
Toward Fine Grain Recovery in
MPI-5 (aka ULFM v2)

Aurelien Bouteiller
May. 24, 2022

“Virtual MPI Forum Meeting”

Outlines

• History (aka ULFM v1)
• New Features of ULFM v2 in this reading
• Error Range
• Error Uniformity (implicit consistency)

• The bigger picture
• Additional features
• Interaction with MPI_Reinit
• Interaction with Sessions

2

User Level Failure Mitigation:
User Adoption

• Fortran CoArrays “failed images”
uses ULFM-RMA to support Fortran
TS 18508 in gcc-7.23

Resilient X10 over Fault Tolerant MPI

Sara Hamouda1, Benjamin Herta2, Josh Milthorpe1,2, David Grove2, Olivier Tardieu2

1Australian National University, 2IBM T. J. Watson Research Center

Resilient X10

X10 is an APGAS programming language

that is designed to provide a simple and

clean programming model for developing

scale-out applications.

As supercomputers grow larger, the Mean

Time Between Failure reduces, and the

need for writing fault tolerance

applications becomes more critical.

By applying the HBI principle, Resilient X10 will ensure that statement D executes after Task C nishes, despite the loss of the

synchronization construct (nish) at place p

try{ /*Task A*/

 at (p) { /*Task B*/

 finish { at (q) async { /*Task C*/ } }

 }

} catch(dpe:DeadPlaceException){ /*recovery steps*/}

D;

Place r Place p Place q

Resilient X10 over MPI ULFM

CBA

finish
{@q async C;}Happens Before Invariance

Principle (HBI):
Failure of a place should not alter

the happens before relationship

between statements at the

remaining places.

val wordCount = new AtomicInteger();

val refCount = GlobalRef(wordCount);

finish for (p in Place.places()) {

 val files = getFilesForPlace(p);

 at (p) async { //create task at place p

 val pCount = countWords(files, “ibm”);

 at (refCount.home)

 refCount().addAndGet(pCount);

 }

} print(wordCount);

Resilient X10 [1] allows X10 programs to survive process failures.

By introducing the Happens Before Invariance Principle, it guarantees the

correct repair of the global program structure after a failure.

Conclusion: Using a fault tolerant MPI

implementation (ULFM), resilient X10 applications can

achieve better performance with the optimized MPI

communication routines and the support for high

speed network protocols provided by MPI (e.g.

Infiniband verbs).

Although MPI is the preferred transport layer for scale-out computing,

Resilient X10 was initially supported only over sockets.

ULFM (User-Level Failure Mitigation) is the most recent proposed

specification for fault tolerant MPI [2]. An implementation of ULFM is available

based on OpenMPI 1.7.

We integrated X10 with ULFM to allow Resilient X10 applications to benefit

from the scalability and performance of MPI.

References:

[1] D. Cunningham, D. Grove, B. Herta, A. Iyengar, K. Kawachiya, H. Murata, V. Saraswat, M. Takeuchi, and O. Tardieu. "Resilient X10: Efficient failure-aware programming." ACM SIGPLAN

Notices 49, no. 8 (2014): 67-80.

[2] W. Bland, A. Bouteiller, T. Herault, J. Hursey, G. Bosilca, and J. J. Dongarra. An evaluation of user-level failure mitigation support in MPI. Springer Berlin Heidelberg, 2012.

[3] J. Milthorpe, D. Grove, B. Herta, and O. Tardieu. Exploring the APGAS programming model using the LULESH proxy application. In Runtime Systems for Extreme Scale Programming Models

and Architectures Workshop, SC 2015.

Sample X10 program performing distributed word count

Non Resilient Resilient no failure Resilient with a failure
(3 checkpoints + 1 restore)

0

2

4

6

8

10

12

14

16

X10 over Sockets (IP over Infiniband)

X10 over ULFM (Infiniband)

T
im

e
 i
n

 s
e

c
o

n
d

s

The performance improvement due to using ULFM

v1.0 for running the LULESH proxy application [3]

(a shock hydrodynamics stencil based simulation)

running on 64 processes on 16 nodes with

problem size 203 per process. The cluster is an

AMD64 Linux cluster, each node having 16G RAM

and 2 quad core AMD Opteron 2356 processors.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

1000 2197 4096 8000 15625 32768 64000 125000
250047

Ch
eck

poi
nt t

ime
 (s)

Core count

garbage collection
memcpy()
communication

0.1TB/s
0.2TB/s

0.7TB/s

0.6TB/s
1.2TB/s

2.4TB/s

3.8TB/s

9.6TB/s

16.8TB/s

Fig. 3. Checkpoint time for different core counts (8.6 MB/core). The numbers
above each test show the aggregated bandwidth (the total checkpoint size over
the average checkpoint time).

MB per node). The bars represent the average among all
checkpoints, all cores, throughout the five repetitions, while
error bars indicate variability (including minimum, maximum,
first, and third quartile). The three different sub-bars show
the three different processes that the checkpoint algorithm
requires. Clearly, the communication cost dominates the ex-
ecution. The lower plot in Figure 2 shows that the checkpoint
time is linearly dependent on data size (for sizes greater than
1 MB/core), as expected.

The overhead caused by each array size strongly influences
the choice of the size to be used in the rest of the experiments
of this paper – 50 grid points per core, which corresponds to
8.58 MB of the yspc array.

Weak scalability. Figure 3 shows how checkpointing scales
to 250k cores as we increase total the number of cores
while achieving similar average checkpoint time, sustaining
a bandwidth of 16.8 TB/s in the test with a higher number of
cores. Again, the checkpoint procedure is dominated mostly
by the transfer cost. As expected, the memcpy time remains
constant throughout all executions, and the garbage collection
cost is negligible.

