
D R A F T
Document for a Standard Message-Passing Interface

Message Passing Interface Forum

November 8, 2022

This is the result of a LaTeX run of a draft of a single chapter of the MPIF document.

Chapter 16

Completion Continuations

Some applications may need to handle large numbers of requests or require fast reaction
to the completion or cancellation of an MPI operation. The reaction to the completion of
an operation can be expressed as a continuation. A continuation is a callback function
provided by the application that is invoked by MPI once completion of the operation is
detected.

Continuations are attached to either a single operation request or a set of operation
requests and registered with a continuation request. A continuation request is a persistent
request that has to be initialized and freed by the application and can be used to test or wait
for its completion. A continuation request completes once the callbacks of all continuations
previously registered with it have completed execution. After initialization or completion,
a continuation request has to be started to enable the execution of continuations. However,
continuations can be registered with a valid continuation request at any time.

Continuation requests themselves may have a continuation attached, which will be
invoked once the continuation request is complete. Attaching a continuation to a non-
persistent request returns ownership of that request to MPI, i.e., the request may subse-
quently not be used to test or wait for the completion of the respective operation. The
ownership of persistent requests is returned to the application at the start of the execution
of the continuation callback. The outcome of attaching more than one continuation to a
request is undefined.

Execution of continuation callbacks can occur on any application thread calling into
MPI or be restricted to any thread testing or waiting on the associated continuation request
(see Section 16.3.3). When attaching a continuation to an operation a status object may
be provided, which will be filled before the continuation is invoked. The application may
pass MPI_STATUS[ES]_IGNORE in lieu of a status object or status objects.

MPI procedures may be called from within the continuation callback. Applications
strive for short callback functions so as not to unnecessarily prolong the execution time
of the MPI procedure from within which the callback is executed. Specifically, while not
explicitly prohibited the use of blocking MPI procedures inside the continuation callback is
discouraged.

Example 16.1 uses continuations to implement a scheme for offloading work to other
processes. By using continuations, the requests needed to track the corresponding send and
receive operations do not have to be managed in application space. Instead, progressing
the continuation request is sufficient to react to the completion of both operations.

Example 16.1. Library functions to offload work to other processes and receive the result.
A continuation is attached to the send and receive operation, which will be executed once
both operations are completed.

#include <mpi.h>

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 2

/* work descriptor */
struct work_item {

MPI_Request reqs [2];
MPI_Status stats [2];
work_t *msg;
int size;
int reply;

};

MPI_Request cont_request;
MPI_Comm comm;

void init()
{

MPI_Continue_init (0, 0, MPI_INFO_NULL , &cont_request);
MPI_Start (& cont_request);
MPI_Comm_dup(MPI_COMM_WORLD , &comm);

}

void fini()
{

MPI_Request_free (& cont_request);
MPI_Comm_free (&comm);

}

/* callback invoked by MPI when send and receive operations are complete */
int complete_cb(int rc, void *user_data)
{

struct work_item *wd = (struct work_item *wd)user_data;
int source = wd->stats [1]. MPI_SOURCE;
mark_completed(wd->msg , wd->reply , source);
free(wd);
return MPI_SUCCESS;

}

/* send work to a target process and post a receive for the result */
void send_work(work_t *msg , int size)
{

struct work_item *wd = malloc(sizeof(struct work_item));
wd->msg = msg;
wd->size = size;
int target = next_target ();
/* send the message */
MPI_Isend(msg , size , MPI_BYTE , target , comm , &wd->reqs [0]);
/* receive the reply */
MPI_Irecv (&msg ->reply , 1, MPI_INT , target , comm , &wd->reqs [1]);
/* attach a continuation to both requests */
MPI_Continueall (2, wd->reqs ,

&complete_cb , wd,
/* flags = */0, wd->stats , &cont_request);

}

/* progress outstanding communication and continuations */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

