a5 @ 3 1

Toward Fine Grain Recovery in
MPI-5 (aka ULFM v2)

Aurelien Boutelller
May. 24, 2022
“Virtual MPI Forum Meeting”

EEEEEEEEEEEEEEEEEEEEEEEE

LACL
INNOVATIVE

COMPUTING LABORATORY

THENUNIVERSEEY ORE

"BENNES SEE

KNOXVILLE

V§ o
7 Qutlines

 History (aka ULFM v1)
* New Features of ULFM v2 in this reading

« Error Range
« Error Uniformity (implicit consistency)

* The bigger picture

« Additional features
e Interaction with MPIl_Reinit

* Interaction with Sessions

£1CL

\\ \

User Level Failure Mitigation:

> 3 !

User Adoption

Fenix Framework: user-level C/R

With scoped recovery

0.35
fr?::r:‘gugga"on 3.8TB/s
0.3 garbage collection 16.8TB/s
0.6TB/s 2.4TB/s
= 0.25 1.2TB/s 9.6TB/s
@
= 0.2 |
E
S
o 0.15 4 0.2TB/s
j<3
= 0.1TB/s
(&) 1 d
O I 0.7TB/s
2 11
0.05 -| = = =] !
- - = - = = = =
o - e e e s e o P
Oop 279> 095 B00p 7562532764400, 25005 50047
Core count

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

Domain Decomposition PDE

E(p) [kg/m?

mean of rho at t=0.06

mean of rho at t=0.06

200
175
. 15.0
. 125
. 10.0
. 75
5.0

25
0.0

(a) failure-free (b) few failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

(c) many failures

90

80

Judicael A. Zounmevo,
Dries Kimpe, Robert
Ross, and Ahmad
Afsahi. 2013. Using MPI
in high-performance
computing services.

SAP: Resilient Databases over MPI

70

—1//

TPC-H Q3 Restart
=@=TPC-H Q3 with Fault Tolerance
=#=TPC-H Q3 Optimized

MapReduce

MapReduce Job

~

-
Distributed
Master
Task
Balancer

(' Failure HdIr)

‘ N
Distributed i

Master

Task H

MapReduce Process

L MapReduce Process

Runner Load :
Balancer i

(Failure HdIr)

Figure 2: The architecture of FT-MRMPI.

X10 Language

16
0 -
. s © 2 o 12 14 W X10 over Sockets (IP over Infiniband)
Processes M X10 over ULFM (Infiniband)
12
Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per 10
Process)

Master-Thesis von Jan Stengler aus Mainz April 2017

L{ MPI_Allreduce, NCCL_Allreduce

A
Vinay Amatya, Abhinav Vishnu,
Charles Siegel, and Jeff Daily.
2017. What does fault tolerant

Deep Learning need from MPI?.

In EuroMPI, EuroMPI’17

L

Source: Sara

Hamouda, Benjamin

He

rta, Josh Milthorpe,
David Grove, Olivier

Tardieu. Resilient X10

over Fault Tolerant
MPI.

And many more...

Time in seconds

|

Resilient with a failure
(3 checkpoints + 1 restore)

8
6
4
2
0

Resilient no failure

Non Resilient

The performance improvement due to using ULFM
v1.0 for running the LULESH proxy application [3]
(a shock hydrodynamics stencil based simulation)
running on 64 processes on 16 nodes with

S/ N VAR NS\

» Fortran CoArrays “failed images”
uses ULFM-RMA to support Fortran

Stefan Pauli, Manuel Kohler, Peter Arbenz: A fault tolerant implementation
of Multi-Level Monte Carlo methods. PARCO 2013: 471-480

TS 18508 in gce-7.2

B . ANV o g ||| A

http://dblp.uni-trier.de/db/conf/parco/parco2013.html

I U A BNV

ULFM MPI Crash Recovery (Background on ULFM v1)

Adds 3 error codes and 5

P1 functions to manage process
P2 crash

« Error codes: interrupt
P3 operations that may block due
Pn to process crash

« MPI_COMM_FAILURE_ACK /
Some applications can continue w/o recovery GET_ACKED: continued

