
	Non-destructive Test of status

	Probe and Cancel
	Persistent Communication Requests
	Send-Receive
	Null Processes

	Datatypes
	Derived Datatypes
	Type Constructors with Explicit Addresses
	Datatype Constructors
	Subarray Datatype Constructor
	Distributed Array Datatype Constructor
	Address and Size Functions
	Lower-Bound and Upper-Bound Markers
	Extent and Bounds of Datatypes
	True Extent of Datatypes
	Commit and Free
	Duplicating a Datatype
	Use of General Datatypes in Communication
	Correct Use of Addresses
	Decoding a Datatype
	Examples

	Pack and Unpack
	Canonical MPI_PACK and MPI_UNPACK

	Collective Communication
	Introduction and Overview
	Communicator Argument
	Specifics for Intracommunicator Collective Operations
	Applying Collective Operations to Intercommunicators
	Specifics for Intercommunicator Collective Operations

	Barrier Synchronization
	Broadcast
	Example using MPI_BCAST

	Gather
	Examples using MPI_GATHER, MPI_GATHERV

	Scatter
	Examples using MPI_SCATTER, MPI_SCATTERV

	Gather-to-all
	Example using MPI_ALLGATHER

	All-to-All Scatter/Gather
	Global Reduction Operations
	Reduce
	Predefined Reduction Operations
	Signed Characters and Reductions
	MINLOC and MAXLOC
	User-Defined Reduction Operations
	Example of User-defined Reduce

	All-Reduce
	Process-Local Reduction

	Reduce-Scatter
	MPI_REDUCE_SCATTER_BLOCK
	MPI_REDUCE_SCATTER

	Scan
	Inclusive Scan
	Exclusive Scan
	Example using MPI_SCAN

	Nonblocking Collective Operations
	Nonblocking Barrier Synchronization
	Nonblocking Broadcast
	Example using MPI_IBCAST

	Nonblocking Gather
	Nonblocking Scatter
	Nonblocking Gather-to-all
	Nonblocking All-to-All Scatter/Gather
	Nonblocking Reduce
	Nonblocking All-Reduce
	Nonblocking Reduce-Scatter with Equal Blocks
	Nonblocking Reduce-Scatter
	Nonblocking Inclusive Scan
	Nonblocking Exclusive Scan

	Correctness

	Groups, Contexts, Communicators, and Caching
	Introduction
	Features Needed to Support Libraries
	MPI's Support for Libraries

	Basic Concepts
	Groups
	Contexts
	Intra-Communicators
	Predefined Intra-Communicators

	Group Management
	Group Accessors
	Group Constructors
	Group Destructors

	Communicator Management
	Communicator Accessors
	Communicator Constructors
	Communicator Destructors

	Motivating Examples
	Current Practice #1
	Current Practice #2
	(Approximate) Current Practice #3
	Example #4
	Library Example #1
	Library Example #2

	Inter-Communication
	Inter-communicator Accessors
	Inter-communicator Operations
	Inter-Communication Examples
	Example 1: Three-Group ``Pipeline"
	Example 2: Three-Group ``Ring"

	Caching
	Functionality
	Communicators
	Windows
	Datatypes
	Error Class for Invalid Keyval
	Attributes Example

	Naming Objects
	Formalizing the Loosely Synchronous Model
	Basic Statements
	Models of Execution
	Static communicator allocation
	Dynamic communicator allocation
	The General Case

	Process Topologies
	Introduction
	Virtual Topologies
	Embedding in MPI
	Overview of the Functions
	Topology Constructors
	Cartesian Constructor
	Cartesian Convenience Function: MPI_DIMS_CREATE
	General (Graph) Constructor
	Distributed (Graph) Constructor
	Topology Inquiry Functions
	Cartesian Shift Coordinates
	Partitioning of Cartesian Structures
	Low-Level Topology Functions

	An Application Example

	MPI Environmental Management
	Implementation Information
	Version Inquiries
	Environmental Inquiries
	Tag Values
	Host Rank
	IO Rank
	Clock Synchronization

	Memory Allocation
	Error Handling
	Error Handlers for Communicators
	Error Handlers for Windows
	Error Handlers for Files
	Freeing Errorhandlers and Retrieving Error Strings

	Error Codes and Classes
	Error Classes, Error Codes, and Error Handlers
	Timers and Synchronization
	Startup
	Allowing User Functions at Process Termination
	Determining Whether MPI Has Finished

	Portable MPI Process Startup

	The Info Object
	Process Creation and Management
	Introduction
	The Dynamic Process Model
	Starting Processes
	The Runtime Environment

	Process Manager Interface
	Processes in MPI
	Starting Processes and Establishing Communication
	Starting Multiple Executables and Establishing Communication
	Reserved Keys
	Spawn Example
	Manager-worker Example Using MPI_COMM_SPAWN.

	Establishing Communication
	Names, Addresses, Ports, and All That
	Server Routines
	Client Routines
	Name Publishing
	Reserved Key Values
	Client/Server Examples
	Simplest Example --- Completely Portable.
	Ocean/Atmosphere - Relies on Name Publishing
	Simple Client-Server Example.