The lower communication time of the tests with less than
4k cores is due to the configured group size. In small tests it
was set to 16 nodes, while in bigger ones was set to 96 nodes
(the Cray XK7 cabinet size). As the group size is increased,
messages must traverse more Gemini nodes [53] to reach the
destination.

The minimum of each test (the lower point on the error
bars) is in all cases close to the third quartile. Furthermore,
the median (the white line inside the error bar) is below 0.075
in all cases but in the 64k test. These observations indicate that
25% of cores finish the checkpoint process within a reasonably
small time window and half of them take less than 0.075 s,
while others take more time. As this paper is not focused on
the checkpointing process, no further analysis of this behavior
is provided.

Assuming a linear relationship between checkpoint size
and checkpoint writing time in ADIOS, we can extrapolate
a production run’s checkpoint time assuming 8.58 MB/core.
This would be translated to a 90-second checkpoint write

overhead and a 72-second checkpoint read overhead, a 750-
fold increase in the checkpoint time, compared to 0.12 s with
250k ranks obtained with Fenix (Figure 3). Regarding data
recovery time, our implementation only requires the transfer of
the checkpoints to the failed nodes, a process whose overhead
can be expected to be the same as checkpoint time.

Compared to other studies, such as CRUISE [37] (an
extension of SCR [42]), our implementation is slower. This
is mainly due to the fact that we have to send the checkpoint
remotely in order to tolerate entire-node failures, while tests
done in [37] only store checkpoints in local main memory.

D. Validating Optimal Checkpoint Rate

Young’s formula [56], [58] can be used to determine TC ,
the optimal interval between two consecutive checkpoints,
depending on the MTBF of the system (TF) and the checkpoint
time (TS). The checkpoint time has been determined in Section
V-C. As in the previous weak scalability test, checkpoint size
is 8.58 MB/core, which leads to TS = 0.0748 s in the case
of 2197 cores (Figure 3). For a system with one million
nodes, each with an MTBF of 3 years, the overall system
MTBF will drop to TF = 94.608 seconds. Using second-order
approximation for exponential distribution [56], [58], TC is
expressed as follows:

TC =
√
2TSTF =

√
2 · 0.0748s · 94.608s = 3.76s (2)

As the average S3D iteration time is 1.182 s with 50 grid points
per core (over five executions of a failure- and checkpoint-free
experiment on 2197 cores), TC can be expressed as 3 S3D
iterations rounded due to the fact that checkpoints are triggered
by the application only at the end of iterations. Using the same
procedure as in equation 2, we obtained the optimal number
of iterations between checkpoints for system’ MTBFs of 47
seconds (TC = 2) and 189 seconds (TC = 4).

As suggested in [58], we want to verify the proper usage of
the formula, i.e. the correct parameter settings and the correct
rounding of TC from seconds to application iterations. To do
that, we evaluated the total cost induced by a set of uniformly
distributed, independent failures, for several given checkpoint
rates. Specifically, assuming an MTBF of 94 seconds we used
a Poisson distribution4 to obtain ten random possible failure
timestamps within the 94-second time frame. We obtained
the following timestamps: 12, 19, 24, 32, 41, 51, 61, 70, 78,
91. Next, we had to chose 10 different number of iterations
between consecutive checkpoints. As the formula indicated
frequent checkpoints, we concentrated on the smallest five (1-
5). Also, to have an idea of the cost with lower frequency, we
chose the other five to be disperse (10, 20, 30, 40, 50).

For every checkpoint rate, we evaluated the total overhead
of fault tolerance while injecting a failure to every chosen
failure timestamp. The overheads induced in the resulting 100
experiments, each running 90 iterations, are represented in
Figure 4. To determine which is the interval that offers the
lowest overall overhead, Figure 5 shows the average of the
overheads caused by the ten different failures, on each chosen
checkpoint rate. Within the highlighted tests (2, 3, 4, and 5),
checkpointing every three or four iterations offers the best
overall solution, validating in turn the result from Young’s
formula.

4We used R v 3.0.2, rpois() with a seed of 10, λ = 10.

901

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

MapReduce Job

MPI

...

ULFM

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

MapReduce Process

Task
Runner

Distributed
Master

Failure Hdlr

Load
Balancer

Figure 2: The architecture of FT-MRMPI.

2.4 Our Opportunities

We have found that we can force all processes of an MPI
program to exit if any of them detect an error using current
MPI semantics. This mimics failure detection and notifica-
tion. All the processes are terminated, and the user has to
restart the failed MapReduce application as a new job. For
this reason, the checkpoint/restart fault tolerance model [8,
40] is a logically first option for MapReduce because the
recovered application can continue processing from the lat-
est checkpoint rather than starting over. Despite the ad-
ditional overhead that the checkpoint/restart model intro-
duces, it has distinct advantages in its compatibility with
gang scheduling and it requires no changes to MPI.

Fault tolerance is one of the major focuses in the future
MPI standard. One of the proposals is User Level Failure
Mitigation (ULFM) proposed in our prior work. It enables
application-level fault tolerance by o↵ering interfaces to ap-
plications and libraries to mitigate failure. It allows a failed
MPI program to recover without restarting the job and en-
ables us to use the detect/resume fault tolerance model [15]
to recover a failed job without restarting it completely. It
provides an automated and e�cient fault tolerant job execu-
tion for MapReduce by redistributing the workload of failed
processes to the surviving ones.

To build a fault tolerant MapReduce in HPC with these
models, we need a new framework that traces the job exe-
cution state and manages workload distribution so that the
work of failed processes can be correctly saved and recovered.
These fault tolerance models also need to be carefully tai-
lored to adapt to MapReduce in HPC clusters. Next section,
we present FT-MRMPI, a novel framework for MapReduce
in MPI that supports both fault tolerance models.