. . operation with ANY-SOURCE
Some applications are malleable

RECV and observation known
« Shrink creates a new, smaller communicator on which collectives failures
work

. . « MPI_COMM_REVOKE lets
Some applications are not malleable

applications interrupt
« Spawn can recreate a “same size” communicator operations on a communicator
* Itis easy to reorder the ranks according to the original ordering + MPI_COMM_AGREE:
* Pre-made code snippets available synchronize failure knowledge

in the application

- Failure Notification Not all recovery strategies : MP'—CO'_"Mt—SHR”I\”;:_Crefat_?";
. . communicator excluding taile
- Error Propagation require all of these DrOCESSes
features .
« Error Recover ’ e : M fo on the MPI F
- f yd that’s why the interface Who should be notified of a failure? = ;0> 57020 e M TR
espawn of hodes should split notification, What is the scope of a failure? https://github.com/mpi-
« Dataset restoration propagation and recovery. What actions should be taken? forum/mpi-issues/issues/20

KNOXVILLE

L ICL g o] TENNESSEE

https://github.com/mpi-forum/mpi-issues/issues/20

" - ' - ' ! 4

Who should know about an error?
Keep it local model (ULFM v1)

« Error notifications do not break MP| ~ + Mastersees a worker failed

 Resubmit the lost work unit onto another worker

« App can continue to communicate on the communicator . .
* Quietly continues

« More errors may be raised if the op cannot complete

| (typically, most collective ops are expected to fail), but o Same StOry with mendable Stencil
| p2p between non-failed processes works pa ttern!

* In this M_aSter'W()rker example’ WE « Exchange with next neighbor in the same direction
can continue w/o recovery! instead

Send (W1,T1) RTAVAVANNAD) Send (W2,T1)
Submit T1 Detected W1 Resubmit
Master \\‘ 7\ 7\ J

W1

W2

L ICL g o] TENNESSEE :

KNOXVILLE

L A RV

Explicit propagation model (ULFM v1)

Recv(P,): Failed
Recv(P,) P, calls Revoke

A1anoosy

What if more need to know about an error?

P1 fails

P2 raises an error and stop Plan A to enter application recovery
Plan B

but P3..Pn are stuck in their posted recv
P2 can unlock them with Revoke ©
P3..Pn join P2 in the recovery

Exhibit 1: The A-Team is
~ thinking about a Plan B

CICL EETEESE

NN U ANV

ULFM available in Open MPI 5.0, MPICH

Performance comparison between ULFM Open MPI and Open MPI master; NERSC Cori Ping Pong (uGNI, 2 nodes)

* ULFM (User Level Failure 0 variant
. . . I Open MPI
Mitigation) is a m ULFM

oo

standardization proposal
that enables the

execution of Fault
Tolerant Applications ‘ ‘ ‘
over MPI

Latency (used)
D

~

N

* Applications can use 0 1 2 4 8 16 32 64 128 256 512 1024
error handlers to react Messaga Size (iyles)
and repai r the effect of Performance comparison between ULFM Open MPI and Open MPI master; NERSC Cori Ping Pong (uGNI, 2 nodes)
. 10 ;
failures variant

I Open MPI
I ULFM

oo

 ULFM is now directly
available in Open MPI
5.0

* mpiexec -with-ft=mpi

(o>}

~

Bandwidth (GB/s)

8192 16384 32768 65536 131072 262144

Message Size (bytes)

524288 1048576 2097152 4194304

ULFM available in Open MPI 5.0

. i Performance overhead of FT vs no-FT on NERSC Cori; No-FT=1 (lower is better)
UITEM (_User_ Level Failure 4375 MPI processes; Cori KNL; Cray Aeris DragonFly Interconnect
Mitigation) is a Bcast
standardization proposal

that enables the

| execution of Fault

Tolerant Applications
over MPI

* Applications can use
error handlers to react
and repair the effect of
failures

 ULFM is now directly
available in Open MPI
5.0

* mpiexec -with-ft=mpi

—8— 4 Bytes
—8— 16 KBytes
—0— 128 KBytes
—8— 1 MBytes

Reduce

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE

V§ o
7 Qutlines

» History (aka ULFM v1)
* New Features of ULFM v2 in this reading

« Error Range
« Error Uniformity (implicit consistency)