3 16.1 Continuation Requests

void progress ()
{

int flag;
MPI_Test (&flag , &cont_request , MPI_STATUS_IGNORE);
if (flag) {

MPI_Start (& cont_request);
}

}

16.1 Continuation Requests

MPI_CONTINUE_INIT(flags, max_poll, info, cont_req)

IN flags flags (integer)

IN max_poll maximum number of continuations to execute, or 0

for no limit (non-negative integer)

IN info info argument (handle)

OUT cont_req continuation request (handle)

C binding
int MPI_Continue_init(int flags, int max_poll, MPI_Info info,

MPI_Request *cont_req)

Fortran 2008 binding
MPI_Continue_init(flags, max_poll, info, cont_req, ierror)

INTEGER, INTENT(IN) :: flags, max_poll
TYPE(MPI_Info), INTENT(IN) :: info
TYPE(MPI_Request), INTENT(OUT) :: cont_req
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CONTINUE_INIT(FLAGS, MAX_POLL, INFO, CONT_REQ, IERROR)

INTEGER FLAGS, MAX_POLL, INFO, CONT_REQ, IERROR

A call to this procedure creates a new continuation request in cont_req. The flags
argument is used to control aspects of the continuation request, with the following predefined
flag:

MPI_CONT_POLL_ONLY Marks the continuation request as poll-only, i.e., continuations
registered with this continuation request are only executed when a thread tests or
wait for the completion of the continuation request.

Additional flags may be added in the future.
The max_poll argument controls the maximum number of continuations to execute when

testing for the completion of this continuation request. If multiple continuation requests
are tested for completion, the maximum number of continuations executed is the sum of all
of their limits. A value of 0 signals that all available continuations may be executed when
testing or waiting for the completion of the continuation request.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 4

The info argument is used to further control the aspects of the continuation request.
Predefined info keys are described in Section 16.1.1.

A call to a test or wait procedure indicating completion of a continuation request does
not free the request. A continuation request is released through a call to
MPI_REQUEST_FREE, which marks the request for deallocation. The request will be deal-
located once all registered continuations have been executed. Continuation requests may
not be canceled.

16.1.1 Predefined Info Keys

The execution context of continuations registered with a continuation request can be con-
trolled using the following info keys:

"mpi_continue_thread" This key may be set to one of the following two values: "application"

and "any". The "application" value indicates that continuations may only be executed
by threads controlled by the application, i.e., any application thread that calls into
MPI. This is the default. The value "any" indicates that continuations may be executed
by any thread, including MPI-internal progress threads if available. This key has no
effect on implementations that do not use an internal progress thread.

Rationale. Some applications may rely on thread-local data being initialized
outside of the continuation or use callbacks that are not thread-safe, in which
case the use of "any" would lead to correctness issues. (End of rationale.)

"mpi_continue_async_signal_safe" If the value is set to "true", the application provides a hint
to the implementation that the continuations are async-signal safe and thus may be
invoked from within a signal handler. This limits the capabilities of the callback,
excluding calls back into the MPI library and other unsafe operations. The default is
"false".

16.2 Callback Function Signature

typedef int MPI_Continue_cb_function(int error_code, void *user_data);

ABSTRACT INTERFACE
SUBROUTINE MPI_Continue_cb_function(error_code, user_data, ierror)
INTEGER :: error_code
INTEGER(KIND=MPI_ADDRESS_KIND) :: user_data
INTEGER, OPTIONAL :: ierror

SUBROUTINE MPI_CONTINUE_CB_FUNCTION(ERROR_CODE, USER_DATA, IERROR)
INTEGER ERROR_CODE, IERROR
INTEGER(KIND=MPI_ADDRESS_KIND) USER_DATA

The continuation callback function has the type MPI_Continue_cb_function and upon
invocation is passed an error code signalling the state of the associated operations as well as
the pointer to additional data provided when attaching a continuation to the operation or set
of operations. Unless MPI_CONT_INVOKE_FAILED is specified when attaching a continuation
(see Section 16.3.3), the error code passed into the continuation will always be
MPI_SUCCESS. The continuation callback should return MPI_SUCCESS if the continuation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

5 16.3 Attaching Continuations

executed successfully or an error code otherwise. In the latter case, the continuation will
be marked as failed. The handling of failed continuations is explained in Section 16.4.