3. SYSTEM DESIGN

FT-MRMPI is a fault tolerant MapReduce framework im-
plemented on MPI. It tracks a consistent state during job
execution and supports e�cient fault tolerance through two
models: checkpoint/restart and detect/resume. The check-
point/restart model o↵ers the basic fault tolerance using the
current MPI semantics. The detect/resume model enables
automated in-place recovery and a more e�cient job execu-
tion engine.

3.1 Overview

Figure 2 shows the structure of a MapReduce application
using FT-MRMPI. FT-MRMPI consists of four components:
TaskRunner, Master, FailureHandler, and LoadBalancer. It

provides a set of interfaces that enable progress tracking of
user-defined tasks. The master is a thread dedicated to job
management. It handles the data operations during check-
pointing and recovery. It also monitors the job execution
status in each process and maintains the global state consis-
tency. The failure handler is a customized MPI error handler
that performs the failure notification, state preservation, and
recovery. The load balancer estimates the completion time
of each process and redistributes the workload to mitigate
load imbalance after recovery from failures. We briefly de-
scribe some major features of FT-MRMPI in the following.

3.2 Task Runner

The lifespan of a MapReduce job can be divided into
three phases: map, shu✏e, and reduce. The map and re-
duce phases are mainly user-defined logics that read input
data, process each record, and writes output results. It is
not trivial to trace the consistent states in all three phases
at a fine granularity.
FT-MRMPI’s task runner provides a set of user-customizable

interfaces for the map and reduce phases. It embeds the
tracing feature into the user-defined logic.
Table 1 shows the interfaces for map and reduce phases

in FT-MRMPI. The main purpose of these new interfaces
is to delegate the essential operations in a MapReduce job
to the library. For example, instead of writing the file op-
erations in the map function, users are expected to tell the
library how the input data should be tokenized and how the
output records should be serialized. This can be achieved
by extending the FileRecordReader and the FileRecord-

Writer class templates. The library will perform the read
and write operations for a MapReduce job and track the
progress at fine granularity. Similarly, the user can also ex-
tend the KVWriter and the KMVReader class templates in case
of special operations is needed when handling the interme-
diate data.
After delegating the I/O operations to the library, the im-

plementation of the map and reduce functions can be largely
simplified. The map and reduce functions only need to con-
tain the job logic that needs to be applied to individual
records. We provide the Mapper and the Reducer class tem-
plates for defining map and reduce functions.
With the interfaces, FT-MRMPI generalizes the workflow

of map and reduce phases. Algorithm 1 shows an example of
a map task in FT-MRMPI. The loop in the map task reads
input data using the record reader that a user provides and
applies the user-defined map function to each input record.
Each iteration has a commit operation that tells FT-MRMPI
that the processing of the current record is finished, and the
task has reached a consistent state. The workflow of the
reduce phase follows the same loop structure.
The state tracing in the shu✏e phase is relatively simple

because no user code is involved. FT-MRMPI traces the
send and receive for each memory bu↵er in data transmission
stage as well as the merging on each partition.

3.3 Distributed Masters

Although a process-local consistent state is su�cient for
fault tolerance in the map and reduce phases. It is not
enough for the shu✏e phase. Unlike the other phases that
have no inter-process coordination, the shu✏e phase has col-
lective communication between all processes. In the shu✏e
phase, all processes in the MapReduce job exchange interme-

And many more…

Fenix Framework: user-level C/R
With scoped recovery

MapReduce

X10 Language

Domain Decomposition PDE

Figure 5.23: Optimization: Reduce Runtime

Figure 5.24: Optimization: Runtime of TPC-H Benchmark Query 3 with Failure in Phase 4 (1GB Data per
Process)

50

Master-Thesis von Jan Stengler aus Mainz April 2017

SAP: Resilient Databases over MPI

Judicael A. Zounmevo,
Dries Kimpe, Robert

Ross, and Ahmad
Afsahi. 2013. Using MPI

in high-performance
computing services.

Source: Sara
Hamouda, Benjamin

Herta, Josh Milthorpe,
David Grove, Olivier

Tardieu. Resilient X10
over Fault Tolerant

MPI.

Stefan Pauli, Manuel Kohler, Peter Arbenz: A fault tolerant implementation
of Multi-Level Monte Carlo methods. PARCO 2013: 471-480

FT-Caffe EuroMPI, May 2017, EuroMPI’17

The computation can be reduced to a matrix-vector multiplication
with redundant weights, allowing the above algorithm to be applied.

2.2 Caffe
We implement our heuristics in Caffe [7]. Caffe is a popular software
package for designing and deploying deep neural networks. It pro-
vides primitives for operations on multidimensional arrays (tensors),
which are used to implement DNNs. It implements a computational
graph which manages data input along with the calculations for
processing that data through the DNN. Caffe is chosen because it is
heavily optimized, particularly the vendor optimized variants, and
can be effectively modified through open source C++ code.

3 ELEMENTS OF DEEP LEARNING
ALGORITHMS FOR FAULT TOLERANCE
CONSIDERATION

In this section, we present the motivation of our work. Specifically,
we consider the properties of DL algorithms, distinguishing between
MLPs, CNNs and RNNs in terms of their expected execution on large
scale systems. This distinction provides the necessary guidelines
for requirements from MPI in terms of fault tolerance. As pointed
out by Gropp and Lusk [22], ”fault tolerance is a property of MPI
programs and specification”. Hence, it is critical to consider these in
conjunction. Our first element of discussion is the expected type of
parallelism for scaling out DL algorithms.