* The bigger picture

« Additional features
e Interaction with MPIl_Reinit

* Interaction with Sessions

£1CL

L] I

> ULFM Evolutions:

J Control Error Detection Range (aka auto-revoke)

v

v

3

related procs; In some cases (e.g.,

L’

Recv(P,): Failed
P, calls Revoke
P : %‘—I | MPIX_COMM_REVOKE can be called SendRe
P, AN Z | /_’ to explicitely propagate an error to 04———)@

SPMD), implicit propagation is

- 5 desirable : :
Plan A Plah B M

« By default, errors only in communication dependent upon the failed process (ULFM v1)

Default range is “involved” processes (w.r.t. communication pattern)
Idea: additional modes for (unconditional) scoped and non-scoped recovery

« MPI_Info object set on the communicator/win/file

VI W

* mpi_error_range= : current ULFM behavior (default/unset) (e.g. only in recv from £

failed process) -

* mpi_error_range= : report errors (i.e. REVOKE) for a failure at any process with a example: 3
rank in the comm/win/file (e.g. in recv from an alive process in comm) .

4

Local mode: only rank
4 should report the
failure of rank b5

* Group mode: all ranks /

in comm will report ’
P ” v 9 > . | e B

* mpi_error_range= : report errors (i.e. REVOKE) for a failure anywhere in
“universe”

* In group and universe modes, ERR_REVOKED is produced

N b & ' ! 4

Error Detection Range Benefits: Enabling Modular
Coordination of Recovery Events

Temporal SPMD library composition

Recv(P,): Failed
P, calls Revoke

Lib1 . Lib2 . R
commA . comml . Comm?2 . commA
(dup A) (dup A)

App level .

Recv(P,.¢)

Domain SPMD decomposition

- MPI Communicators define a communication App level g Libl comm1 -
group App level
g . SR Lib2
« Explicit propagation scoped to the Split A . S . commaA

communicator

« What if a library module needs to trigger a Nestin ’
global recovery procedure? (and the overspan esting (w/o overlap)
communicator handle is not visible from the Lib1 comm1
current code scope)? App level . . App level

) . . commaA -
. Libraries can select to observe failures at all ST . Lib2 . commA
ranks, and thus coordinate to trigger a P Comm?2
recovery event.

v/

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE

L &] !

Example Using Ranges

Group Scope Example

int odd= rank%2;

MPI_Comm_split(MPI_COMM_WORLD, odd,
rank, &comm);

MPI_Info_create(&info);

” “

MPI_Info_set(info, “mpi_error_range”, “Sroup”);

MPI_Comm_set_info(comm, info);
MPI_Comm_set_errhandler(comm, &errh);

/* tokens ring circulates left to right in rank
order */

MPI_Sendrecv(..., right, ..., left, ..., comm,...);

Errhandler triggerred for any error at any rank in comm
(i.e., if any ‘odd’ process fails, operations on the ‘odd’

Global Scope example

int odd= rank%2;

MPI_Comm_splittMPI_COMM_WORLD, odd, rank,
&comm);

MPI_Info_create(&info);

if(odd) MPI_Info_set(info, “mpi_error_range”,
“group”);

else MPI_Info_set(info, “mpi_error_range”,
“universe’);

MPI_Comm_set_info(comm, info); E
MPI_Comm_set_errhandler(comm, &errh); 2

/* tokens ring circulates left to right in rank order
*/
MPI_Sendrecv(..., right, ..., left, ..., comm,...); /

On ‘Odd’ processes, failures at other ‘Odd’ processes
raises an error when using comm. On ‘even’ processes,
failure at any process raises an error when using comm.

communicator raise error, but no on the ‘even’
communicator, and vice-versa).