	Other Functionality
	Universe Size
	Singleton MPI_INIT
	MPI_APPNUM
	Releasing Connections
	Another Way to Establish MPI Communication

	One-Sided Communications
	Introduction
	Initialization
	Window Creation
	Window Attributes

	Communication Calls
	Put
	Get
	Examples
	Accumulate Functions

	Synchronization Calls
	Fence
	General Active Target Synchronization
	Lock
	Assertions
	Miscellaneous Clarifications

	Examples
	Error Handling
	Error Handlers
	Error Classes

	Semantics and Correctness
	Atomicity
	Progress
	Registers and Compiler Optimizations

	External Interfaces
	Introduction
	Generalized Requests
	Examples

	Associating Information with Status
	MPI and Threads
	General
	Clarifications
	Initialization

	I/O
	Introduction
	Definitions

	File Manipulation
	Opening a File
	Closing a File
	Deleting a File
	Resizing a File
	Preallocating Space for a File
	Querying the Size of a File
	Querying File Parameters
	File Info
	Reserved File Hints

	File Views
	Data Access
	Data Access Routines
	Positioning
	Synchronism
	Coordination
	Data Access Conventions

	Data Access with Explicit Offsets
	Data Access with Individual File Pointers
	Data Access with Shared File Pointers
	Noncollective Operations
	Collective Operations
	Seek

	Split Collective Data Access Routines

	File Interoperability
	Datatypes for File Interoperability
	External Data Representation: ``external32''
	User-Defined Data Representations
	Extent Callback
	Datarep Conversion Functions

	Matching Data Representations

	Consistency and Semantics
	File Consistency
	Random Access vs. Sequential Files
	Progress
	Collective File Operations
	Type Matching
	Miscellaneous Clarifications
	MPI_Offset Type
	Logical vs. Physical File Layout
	File Size
	Examples
	Asynchronous I/O

	I/O Error Handling
	I/O Error Classes
	Examples
	Double Buffering with Split Collective I/O
	Subarray Filetype Constructor

	Profiling Interface
	Requirements
	Discussion
	Logic of the Design
	Miscellaneous Control of Profiling

	Examples
	Profiler Implementation
	MPI Library Implementation
	Systems with Weak Symbols
	Systems Without Weak Symbols

	Complications
	Multiple Counting
	Linker Oddities

	Multiple Levels of Interception

	Deprecated Functions
	Deprecated since MPI-2.0
	Deprecated since MPI-2.2

	Language Bindings
	C++
	Overview
	Design
	C++ Classes for MPI
	Class Member Functions for MPI
	Semantics
	C++ Datatypes
	Communicators
	Exceptions
	Mixed-Language Operability
	Profiling

	Fortran Support
	Overview
	Problems With Fortran Bindings for MPI
	Problems Due to Strong Typing
	Problems Due to Data Copying and Sequence Association
	Special Constants
	Fortran 90 Derived Types
	A Problem with Register Optimization

	Basic Fortran Support
	Extended Fortran Support
	The mpi Module
	No Type Mismatch Problems for Subroutines with Choice Arguments

	Additional Support for Fortran Numeric Intrinsic Types
	Parameterized Datatypes with Specified Precision and Exponent Range
	Support for Size-specific MPI Datatypes
	Communication With Size-specific Types

	Language Interoperability
	Introduction
	Assumptions
	Initialization
	Transfer of Handles
	Status
	MPI Opaque Objects
	Datatypes
	Callback Functions
	Error Handlers
	Reduce Operations
	Addresses

	Attributes
	Extra State
	Constants
	Interlanguage Communication

	Language Bindings Summary
	Defined Values and Handles
	Defined Constants
	Types
	Prototype Definitions
	Deprecated Prototype Definitions
	Info Keys
	Info Values

	C Bindings
	Point-to-Point Communication C Bindings
	Datatypes C Bindings
	Collective Communication C Bindings
	Groups, Contexts, Communicators, and Caching C Bindings
	Process Topologies C Bindings
	MPI Environmental Management C Bindings
	The Info Object C Bindings
	Process Creation and Management C Bindings
	One-Sided Communications C Bindings
	External Interfaces C Bindings
	I/O C Bindings
	Language Bindings C Bindings
	Profiling Interface C Bindings
	Deprecated C Bindings

	Fortran Bindings
	Point-to-Point Communication Fortran Bindings
	Datatypes Fortran Bindings
	Collective Communication Fortran Bindings
	Groups, Contexts, Communicators, and Caching Fortran Bindings
	Process Topologies Fortran Bindings
	MPI Environmental Management Fortran Bindings
	The Info Object Fortran Bindings
	Process Creation and Management Fortran Bindings
	One-Sided Communications Fortran Bindings
	External Interfaces Fortran Bindings
	I/O Fortran Bindings
	Language Bindings Fortran Bindings
	Profiling Interface Fortran Bindings
	Deprecated Fortran Bindings

	C++ Bindings (deprecated)
	Point-to-Point Communication C++ Bindings
	Datatypes C++ Bindings
	Collective Communication C++ Bindings
	Groups, Contexts, Communicators, and Caching C++ Bindings
	Process Topologies C++ Bindings
	MPI Environmental Management C++ Bindings
	The Info Object C++ Bindings
	Process Creation and Management C++ Bindings
	One-Sided Communications C++ Bindings
	External Interfaces C++ Bindings
	I/O C++ Bindings
	Language Bindings C++ Bindings
	Profiling Interface C++ Bindings
	C++ Bindings on all MPI Classes
	Construction / Destruction
	Copy / Assignment
	Comparison
	Inter-language Operability

	Change-Log
	Changes from Version 2.2 to Version 3.0
	Changes from Version 2.1 to Version 2.2
	Changes from Version 2.0 to Version 2.1

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