16.3 Attaching Continuations

16.3.1 Attaching to a Single Request

MPI_CONTINUE(op_request, cb, cb_data, flags, status, cont_request)

INOUT op_request operation request (handle)

IN cb callback to be invoked once the operation is complete

(function)

IN cb_data pointer to a user-controlled buffer

IN flags flags controlling aspects of the continuation (integer)

IN status status object (array of status)

IN cont_request continuation request (handle)

C binding
int MPI_Continue(MPI_Request *op_request, MPI_Continue_cb_function cb,

void *cb_data, int flags, MPI_Status *status,
MPI_Request cont_request)

Fortran 2008 binding
MPI_Continue(op_request, cb, cb_data, flags, status, cont_request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: op_request
MPI_Continue_cb_function, INTENT(IN) :: cb
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: cb_data
INTEGER, INTENT(IN) :: flags
TYPE(MPI_Status), INTENT(IN), ASYNCHRONOUS :: status(1)
TYPE(MPI_Request), INTENT(IN) :: cont_request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CONTINUE(OP_REQUEST, CB, CB_DATA, FLAGS, STATUS, CONT_REQUEST, IERROR)

INTEGER OP_REQUEST, FLAGS, STATUS(MPI_STATUS_SIZE, 1), CONT_REQUEST, IERROR
MPI_Continue_cb_function CB
INTEGER(KIND=MPI_ADDRESS_KIND) CB_DATA

This function attaches a continuation to the operation represented by the request
op_request and registers it with the continuation request cont_request. The callback function
cb will be invoked after the MPI implementation finds the operation to be complete. Upon
invocation, cb_data pointer will be passed to the callback function. The request cont_request
must be a continuation request created through a call to MPI_CONTINUE_INIT.

The flags argument is either 0 or an OR-combination of one or more of the flags outlined
in Section 16.3.3.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 6

If the operation represented by op_request is complete at the time of the call to
MPI_CONTINUE, the implementation may invoke the callback function cb immediately,
unless the MPI_CONT_DEFER_COMPLETE flag is provided.

Unless MPI_STATUS_IGNORE is passed as status, the status object pointed to by status
must be accessible until the continuation callback is invoked.

The memory location holding the request must be accessible until the continuation
callback is invoked and the request will be set to MPI_REQUEST_NULL before the invocation.
If the MPI_CONT_REQBUF_VOLATILE flag was provided the request buffer may be reused
after the call to MPI_CONTINUE returns.

A persistent operation request will not be set to MPI_REQUEST_NULL. Upon invocation
of the attached continuation, the persistent request will be inactive and may be started
inside the continuation callback. The outcome of attaching more than one continuation
to an operation is undefined. After a continuation has been attached, persistent operation
requests may not be tested or waited on until the execution of the continuation callback has
begun. A persistent operation request with an attached continuation may be canceled (if
allowed for the type of operation), which will make the continuation eligible for execution.
Whether or not a request has been canceled can be queried from the associated status
object.

A continuation may be attached to a continuation request (i.e., the request op_request
itself may be a continuation request), in which case the continuation is invoked once all
continuations registered with the continuation request have completed. It is erroneous to
pass the same continuation request as both the op_request and cont_request argument. No
new continuations may be registered with a continuation request from the point when a
continuation has been attached to it until execution of the continuation callback has begun.

Rationale. The above restriction prohibiting new continuations to be registered with
a continuation request that has a continuation attached to it is meant to prevent cyclic
dependencies between continuation requests. Otherwise, a deadlock is imminent if the
completion of one continuation request is dependent on the completion of the other.
(End of rationale.)