3.1 Master-Slave Paradigm
Over the last few years, several researchers have considered the
possibility of scaling out DL algorithms. The classical work in scal-
ing out DL algorithms considered a master-slave paradigm, which
was proposed under the DistBelief framework [23]. It considered
a hierarchical organization of parameter servers which would hold
the latest copy of the model. The workers would periodically up-
date the master with their updates and request the latest copy of
the model. Several extensions to this fundamental paradigm have
been proposed in the literature [14, 24, 25]. The limitations of the
master-slave model have been well-studied in the distributed sys-
tems research [26, 27]. In addition to being a single point of failure,
and a communication bottleneck, the limitation of this approach
is that the convergence of master-slave paradigm worsens at scale-
out. For extreme scale systems, this approach is infeasible. Hence,
we disregard this approach which would be leveraged in practical
deployments especially of HPC systems such as Leadership Class
Facilities (LCFs).

It is also worthwhile noting that this approach is amenable to
fault tolerance, especially if the reliability of the parameter server
is higher than workers. A possible implementation in the master-
slave paradigm is to either re-spawning of new workers and split-
ting the original training set among these new workers (by using
MPI Comm spawn) or continue executing in the presence of faults
using the remaining set of compute nodes. Other researchers have
made similar observations in the context of generic master-slave
applications [22] and they are readily applicable to DL algorithms.
However, due to the fundamental scaling issues of the master-slave
paradigm for DL implementations, we disregard this approach from
implementation.

3.2 Model Parallelism
Another possibility which has been presented in literature for scaling
out DL implementations is model parallelism. In this specific type,
individual layers of the overall DNN model are split among different
compute nodes. The training set itself is split among the compute
nodes as well. Let us consider the example of the AlexNet neural
network topology as shown in Figure 1. In a sample execution of
model parallelism, each of the hidden layers would be resident on a
single compute node.

Convolutional Layers

Fully Connected
Layers

Feed-Forward

Back-Propagation

Figure 1: A pictorial representation of AlexNet neural network
topology

During the feedforward step, a batch of samples would be exe-
cuted on the first hidden layer. The output of the first hidden layer –
which is typically referred to as activations – would be forwarded
to to the next hidden layer, resulting in point-to-point communica-
tion between two compute nodes. This procedure is repeated untill
the last layer of the DNN is reached, at which point the error is
calculated. During the back-propagation step, the error is used to
calculate the updates to the weights (gradients) which are communi-
cated between compute nodes in the reverse order to the feedforward
step.

3.3 Data Parallelism
A widely used option in scaling out DL implementations is data

parallelism [28–30]. Under this type of parallelism, the model is
replicated and the data is split among multiple compute nodes. A
pictorial representation of the data parallelism is shown in Figure 2

MPI_Allreduce,-NCCL_Allreduce-

Figure 2: A pictorial representation of data parallelism in DL
algorithms using AlexNet neural network topology and four
compute nodes. The model is synchronized at the end of each
batch using MPI Allreduce and other primitives such as
NVIDIA Collective Communication Library (NCCL)

As shown in the figure, at the end of each batch each compute
node (assuming that the implementation uses shared address space
programming model such as OpenMP/pthread on a node) executes an
MPI Allreduce. By executing the all-to-all reduction primitive,

Vinay Amatya, Abhinav Vishnu,
Charles Siegel, and Jeff Daily.
2017. What does fault tolerant
Deep Learning need from MPI?.
In EuroMPI, EuroMPI’17

http://dblp.uni-trier.de/db/conf/parco/parco2013.html

ULFM MPI Crash Recovery (Background on ULFM v1)

• Failure Notification
• Error Propagation
• Error Recovery
• Respawn of nodes
• Dataset restoration

Not all recovery strategies
require all of these
features,
that’s why the interface
should split notification,
propagation and recovery.

Who should be notified of a failure?
What is the scope of a failure?
What actions should be taken?

• Some applications can continue w/o recovery
• Some applications are malleable
• Shrink creates a new, smaller communicator on which collectives

work

• Some applications are not malleable
• Spawn can recreate a “same size” communicator
• It is easy to reorder the ranks according to the original ordering
• Pre-made code snippets available

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

BA
ND

W
ID

TH
 (G

bi
t/s

)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

LA
TE

NC
Y

(u
s)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

DI
FF

ER
EN

CE
 IN

 R
UN

NI
NG

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

No
n-

FT
 is

 fa
st

er
UL

FM
 is

 fa
st

er

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

Spaw
n

• Adds 3 error codes and 5
functions to manage process
crash
• Error codes: interrupt

operations that may block due
to process crash

• MPI_COMM_FAILURE_ACK /
GET_ACKED: continued
operation with ANY-SOURCE
RECV and observation known
failures

• MPI_COMM_REVOKE lets
applications interrupt
operations on a communicator

• MPI_COMM_AGREE:
synchronize failure knowledge
in the application

• MPI_COMM_SHRINK: create a
communicator excluding failed
processes

• More info on the MPI Forum
ticket #20:
https://github.com/mpi-
forum/mpi-issues/issues/20

https://github.com/mpi-forum/mpi-issues/issues/20

Who should know about an error?
Keep it local model (ULFM v1)

6

Resilience Extensions for MPI: ULFM
ULFM provides targeted interfaces to empower recovery strategies with adequate options to restore
communication capabilities and global consistency, at the necessary levels only.

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

CONTINUE ACROSS ERRORS

In ULFM, failures do not alter the state of MPI communicators.
Point-to-point operations can continue undisturbed between
non-faulty processes. ULFM imposes no recovery cost on simple
communication patterns that can proceed despite failures.