> v - ' I _d

Consequences for failure detection

Ressource

» "local” scope does not mandate Outof-band error Manager Daemon
out-of-band failure detection RM Detected failure (e.g., PRTED)

* In-band (i.e., errors from the network
driver) sufficient

opal_proc_table[proc]->proc_active =
false
Foreach comm
ompi_comm_set_rank_failed(comm)
revoke (comm, collectives):
interrupt collective ops at remote

PMix server

“ ” 174 . ”
« “group” and “universe” scope : PMIx fault notification ranks
. . . PMix client wait_sync_global_wakeup():
I’eq U I re at a m | n I m u m O Ut—Of— thread . interrupt requests yielding on a
Fault Event Triggerred sync object in ompi_request_wait()

band propagation and often
require active monitoring

Wait-sync wakeup

Fault event scheduled

Errhandler Ompi_request_wait/tes

OPAL event loop proc_failed_internal t

Event Loop
calls transport
Progress function PML

Error callback PML calls the errhandler

ompi_request_is_failed_fn(req):
recheck if request still valid
(peer failed?)
cancel failed requests
wait for BTL/MTL to complete
frags
frags could overwrite user
buffers
mpi-complete request
with status.MPI_ERROR set

BTL/MTL Fault Callback

In-band error Network Driver
NIC detected (e.g., OFI, UCX,

Unreachable peer TCP, etc.)

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE

vy - ' 1 _d

}Cost of performing detection and implicit

propagation in the runti

2001 ¢ . RDAEMON* daemon failure

, RDAEMON¥ false
s positive present

A Heartbeat

7

20 30 40 50

* Prior MPI-based detector would produce false positive when application

n- -

Performance variability in GRAPH500 with

an active PMIx-PRRTE Failure detector

Left: MPI

1 0.1 0.01 0.001
Heartbeat period (s)

Figure 17: Overhead for generating BFS running mge test_simple when using
PRRTE with fault tolerance over PRRTE (32K MPI ranks; the gray area repre-
seats the normal vasiability of the beschmark).

Figure 18: Overhead for validsting BFS im mga test simple when using PRRTE
with fault tolerance over PRRTE (32K MPI ranks; the gray area represents the
normal variabilily of the benchenark).

) .
= <t Timeout ¢ son ok g
~ [4 [1 1 o < 6.0% -
N7/ 7/ // j o Pl T
e 100 7777707 4 g -
i ‘ ‘ i 3 0.0% | ¥t
R B0 A g T 5 % oom
- i g-zm«- é
O0 - A A S S ST BT e S -aom g'w"
g 860% i & -4.0%
40 AP’ o0y 2 2-50% 4
S

Right: OpenSHMEM

1 0.1 0.01 0.001
Heartbeat period (5]

Figure 19: Overhead for generating BFS runnimg graphS00-shmem -one-sided
PRRTE

upon PRRTE with faull tolerance over

(32K OrexSHMEM PEs; the
the noemal of the benchmark).

gray area

Heartbeat period (ms) - = . :
B 2.0% o
g § 4.0% -
» Accuracy of detection is very good (in the order of 100ms box g on
can be achieved in practice at scale) £ o : oon
* False detection rate independent of the application L s e .
communication pattern ree

Heartheat period (s)

Figure 200 Overhead for validating BFS running graphS00 shmem one sided
upon PRRTE with foult tolerance over PRRTE (12K OrsxSHMEM PEs; the

Gray area
represents
normal

/benchmark

variability

Blue error bars
show the

A variability as

measured with
detection ON

does not call MPI pI’OCGdUI’eS gray area represents e nocmal varisbility of the benchmark),

Experiments performed on NERSC’s Cori: Cray XC40 supercomputer with Intel
Xeon "Haswell" processors and the Cray "Aries" high speed inter-node network,
32 cores per node, 32K processes total.