16.3.2 Attaching to Multiple Requests

MPI_CONTINUEALL(count, array_of_op_requests, cb, cb_data, flags, array_of_statuses,
cont_request)

IN count list length (non-negative integer)

INOUT array_of_op_requests array of requests (array of handles)

IN cb callback to be invoked once the operation is complete

(function)

IN cb_data pointer to a user-controlled buffer

IN flags flags controlling aspects of the continuation (integer)

IN array_of_statuses array of status objects (array of status)

IN cont_request continuation request (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

7 16.3 Attaching Continuations

C binding
int MPI_Continueall(int count, MPI_Request array_of_op_requests[],

MPI_Continue_cb_function cb, void *cb_data, int flags,
MPI_Status array_of_statuses[], MPI_Request cont_request)

Fortran 2008 binding
MPI_Continueall(count, array_of_op_requests, cb, cb_data, flags,

array_of_statuses, cont_request, ierror)
INTEGER, INTENT(IN) :: count, flags
TYPE(MPI_Request), INTENT(INOUT) :: array_of_op_requests(count)
MPI_Continue_cb_function, INTENT(IN) :: cb
INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: cb_data
TYPE(MPI_Status), INTENT(IN), ASYNCHRONOUS :: array_of_statuses(*)
TYPE(MPI_Request), INTENT(IN) :: cont_request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CONTINUEALL(COUNT, ARRAY_OF_OP_REQUESTS, CB, CB_DATA, FLAGS,

ARRAY_OF_STATUSES, CONT_REQUEST, IERROR)
INTEGER COUNT, ARRAY_OF_OP_REQUESTS(*), FLAGS,

ARRAY_OF_STATUSES(MPI_STATUS_SIZE, *), CONT_REQUEST, IERROR
MPI_Continue_cb_function CB
INTEGER(KIND=MPI_ADDRESS_KIND) CB_DATA

Similar to MPI_CONTINUE, this function is used to attach a continuation callback
to a set of operation requests. The continuation callback will be invoked once all count
operations in the list array_of_op_requests have completed. If MPI_STATUSES_IGNORE is
not passed for array_of_statuses, the array should be of length count and the statuses will
be set before the continuation is invoked. Unless MPI_STATUSES_IGNORE is provided, the
memory containing the statuses must remain accessible until the continuation is invoked.
Unless the MPI_CONT_REQBUF_VOLATILE flag is set, the memory containing the requests
must remain accessible until the continuation is invoked. The rules regarding persistent and
non-persistent requests described for MPI_CONTINUE also apply here.

16.3.3 Flags For Attaching Continuations

MPI_CONT_DEFER_COMPLETE Do not execute the continuation immediately even if the
operation (or all operations) is complete already while the continuation is attached.
The continuation will instead be executed at a later point in time.

MPI_CONT_REQBUF_VOLATILE The request buffer is volatile and should not be accessed
after the return from the function call. If used, MPI cannot handle errors occurring
in any of the involved operations. The behavior is undefined if an error occurs on an
associated operation and a non-aborting error handler is installed.

Rationale. In case MPI discovers a fault on an operation it may be required
to access to the request objects to properly handle the error and mark the con-
tinuation associated with that operation as failed. Thus, this flag should not be
used in conjunction with error handlers that do not abort. However, applications
that do not wish to handle errors may use this flag to simplify the handling of
requests. (End of rationale.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 8

MPI_CONT_PERSISTENT The continuation is marked as persistent. This flag is only al-
lowed in conjunction with persistent requests. If provided, the continuation will re-
main attached to the persistent operations and be invoked once all requests have
completed. The persistent requests have to be freed to remove the persistent contin-
uation. See Section 16.3.4 for a discussion of persistent continuations.