GROUP EXCEPTIONS

Consistent reporting of failures would add an unacceptable
performance penalty. In ULFM, errors are raised only at ranks where
an operation is disrupted; other ranks may still complete their
operations. A process can use MPI_[Comm,Win,File]_revoke to
propagate an error notification on the entire group, and could, for
example, interrupt other ranks to join a coordinated recovery.

COLLECTIVE OPERATIONS

Allowing collective operations to operate on damaged MPI objects
(Communicators, RMA windows or Files) would incur unacceptable
overhead. The MPI_Comm_shrink routine builds a replacement
communicator, excluding failed processes, which can be used to
resume collective communications, spawn replacement processes,
and rebuild RMA Windows and Files.

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

B
A

N
D

W
ID

TH
 (G

bi
t/s

)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

LA
TE

N
C

Y
(u

s)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

FE
R

EN
C

E
IN

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
on

-F
T

is
 fa

st
er

U
LF

M
 is

 fa
st

er

OPEN MPI ULFM IMPLEMENTATION PERFORMANCE

• Error notifications do not break MPI
• App can continue to communicate on the communicator
• More errors may be raised if the op cannot complete

(typically, most collective ops are expected to fail), but
p2p between non-failed processes works

• In this Master-Worker example, we
can continue w/o recovery!

• Master sees a worker failed
• Resubmit the lost work unit onto another worker
• Quietly continues

• Same story with mendable Stencil
pattern!
• Exchange with next neighbor in the same direction

instead

What if more need to know about an error?
Explicit propagation model (ULFM v1)

7

• P1 fails
• P2 raises an error and stop Plan A to enter application recovery

Plan B
• but P3..Pn are stuck in their posted recv
• P2 can unlock them with Revoke J
• P3..Pn join P2 in the recovery

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B
Recovery

Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

Exhibit 1: The A-Team is
thinking about a Plan B

ULFM available in Open MPI 5.0, MPICH

8

• ULFM (User Level Failure
Mitigation) is a
standardization proposal
that enables the
execution of Fault
Tolerant Applications
over MPI

• Applications can use
error handlers to react
and repair the effect of
failures

• ULFM is now directly
available in Open MPI
5.0

• mpiexec –with-ft=mpi

ULFM available in Open MPI 5.0

9

• ULFM (User Level Failure
Mitigation) is a
standardization proposal
that enables the
execution of Fault
Tolerant Applications
over MPI

• Applications can use
error handlers to react
and repair the effect of
failures

• ULFM is now directly
available in Open MPI
5.0

• mpiexec –with-ft=mpi

Outlines

• History (aka ULFM v1)
• New Features of ULFM v2 in this reading
• Error Range
• Error Uniformity (implicit consistency)

• The bigger picture
• Additional features
• Interaction with MPI_Reinit
• Interaction with Sessions

10

ULFM Evolutions:
Control Error Detection Range (aka auto-revoke)

• By default, errors only in communication dependent upon the failed process (ULFM v1)
• Default range is “involved” processes (w.r.t. communication pattern)
• Idea: additional modes for (unconditional) scoped and non-scoped recovery

• MPI_Info object set on the communicator/win/file
• mpi_error_range=local: current ULFM behavior (default/unset) (e.g. only in recv from

failed process)
• mpi_error_range=group: report errors (i.e. REVOKE) for a failure at any process with a

rank in the comm/win/file (e.g. in recv from an alive process in comm)
• mpi_error_range=universe: report errors (i.e. REVOKE) for a failure anywhere in

“universe”
• In group and universe modes, ERR_REVOKED is produced

11

0 1

2 3

4

6 7

SendRecv

8 9

5

example:
• Local mode: only rank

4 should report the
failure of rank 5

• Group mode: all ranks
in comm will report
the failure of rank 5

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

MPIX_COMM_REVOKE can be called
to explicitely propagate an error to
related procs; In some cases (e.g.,
SPMD), implicit propagation is
desirable

Error Detection Range Benefits: Enabling Modular
Coordination of Recovery Events

12

• MPI Communicators define a communication
group

• Explicit propagation scoped to the
communicator

• What if a library module needs to trigger a
global recovery procedure? (and the overspan
communicator handle is not visible from the
current code scope)?

• Libraries can select to observe failures at all
ranks, and thus coordinate to trigger a
recovery event.

2. NON-UNIFORM FAILURE KNOWLEDGE
This section discusses the rationale behind the proposed

design that justifies the introduction of the Revoke opera-
tion. We take the perspective of the performance conscious
MPI implementor, and analyze the unacceptable overhead
resulting from requiring uniformity of failure knowledge. We
then present the issues that arise when this requirement is
dropped, and the modus-operandi of the Revoke interface to
resolve them. The proposed design does indeed permit min-
imal overhead on failure free performance, as has been illus-
trated by the implementation presented in [7]. A more gen-
eral presentation of the ulfm interface can be found in [6].

2.1 Failure Detection
Failure detection has proven to be a complex but crucial

area of fault tolerance research. Although in the most ad-
verse hypothesis of a completely asynchronous system, fail-
ures (even simple processes crash, as we consider here) are
intractable in theory [17], the existence of an appropriate
failure detector permits resolving most of the theoretical
impossibilities [11]. However, requiring complete awareness
(thus active monitoring) of failures of every process by every
other process would generate an immense amount of system
noise (from heartbeat messages injected into the network
and the respective treatments on the computing resources
to respond to them), and it is known that MPI communi-
cation performance is very sensitive to system noise [23].
Fortunately, processes that are not trying to communicate
with a dead process do not need, a priori, to be aware of
its failure, as their operations are with alive processors and
therefore deadlock-free. As a consequence, failure detection
in ulfm only requires to detect failures of processes that are
direct partners in a communication operation.