* Reusable in different programming models

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE

s Sy & ' 1 _d

Outlines

» History (aka ULFM v1)
* New Features of ULFM v2 in this reading

« Error Range
 Error Uniformity (implicit consistency)

* The bigger picture

« Additional features
e Interaction with MPIl_Reinit

* Interaction with Sessions

£1CL

— Al WS VWV

> Error Uniformity in counting, bulk synchronous

=

programs

| e a—
ap—r

counting_collectives(void) {
for(iteration=0; iteration<target; iteration++) {
compute(iteration);
rc = MPI_Allreduce(buff, count, datatype, O, comm);
MPI_Comm_agree(comm, &rc);
if(rc '= MPI_SUCCESS) {
recovery(iteration);

}

Above code snippet solves the issue, but...
 Must be inserted after every collective operation
* Lost capability of using error handlers

Uniformity example: an error is reported only at some leaf node in
a broadcast topology with a failure

-~ Lax consistency: Exceptions are raised only at

ranks where the Allreduce couldn’t succeed

* In a tree-based Allreduce, only the subtree under the
failed process sees the failure

« Other ranks succeed and proceed to the next
iteration

« Revoke solves potential deadlocks, but...

« Ranks that couldn’t complete enter “recovery” with a
different iteration counter!

« Ranks that could complete the allreduce altered the
memory performing an extra compute(iteration)

e 7/ 1% VAN W8 '\

S |\ \ i A > Ry Y
%Y N S

|

l

|

s vy - 1 _d

Example Using Uniform

Non-uniform example Uniform example

MPI_Comm_dup(MPI_COMM_WORLD, &comm);

MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN); M PI—Comm—dUp(M PI_COMM_WORLD, &com m);

MPI_Info_create(&info);
While(i++ < niter) { MPI_Info_set(info, “mpi_error_uniform”, “coll”); ‘
compute_stepi(i); MPI_Comm_set_info(comm, info);
rc = MPI_Scatter(..., comm); MPI_Comm_set_errhandler(comm, &errh);
flag = (MPI_SUCCESS == rc);
MPI_Comm_agree(comm, &flag); L]
it (Iflag) { while(i++ < niter) {
errhandling(i); compute_stepl(i);
} MPI_Scatter(..., comm);
compute_step2(i) compute_step2(i);

rc = MPI_Bcast(..., comm); .
flag = (MPI_SUCCESS == rc); MPI_Bcast(..., comm);

MPI_Comm_agree(comm, &flag); compute_step3(i);
if (Iflag) { MPI_Allreduce(..., comm);
errhandling(i);

}

THE UNIVERSITY OF

® @l TENNESSEE

KNOXVILLE

NN U ANV

}Solution: Error Uniformity Controls

* |dea: control error uniformity (with communicator Info keys again)

e mpi_error_uniform=local: errors reported as needed to inform of
invalid outputs (buffers/comms) at the reporting rank (i.e. other
ranks may report success); default, current ULFM

« mpi_error_uniform=construct: if communicator/win/file creation
operations (e.g. comm_split, file_open, win_create, comm_spawn,...)
reports at a rank, it has reported the same
ERR_PROC_FAILED/REVOKED at all ranks.

« mpi_error_uniform=coll: same as above, for all collectives (including
creates)

S’ 7/ 'S USRS C—

£ 1CL

NN U ANV

JSError Uniformity: performance impact

 Latency for small
messages is greatly
iImpacted

« Bcast: 20->90us
* Allreduce: 60->140us

» Cost amortized on large
message bandwidth

Uniform Collective OSU over ULFM (UTK Phi, np=768)

ib56g/CMA)
10000 r T T T ,
<> AllIReduce :
[—©&— Uniform AllReduce
- < Broadcast '

1000 o

TIME (us)

I —e— Uniform Broadcast

NN\ (D~ T
-

16 64 256 1K

4K 16K 64K 256K 1M

MESSAGE SIZE (Bytes)

NN U ANV

}Outlines

 History (aka ULFM v1)
* New Features of ULFM v2 in this reading

« Error Range
« Error Uniformity (implicit consistency)

* The bigger picture
« AGREE/IAGREE (future reading)
« SHRINK/ISHRINK and non-blocking recovery (future reading)
« RMA/Files (future reading) !
 Introspection/control, e.g. MPI_FT attribute, mpiexec params (future reading) =
- Error Synchrony (exploratory) E
r/