MPI_CONT_INVOKE_FAILED The continuation is invoked even if an error is detected for
one or more of the associated operations. In that case, the error code for the operation
(in the case of MPI_CONTINUE) or MPI_ERR_IN_STATUS is passed as the error code
to the continuation callback. If the continuation subsequently returns MPI_SUCCESS
the continuation will not be marked as failed.

16.3.4 Persistent Continuations

By default, continuations that are attached to persistent requests are not themselves per-
sistent, i.e., a continuation attached to a persistent request is removed from that request
once the callback has executed. The next time the request completes there will be no
continuation to execute, unless a new continuation has been attached.

By specifying the flag MPI_CONT_PERSISTENT, the continuation can be marked as
persistent. In that case, the continuation will remain attached to the persistent request
after it completed and has been started again. The persistent request has to be freed to
remove the continuation. In the case of MPI_CONTINUEALL, all persistent requests have to
be started and subsequently complete before the continuation can be invoked again by MPI.
The outcome is undefined if only a subset of the requests associated with a continuation are
started again. This may lead to a deadlock since the continuation callback is never invoked
again and the continuation request to which the continuation is registered remains active.

It is erroneous to use this flag with requests that are not persistent.

16.4 Error Handling

A continuation may fail for two reasons. First, any of the operations the continuation is
attached to fails. This will cause the continuation to be marked as failed and the corre-
sponding error and MPI object of the operation will be associated with the continuation.
The status for the request of the failed continuation will contain the error code for that
operation. By default, the continuation will not be executed if one or more of its operations
have failed.

However, if MPI_CONT_INVOKE_FAILED has been specified then the continuation call-
back will be invoked and the error code of the first failed operation will be passed as its first
argument. If the application is able to handle that error inside the continuation callback, it
may subsequently return MPI_SUCCESS from the continuation callback to prevent the error
from being propagated outside of the continuation. If, however, a continuation returns any
error other than MPI_SUCCESS the continuation will be marked as failed and the returned
error as well as MPI_COMM_SELF will be associated with the continuation.

The test or wait on a continuation request with a registered failed continuation shall
return for that request the error of the first continuation detected as failed. The appropriate
error handler will be invoked on the error and MPI object associated with that continuation.

If that error handler does not abort the application, the set of failed continuations can
be queried from the continuation request using MPI_CONTINUE_GET_FAILED. A continu-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

9 16.4 Error Handling

ation request that contains failed continuations cannot be restarted until all failed contin-
uations have been queried.

MPI_CONTINUE_GET_FAILED(cont_request, count, cb_data)

IN cont_request continuation request (handle)

INOUT count list length (non-negative integer)

OUT cb_data address of a buffer of count pointer to callback data

(choice)

C binding
int MPI_Continue_get_failed(MPI_Request cont_request, int *count,

void *cb_data)

Fortran 2008 binding
MPI_Continue_get_failed(cont_request, count, cb_data, ierror)

TYPE(MPI_Request), INTENT(IN) :: cont_request
INTEGER, INTENT(INOUT) :: count
TYPE(*), DIMENSION(..) :: cb_data
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Fortran binding
MPI_CONTINUE_GET_FAILED(CONT_REQUEST, COUNT, CB_DATA, IERROR)

INTEGER CONT_REQUEST, COUNT, IERROR
<type> CB_DATA(*)

This function returns at most count pointers to callback data of failed continuations
in the buffer pointed to by cb_data. The argument cb_data should be an array pointers to
callback data of length at least count.

Rationale. The use of a formal parameter cb_data of type void* (rather than void**)
avoids the messy type casting that would be needed if the callback data pointer are
declared with a type other than void*. (End of rationale.)

Upon return, count will be set to the actual number of callback data pointers stored
in the first count positions of the cb_data array. If the value of count upon return is the
same as its input value then there may be more failed continuations to query. Conversely,
if count upon return is smaller than the input value then all failed continuations have been
queried. The callback data pointer for any given continuation shall not be returned twice,
unless N > 1 continuations share the same pointer, in which case that pointer value shall
be returned N times.