2.2 Local versus Uniform Error Reporting
Another natural preconception is to consider that detec-

tion of failures at any rank results in MPI automatically
altering the state of all communication objects in which the
associated process appears (i.e. communicators, windows,
etc.). In such a model, it is understood that the failure
“damages”the communication object and renders it inappro-
priate for further communications. However, a complication
is hidden in such an approach: the state of MPI communi-
cation objects is the aggregate state of individual views by
each process of the distributed system. As failure aware-
ness is not expected to be global, the implementation would
then require internal and asynchronous propagation of fail-
ure detection, again, a process that is prone to introduce jit-
ter. Furthermore, some recovery patterns (typical in PDE
solvers [1], as an example) do not require advanced, nor
collective, corrective actions and can continue between non-
failed processes on the unmodified communication object.
As a consequence, ulfm never automatically modifies the
state of communication objects. Even if it contains failed
processes, a communicator remains a valid communication
object, until explicitly required. Therefore, error reporting
is not intended to indicate that a process failed, but to indi-
cate that an operation cannot deliver the normal semantic
at the local rank: when a failure happened, but an MPI
operation can proceed without disruption, it completes nor-
mally; when the failed process is supposed to participate in
the result of the operation, it is obviously impossible for the
operation to succeed, and an appropriate error is returned.

P1

P2

P3

Pn
Recv(Pn-1)

Recv(P1)

Recv(P[3:n]): Revoked

Recv(P1): Failed
P2 calls Revoke

Plan A Plan B

Recovery

Figure 1: The transitive communication pattern in
plan A must be interrupted before any process can
switch to the recovery communication pattern plan
B. By revoking the communication context, P2 en-
sures that all possibly unmatched operations in plan
A, which could provoke deadlocks, are interrupted.

Errors can then be captured by the application by setting
the appropriate MPI_ERRHANDLER.
An additional criterion to consider is that some MPI op-

erations are collective, or have a matching call at some other
process (e.g. Send/Recv). Convenience would call for the
same error be returned uniformly at all ranks that partici-
pated in the communication. This would easily permit track-
ing the global progress of the application (and then infer a
consistent, synchronized recovery point). However, the per-
formance consequences are dire, as it requires that every
communication concludes with an agreement operation be-
tween its participants in order to determine the global suc-
cess or failure of the communication, as viewed by each pro-
cess. Such an operation cannot be possibly achieved in less
than the cost of an AllReduce, even without accounting for
the cost of actually tolerating failures during the operation,
and would thus impose an enormous overhead on communi-
cation. In regard to the goal of maintaining an unchanged
level of performance, it is clearly unacceptable to double,
at best, the cost of all latency bound communication opera-
tions, especially when no failure has occurred. Furthermore,
it is already customary for MPI operations to have a local
only semantic, for example, when an MPI_REDUCE completes
at a non-root process, there is no guarantee that the root
has received the result of the collective operation yet. The
semantic only specifies that when the operation completes,
the local input bu↵er can be reused.
As a consequence, in ulfm, the reporting of errors has a lo-

cal operation semantic: the local completion status (in error,
or successfully) cannot be used to assume if the operation
has failed or succeeded at other ranks. In many applications,
this uncertainty is manageable, because the communication
pattern is simple enough. In some cases, however, the com-
munication pattern does not allow such flexibility, and the
application thereby requires an operation to resolve that un-
certainty, as described below.

2.3 Dependencies Between Processes
If the communication pattern is complex, the occurrence

of failures has the potential to deeply disturb the application
and prevent an e↵ective recovery from being implemented.
Consider the example in Figure 1: as long as no failure oc-
curs, the processes are communicating in a point-to-point
pattern (called plan A). Process Pk is waiting to receive a
message from Pk�1, then sends a message to Pk+1 (when

Temporal SPMD library composition

App level
commA

Lib1
comm1
(dup A)

Lib2
Comm2
(dup A)

App level
commA

App level
commA
Split A

Lib1 comm1

Lib2
Comm2

App level
commA

Domain SPMD decomposition

App level
commA
Split A

Lib1 comm1

Lib2
Comm2

App level
commA

Nesting (w/o overlap)

Example Using Ranges
Global Scope example

int odd= rank%2;
MPI_Comm_split(MPI_COMM_WORLD, odd, rank,
&comm);
MPI_Info_create(&info);
if(odd) MPI_Info_set(info, “mpi_error_range”,
“group”);
else MPI_Info_set(info, “mpi_error_range”,
“universe”);
MPI_Comm_set_info(comm, info);
MPI_Comm_set_errhandler(comm, &errh);

/* tokens ring circulates left to right in rank order
*/
MPI_Sendrecv(..., right, …, left, …, comm,…);

13

Group Scope Example

int odd= rank%2;
MPI_Comm_split(MPI_COMM_WORLD, odd,
rank, &comm);
MPI_Info_create(&info);
MPI_Info_set(info, “mpi_error_range”, “group”);
MPI_Comm_set_info(comm, info);
MPI_Comm_set_errhandler(comm, &errh);

/* tokens ring circulates left to right in rank
order */
MPI_Sendrecv(..., right, …, left, …, comm,…);

Errhandler triggerred for any error at any rank in comm
(i.e., if any ‘odd’ process fails, operations on the ’odd’
communicator raise error, but no on the ‘even’
communicator, and vice-versa).

On ‘Odd’ processes, failures at other ‘Odd’ processes
raises an error when using comm. On ‘even’ processes,
failure at any process raises an error when using comm.