» |Interaction with MPI_Reinit
« Settled: coexist in text, coexist in impl., flip-flop between models (time decomposition)

» Exploratory: both models active at the same time (nhested, or rank-domain decomposition)
« Interaction with Sessions (exploratory)

LICL TR |

KNOXVILLE

NN U ANV

}Non blocking recovery: ISHRINK
(not part of reading today)

» Performance advantage: overlap shrink (e.g. with 1/0 to reload a
checkpoint)

 |In non-blocking libraries, when the error handler cannot block

* When recovering multiple overlapping comms, relaxed shrink orderlng *
can be required

« MPIX_COMM_ISHRINK(comm, ncomm, req)
« Same as SHRINK, but non-blocking
» Resolves most ordering problems

« Post order does not matter (by definition all SHRINK in different comms)

« Completion order does not matter (as soon as all ishrink posted, they all have to progress regardless of wait
ordering)

S s 7 1S VAN A

£ 1CL

NN U ANV

Performance: ISHRINK w/overlap
(not part of reading today)

 ISHRINK latenc SHRINK vs ISHRINK Throughput (UTK Phi, np-768 |b569+CMA)
A Y g ook 'SHRINK ; '
similar to 3 54k - BHRINK
2 52K [g YT o
SHRINK S R A
« Simultaneous gask /o
ISHRINK B B [
S aakl [
©
overlap g
S 40K [[
S 3Kk b [
S 36K [@
=

3.4k | | | |] | |
0 2 4 6 8 10 12 14 16
Simultaneous Shrinks

. 7 IS VAR LS

L ICL s o TENNESSEE

L] I

Sessions and FT (exploratory) ———

MPIX_SESSION_REVOKE(session)

+ Same as COMM_REVOKE, but triggers on all communicators derived
from the session

» Can be used as a handle to stop a library (e.g., fault detected at the
application level, but a non-blocking library has active *
communication)

. We still want to have MPIX_COMM_SHRINK

1 stop shop: 1. eliminates dead processes, 2. concensus, 3. create
new comm (cid)

* We still want to have COMM_SHRINK (for communicator-centric
recovery models)

* Needed for MPI-3 style apps (i.e., ho sessions)

How could one use
MPI_COMM_CREATE_FROM_GROUP to handle

shrink/replace recovery modes”?

» We also want to investigate how COMM_CREATE_FROM_GROUP and
GROUP_FROM_SESSION_PSET can be used for recovery

* Concensus-like meaning for COMM_CREATE_FROM_GROUP?

job://12942

A

location://rack/17 location://rack/23
—_——— A
r N
app://ocean app://atmos
A A

Variadic psets?

In MPI-4 process sets are static
Ideas around relaxing and versioning

mpi://world:3 would obtain the ‘third’ world (with group membership
agreed upon by the runtime with an implicit concensus)

Other idea is to have explicit resource allocation calls on the session
Call can be local, however we should have a way to test for
progress/completion without blocking

One can then obtain the group mpi://10th-spawn-from-rank10, do
MPI_GROUP_UNION, and thus create a mended “world”

MPI_Info_create(&sinfo);

MPI_Info_set(sinfo, “mpi_thread_level_support”, “MPI_THREAD_MULTIPLE");
rc = MPI_Session_init(sinfo, MPI_ERRORS_RETURN, &lib_shandle);

if (rc = MPI_SUCCESS) goto error;

/*create a group from the WORLD process set */
rc = MPI_Group_from_session_pset(lib_shandle, ”“mpi://WORLD”, &wgroup);
if (rc = MPI_SUCCESS) goto error;

/* get a communicator */

rc = MPI_Comm_create_from_group(wgroup,
"org.mpi-forum.mpi-v4_0.example-ex10_8",
MPI_INFO_NULL, MPI_ERRORS_RETURN, &lib_comm);

THE UNIVERSITY OF

® &l TENNESS

EE

KNOXVILLE

O T/ % "W

NN U ANV

Concluding Remarks

 ULFM v1 goals:

- flexible approach to recovering MPI communication capability (repair what you need)
« Communicator centric approach

. ULFM v2 Added goals:

Permit easier expression of recovery codes (implicit actions)
« Automate tedious/repetitive code (implicit actions)
« Permit modularization of recovery procedures (non-blocking actions, controllable error reporting scope)
« Non blocking recovery: recovery of state and data can overlap
« Compatibility between non-global and global recovery (e.g., compatible with reinit)

NeR AR

« Add Session/Group centric approach

 Fully implemented, represents state of the art in the literature with large body of \
work using ULFM v1 in varied contexts (programming language extensions, C/R /
frameworks, Stencil, PDE, ABFT, etc.)