Querying failed continuations does not change the state of the continuation request,
i.e., the continuation request has to be started again to enable the execution of continua-
tions and new continuations may be registered with a continuation request that has failed
continuations left to query.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 10

16.5 Continuations and Threads

If the implementation supports MPI_THREAD_MULTIPLE, it is safe to register continuations
with the same continuation request from within multiple threads. This allows multiple
threads within an application to attach continuations to operations without requiring mu-
tual exclusion. However, starting as well as testing and waiting for its completion must be
limited to a single thread at a time.

If multiple threads exist within an application, any thread calling into MPI may exe-
cute continuation callbacks registered with any continuation request. In order to limit the
execution of continuations callbacks to a single thread at a time, the MPI_CONT_POLL_ONLY

flag may be passed to MPI_CONTINUE_INIT. Consequently, the callbacks of continuations
registered with this continuation request will only be executed by a thread testing or waiting
for the completion of the continuation request.

16.6 Examples

Example 16.2. Using a persistent continuation on a persistent receive request, restarting
the request after processing an incoming message. This examples uses MPI_WAIT to wait
for the completion of all continuations registered with the continuation request and thus to
wait for all messages to be processed.

#include <stdlib.h>
#include <mpi.h>

#define NUM_VARS 1024
#define TAG 1001

static MPI_Request recv_request , cont_request;
static volatile int num_recvs = 0;
static int world_size;

int completion_cb(int rc, void *user_data)
{

process_vars(user_data);
num_recvs += 1;
if (num_recvs < world_size -1) {

MPI_Start (& recv_request);
/* the continuation was marked persistent */

}
return MPI_SUCCESS;

}

int main(int argc , char *argv [])
{

int rank;
MPI_Status status;
MPI_Init (&argc , &argv);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_size(comm , &world_size);
MPI_Comm_rank(comm , &rank);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

11 16.6 Examples

double *vars = malloc(sizeof(double)* NUM_VARS);
if (rank == 0) {

MPI_Continue_init (0, 0, MPI_INFO_NULL , &cont_request);
MPI_Recv_init(vars , NUM_VARS , MPI_DOUBLE , MPI_ANY_SOURCE , TAG ,

comm , &recv_request);
MPI_Start (& recv_request);
MPI_Continue (& recv_request , &completion_cb , vars ,

MPI_CONT_PERSISTENT ,
&status , cont_request);

/* wait for all messages to be received */
MPI_Start (& cont_request);
MPI_Wait (& cont_request , MPI_STATUS_IGNORE);
MPI_Request_free (& recv_request);
MPI_Request_free (& cont_request);

} else {
create_vars(vars);
MPI_Send(vars , NUM_VARS , MPI_DOUBLE , 0, TAG , comm);

}

free(vars);
MPI_Finalize ();
return 0;

}

Example 16.3. Using continuations to react to an arbitrary number of messages (sender
not shown) in a library and checking for cancellation of the receive request inside the con-
tinuation. The progress function should be called periodically by the library’s user.

#include <mpi.h>

static MPI_Request cont_request = MPI_REQUEST_NULL;
static int cont_init_count = 0;
struct callback_data {

MPI_Request recv_request;
MPI_Status status;
void *buffer;

};

int completion_cb(int rc, void *user_data)
{

int cancelled;
/* test whether the receive was cancelled , process otherwise */
MPI_Test_cancelled(status , &cancelled);
if (cancelled) {

MPI_Request_free (& recv_request);
} else {

process_msg(user_data);
MPI_Start (& recv_request);
/* the continuation was marked persistent */

}
return MPI_SUCCESS;

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 12

}

/* initialize a receive with a given tag and register a continuation */
void init_recv(void *buffer , int num_bytes , int tag)
{

/* initialize continuation request and start a receive */
struct callback_data *cb_data = malloc(sizeof (* cb_data));
if (cont_request == MPI_REQUEST_NULL) {