Consequences for failure detection

14

• ”local” scope does not mandate
out-of-band failure detection
• In-band (i.e., errors from the network

driver) sufficient

• “group” and “universe” scope
require at a minimum out-of-
band propagation and often
require active monitoring

BTL/MTL

PMIx client
thread

In-band error
NIC detected
Unreachable peer

Ressource
Manager Daemon

(e.g., PRTED)

PMIx server

Network Driver
(e.g., OFI, UCX,

TCP, etc.)

Out-of-band error
RM Detected failure

OPAL event loop

PML
Error callback

Errhandler
proc_failed_internal

Fault event scheduled

Fault Callback

Event Loop
calls transport
Progress function

PMIx fault notification

PML calls the errhandler

Fault Event Triggerred

opal_proc_table[proc]->proc_active =
false
Foreach comm
ompi_comm_set_rank_failed(comm)
revoke (comm, collectives):

interrupt collective ops at remote
ranks

wait_sync_global_wakeup():
interrupt requests yielding on a

sync object in ompi_request_wait()

ompi_request_is_failed_fn(req):
recheck if request still valid

(peer failed?)
cancel failed requests
wait for BTL/MTL to complete

frags
frags could overwrite user

buffers
mpi-complete request
with status.MPI_ERROR set

Ompi_request_wait/tes
t

Wait-sync wakeup

Cost of performing detection and implicit
propagation in the runtime

16

16

• Accuracy of detection is very good (in the order of 100ms
can be achieved in practice at scale)

• False detection rate independent of the application
communication pattern
• Prior MPI-based detector would produce false positive when application

does not call MPI procedures

• Reusable in different programming models

16

Performance variability in GRAPH500 with
an active PMIx-PRRTE Failure detector
Left: MPI Right: OpenSHMEM

Gray area
represents
normal
benchmark
variability

Blue error bars
show the
variability as
measured with
detection ON

Experiments performed on NERSC’s Cori: Cray XC40 supercomputer with Intel
Xeon "Haswell" processors and the Cray "Aries" high speed inter-node network,
32 cores per node, 32K processes total.

Outlines

• History (aka ULFM v1)
• New Features of ULFM v2 in this reading
• Error Range
• Error Uniformity (implicit consistency)

• The bigger picture
• Additional features
• Interaction with MPI_Reinit
• Interaction with Sessions

17

Error Uniformity in counting, bulk synchronous
programs

18

• Lax consistency: Exceptions are raised only at
ranks where the Allreduce couldn’t succeed
• In a tree-based Allreduce, only the subtree under the

failed process sees the failure
• Other ranks succeed and proceed to the next

iteration
• Revoke solves potential deadlocks, but…
• Ranks that couldn’t complete enter “recovery” with a

different iteration counter!
• Ranks that could complete the allreduce altered the

memory performing an extra compute(iteration)

counting_collectives(void) {
for(iteration=0; iteration<target; iteration++) {

compute(iteration);
rc = MPI_Allreduce(buff, count, datatype, 0, comm);
MPI_Comm_agree(comm, &rc);
if(rc != MPI_SUCCESS) {

recovery(iteration);
}

}
}

Uniformity example: an error is reported only at some leaf node in
a broadcast topology with a failure

0

1 2

3 4 5 6

Above code snippet solves the issue, but…
• Must be inserted after every collective operation
• Lost capability of using error handlers

Example Using Uniform
Uniform example

MPI_Comm_dup(MPI_COMM_WORLD, &comm);
MPI_Info_create(&info);
MPI_Info_set(info, “mpi_error_uniform”, “coll”);
MPI_Comm_set_info(comm, info);
MPI_Comm_set_errhandler(comm, &errh);

while(i++ < niter) {
compute_step1(i);
MPI_Scatter(…, comm);
compute_step2(i);
MPI_Bcast(…, comm);
compute_step3(i);
MPI_Allreduce(…, comm);

}

19

Non-uniform example

MPI_Comm_dup(MPI_COMM_WORLD, &comm);
MPI_Comm_set_errhandler(comm, MPI_ERRORS_RETURN);

While(i++ < niter) {
compute_step1(i);
rc = MPI_Scatter(…, comm);
flag = (MPI_SUCCESS == rc);
MPI_Comm_agree(comm, &flag);
if (!flag) {
errhandling(i);

}
compute_step2(i);
rc = MPI_Bcast(…, comm);
flag = (MPI_SUCCESS == rc);
MPI_Comm_agree(comm, &flag);
if (!flag) {
errhandling(i);

}
…

}

Solution: Error Uniformity Controls

• Idea: control error uniformity (with communicator Info keys again)

• mpi_error_uniform=local: errors reported as needed to inform of
invalid outputs (buffers/comms) at the reporting rank (i.e. other
ranks may report success); default, current ULFM
• mpi_error_uniform=construct: if communicator/win/file creation

operations (e.g. comm_split, file_open, win_create, comm_spawn,…)
reports at a rank, it has reported the same
ERR_PROC_FAILED/REVOKED at all ranks.
• mpi_error_uniform=coll: same as above, for all collectives (including

creates)

20

Error Uniformity: performance impact

• Latency for small
messages is greatly
impacted
• Bcast: 20->90us
• Allreduce: 60->140us

• Cost amortized on large
message bandwidth

21

TI
M
E
(u
s)

MESSAGE SIZE (Bytes)

Uniform Collective OSU over ULFM (UTK Phi, np=768)
ib56g/CMA)

AllReduce
Uniform AllReduce
Broadcast
Uniform Broadcast

10

100

1000

10000

1 4 16 64 256 1K 4K 16K 64K 256K 1M

Outlines
• History (aka ULFM v1)
• New Features of ULFM v2 in this reading
• Error Range
• Error Uniformity (implicit consistency)