)“*What ‘we are reading today (PR 665)

— Al WS VWV

PR #665 https.//github.com/mpi-forum/mpi-standard/pull/665/files

L)) Conversation (1 -0- Commits (413 Fl Checks (1 Files changed (10

The core of ULFM v2: error reporting modes and controls, communication [€ Y X NIttt pENIRmpe i
flow interruption

Description
. . . This is the first slice of the ulfm v2 fault tolerance chapter. To simplify procedural progres
S ma l l a d d Itl ons iIn th € WO rkS (n Ot for rea d N g tOd ay) topical slices (this slice excludes dynamics, RMA, Files,COMM_AGREE, COMM_SHRINK
+ Advice about “other” fault types: https://github.com/mpiwg-ft/mpi- Document text (Miay 2022 reading) fe-slicet ndf
standard/pull/17

This supercedes #13.

« Should MPI_Irecv raise FT errors?: https://github.com/mpiwg-ft/mpi-
standard/pull/18/files

« Should we use an Attribute to query if FT is runtime active?
https://github.com/mpiwg-ft/mpi-standard/pull/19/files#diff-
1487¢c38b2632¢cb01aeb3d10f9dc182¢c364bf6699a4f35f431e1db59
eb52d4f2bc

Issue Number(s)

#20

-l’llcr-\ 1

The bigger picture: the full ULFM v2 proposal (not for reading today): RMA,
Files, AGREE, SHRINK, MPI_FT attribute, etc

https://github.com/mpiwg-ft/mpi-standard/pull/19

S - Po— - > . —"'Y PR
/A’ASI e

https://github.com/mpi-forum/mpi-standard/pull/665/files
https://github.com/mpiwg-ft/mpi-standard/pull/17
https://github.com/mpiwg-ft/mpi-standard/pull/18/files
https://github.com/mpiwg-ft/mpi-standard/pull/19/files
https://github.com/mpiwg-ft/mpi-standard/pull/19

= Al B VW

» ANY Source matching,
or why PROC_FAILED_PENDING?

« Mix of NAMED and ANY_SOURCE matching in receiver queue
|« If we PROC_FAILED the iANY, the matching the matching order is changed
i « Thus we need to maintain the matching queue in order => (PF_PENDING)

A Y

P1: S1t1, S2

P2: S1t2, S2t2
P3: dead

Senders:

/ P4: Receiver Queue (posted/pending receives) \ f

Casel: iANY cause PROC_FAILED Case2: iANY cause PROC_FAILED_PENDING 2

IRL(ANY, t=2), iIR2(ANY,t=1), iR3(2, t=2), iR4(ANY) IRL(ANY, t=2), iIR2(ANY,t=1), iR3(2, t=2), iR4(ANY) ”

ERR_PROC_FAILED: completes in error ERR_PROC_FAILED_PENDING: procedure returns, request still pending g

=2 A=1-R3(2, t=25+R4ANY) IRL(ANY, t=2), iIR2(ANY,t=1), iR3(2, t=2), iR4(ANY) ?

User repost: messages now in disorder/matching incorrect CaIIing completiop on ANY returns from prpcedure with error (
R3(2, t=2), IR1(ANY, t=2), iIR2(ANY,t=1), iR4(ANY) User Callo ACK. FAILED (2GKing P3) t Stop proceciures returming with PFP

_\ iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY) | |

ke BB =i w L A A A NANLI L O)

—_— —— —— TR, 'N'f‘ - j— Ymvﬁ_"
e v / P