MPI_Continue_init (0, 0, MPI_INFO_NULL , &cont_request);
MPI_Start (& cont_request);
cont_init_count ++;

}
MPI_Recv_init(vars , num_bytes , MPI_BYTE , MPI_ANY_SOURCE , tag ,

comm , &cb_data ->recv_request);
MPI_Start (&cb_data ->recv_request);
MPI_Continue (&cb_data ->recv_request , &completion_cb , buffer ,

MPI_CONT_PERSISTENT ,
&cb_data ->status , cont_request);

}

void progress ()
{

int flag;
/* progress outstanding continuations */
MPI_Test (& cont_request , &flag , MPI_STATUS_IGNORE);
if (flag) {

MPI_Start (& cont_request);
}

}

void end_recv ()
{

/* cancel the request and wait for the last continuation to complete */
MPI_Cancel (& recv_request);
MPI_Wait (& cont_request , MPI_STATUS_IGNORE);
--cont_init_count;
if (cont_init_count == 0) {

MPI_Request_free (& cont_request);
}

}

Example 16.4. Using continuations to handle detached OpenMP tasks communicating
through MPI. An additional background thread is needed to ensure progress on outstand-
ing continuations. For both continuations, the flag MPI_CONT_REQBUF_VOLATILE is used
because the request variable is located at the stack and will go out of scope once the task
completes. The detach clause on the receive task marks the task as detached, i.e., al-
though the task completes its dependencies will not be fulfilled until the omp_fulfill_event
OpenMP procedure is called on the event. This mechanism can be used to encapsulate MPI
communication in OpenMP tasks without blocking the thread executing the task.

#include <stdlib.h>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

13 16.6 Examples

#include <unistd.h>
#include <pthread.h>
#include <omp.h>
#include <mpi.h>

#define NUM_VARS 1024
#define TAG 1001

void send_completion_cb(MPI_Status *status , void *user_data)
{

free(user_data);
}

void recv_completion_cb(MPI_Status *status , void *user_data)
{

omp_fulfill_event ((omp_event_t) user_data);
}

static volatile int need_progress = 1;
void* progress_thread(void *arg)
{

int flag;
MPI_Request *cont_request = (MPI_Request *)arg;
while (need_progress) {

MPI_Test(cont_request , &flag , MPI_STATUS_IGNORE);
if (flag) {

MPI_Start (& cont_request);
}
usleep (100);

}
return NULL:

}

int main(int argc , char *argv [])
{

int rank , size , provided;
MPI_Request op_request , cont_request;
omp_event_t event;

MPI_Init_thread (&argc , &argv , MPI_THREAD_MULTIPLE , &provided);
MPI_Comm comm = MPI_COMM_WORLD;
MPI_Comm_size(comm , &size);
MPI_Comm_rank(comm , &rank);
MPI_Continue_init(MPI_INFO_NULL , &cont_request);
MPI_Start (& cont_request);
/* thread that progresses outstanding continuations */
pthread_t thread;
pthread_create (&thread , NULL , &progress_thread , &cont_request);

#pragma omp parallel master
{

if (rank == 0) {
#pragma omp taskloop

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16 Completion Continuations 14

for (int i = 1; i < size; ++i) {
double *vars = malloc(sizeof(double)* NUM_VARS);
compute_vars_for(vars , i);
MPI_Isend(vars , NUM_VARS , MPI_DOUBLE , i, TAG , comm , &op_request);
/* attach continuation that frees the buffer once complete */
MPI_Continue (&op_request , &send_completion_cb , vars ,

MPI_CONT_REQBUF_VOLATILE ,
MPI_STATUS_IGNORE , cont_request);

}
} else {

/* task that receives values */
double *vars;
#pragma omp task depend(out: vars) detach(event)
{

MPI_Request op_request;
vars = malloc(sizeof(double)* NUM_VARS);
MPI_Irecv(vars , NUM_VARS , MPI_DOUBLE , 0, TAG , comm , &op_request);
MPI_Continue (&op_request , &recv_completion_cb , event , 0,

MPI_CONT_REQBUF_VOLATILE ,
MPI_STATUS_IGNORE , cont_request);

}
/* task processing values , executed once the receiving task’s

dependencies are released */
#pragma omp task depend(in: vars)
{

compute_vars_from(vars , 0);
free(vars);

}
}

}

need_progress = 0;
pthread_join(thread , NULL);

MPI_Request_free (& cont_request);
MPI_Finalize ();
return 0;

}

Example 16.5. A modified progress function of Example 16.1 querying failed continu-
ations. A failed target is removed from the list of targets and an unsuccessful work item
is resubmitted to another process. This requires MPI_ERRORS_RETURN to be set as error
handler on the communicator comm.

/* progress outstanding communication and continuations */
void offload_progress ()
{

int ret , flag;
ret = MPI_Test (&flag , &cont_request , MPI_STATUS_IGNORE);
if (MPI_SUCCESS != ret) {

/* some continuations have failed , query which ones */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

15 16.6 Examples

struct work_item *wds [16];
int count = 16;
while (16 == count) {

MPI_Continue_get_failed(cont_request , &count , wds);
for (int i = 0; i < count; ++i) {

/* mark the target as unavailable */
remove_target(wds[i]->status [1]. MPI_SOURCE);
/* resubmit work to another target */
send_work(wds[i]->work , wds[i]->size);
free(wds[i]);

}
}
/* all failed continuations have been handled ,

* restart the continuation request */
MPI_Start (& cont_request);

} else if (flag) {
MPI_Start (& cont_request);

}
}

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

MPI_COMM_SELF, 8
MPI_CONT_DEFER_COMPLETE, 6, 7
MPI_CONT_INVOKE_FAILED, 4, 8
MPI_CONT_PERSISTENT, 8
MPI_CONT_POLL_ONLY, 3, 10
MPI_CONT_REQBUF_VOLATILE, 6, 7, 12
MPI_ERR_IN_STATUS, 8
MPI_ERRORS_RETURN, 14
MPI_REQUEST_NULL, 6
MPI_STATUS[ES]_IGNORE, 1
MPI_STATUS_IGNORE, 6
MPI_STATUSES_IGNORE, 7
MPI_SUCCESS, 4, 8
MPI_THREAD_MULTIPLE, 10

"mpi_continue_async_signal_safe", 4
"mpi_continue_thread", 4
"any", 4
"application", 4
"false", 4
"true", 4

MPI_CONTINUE, 6–8
MPI_CONTINUE(op_request, cb, cb_data,

flags, status, cont_request), 5
MPI_Continue_cb_function, 4
MPI_CONTINUE_GET_FAILED, 8
MPI_CONTINUE_GET_FAILED(cont_request,

count, cb_data), 9
MPI_CONTINUE_INIT, 5, 10
MPI_CONTINUE_INIT(flags, max_poll, info,

cont_req), 3
MPI_CONTINUEALL, 8
MPI_CONTINUEALL(count, array_of_op_requests,

cb, cb_data, flags, array_of_statuses,
cont_request), 6

MPI_REQUEST_FREE, 4
MPI_SUCCESS, 8
MPI_WAIT, 10

TERM:continuation, 1

MPI_CONTINUE_CB_FUNCTION, 4
MPI_Continue_cb_function, 4
MPI_Continue_cb_function(

int error_code, void *user_data), 4

17

	16 Completion Continuations
	16.1 Continuation Requests
	16.1.1 Predefined Info Keys

	16.2 Callback Function Signature
	16.3 Attaching Continuations
	16.3.1 Attaching to a Single Request
	16.3.2 Attaching to Multiple Requests
	16.3.3 Flags For Attaching Continuations
	16.3.4 Persistent Continuations

	16.4 Error Handling
	16.5 Continuations and Threads
	16.6 Examples