• The bigger picture
• AGREE/IAGREE (future reading)
• SHRINK/ISHRINK and non-blocking recovery (future reading)
• RMA/Files (future reading)
• Introspection/control, e.g. MPI_FT attribute, mpiexec params (future reading)
• Error Synchrony (exploratory)
• Interaction with MPI_Reinit
• Settled: coexist in text, coexist in impl., flip-flop between models (time decomposition)
• Exploratory: both models active at the same time (nested, or rank-domain decomposition)

• Interaction with Sessions (exploratory)

23

Non-blocking recovery: ISHRINK
(not part of reading today)
• Performance advantage: overlap shrink (e.g. with I/O to reload a

checkpoint)
• In non-blocking libraries, when the error handler cannot block
• When recovering multiple overlapping comms, relaxed shrink ordering

can be required

• MPIX_COMM_ISHRINK(comm, ncomm, req)
• Same as SHRINK, but non-blocking
• Resolves most ordering problems
• Post order does not matter (by definition all SHRINK in different comms)
• Completion order does not matter (as soon as all ishrink posted, they all have to progress regardless of wait

ordering)

24

Performance: ISHRINK w/overlap
(not part of reading today)
• ISHRINK latency

similar to
SHRINK
• Simultaneous

ISHRINK
overlap

25

3.4k
3.6k
3.8k
4.0k
4.2k
4.4k
4.6k
4.8k
5.0k
5.2k
5.4k
5.6k

0 2 4 6 8 10 12 14 16

Tr
ou
gh
pu
t(
1/
la
te
nc
y/
#s
im
ul
ta
ne
ou
s)

Simultaneous Shrinks

SHRINK vs ISHRINK Throughput (UTK Phi, np=768, ib56g+CMA)

SHRINK
ISHRINK

Sessions and FT (exploratory)
• MPIX_SESSION_REVOKE(session)
• Same as COMM_REVOKE, but triggers on all communicators derived

from the session
• Can be used as a handle to stop a library (e.g., fault detected at the

application level, but a non-blocking library has active
communication)

• We still want to have MPIX_COMM_SHRINK
• 1 stop shop: 1. eliminates dead processes, 2. concensus, 3. create

new comm (cid)
• We still want to have COMM_SHRINK (for communicator-centric

recovery models)
• Needed for MPI-3 style apps (i.e., no sessions)

• How could one use
MPI_COMM_CREATE_FROM_GROUP to handle
shrink/replace recovery modes?
• We also want to investigate how COMM_CREATE_FROM_GROUP and

GROUP_FROM_SESSION_PSET can be used for recovery
• Concensus-like meaning for COMM_CREATE_FROM_GROUP?

• Variadic psets?
• In MPI-4 process sets are static
• Ideas around relaxing and versioning
• mpi://world:3 would obtain the ‘third’ world (with group membership

agreed upon by the runtime with an implicit concensus)

• Other idea is to have explicit resource allocation calls on the session
• Call can be local, however we should have a way to test for

progress/completion without blocking
• One can then obtain the group mpi://10th-spawn-from-rank10, do

MPI_GROUP_UNION, and thus create a mended “world”

MPI process 1 MPI process 2

mpi://WORLD

job://12942

MPI process 3MPI process 0

location://rack/17 location://rack/23

app://ocean app://atmos

mpi://SELF mpi://SELF mpi://SELF mpi://SELF

MPI process 4

mpi://SELF

MPI_Info_create(&sinfo);
MPI_Info_set(sinfo, “mpi_thread_level_support”, “MPI_THREAD_MULTIPLE”);
rc = MPI_Session_init(sinfo, MPI_ERRORS_RETURN, &lib_shandle);
if (rc != MPI_SUCCESS) goto error;

/*create a group from the WORLD process set */
rc = MPI_Group_from_session_pset(lib_shandle, ”mpi://WORLD”, &wgroup);
if (rc != MPI_SUCCESS) goto error;

/* get a communicator */
rc = MPI_Comm_create_from_group(wgroup,

"org.mpi-forum.mpi-v4_0.example-ex10_8",
MPI_INFO_NULL, MPI_ERRORS_RETURN, &lib_comm);

Concluding Remarks
• ULFM v1 goals:
• flexible approach to recovering MPI communication capability (repair what you need)
• Communicator centric approach

• ULFM v2 Added goals:
• Permit easier expression of recovery codes (implicit actions)
• Automate tedious/repetitive code (implicit actions)
• Permit modularization of recovery procedures (non-blocking actions, controllable error reporting scope)
• Non blocking recovery: recovery of state and data can overlap
• Compatibility between non-global and global recovery (e.g., compatible with reinit)

• Add Session/Group centric approach

• Fully implemented, represents state of the art in the literature with large body of
work using ULFM v1 in varied contexts (programming language extensions, C/R
frameworks, Stencil, PDE, ABFT, etc.)

31

What we are reading today (PR 665)
PR #665 https://github.com/mpi-forum/mpi-standard/pull/665/files

The core of ULFM v2: error reporting modes and controls, communication
flow interruption

Small additions in the works (not for reading today)
• Advice about “other” fault types: https://github.com/mpiwg-ft/mpi-

standard/pull/17
• Should MPI_Irecv raise FT errors?: https://github.com/mpiwg-ft/mpi-

standard/pull/18/files
• Should we use an Attribute to query if FT is runtime active?

https://github.com/mpiwg-ft/mpi-standard/pull/19/files#diff-
1487c38b2632cb01aeb3d10f9dc182c364bf6699a4f35f431e1db59
e52d4f2bc

The bigger picture: the full ULFM v2 proposal (not for reading today): RMA,
Files, AGREE, SHRINK, MPI_FT attribute, etc
https://github.com/mpiwg-ft/mpi-standard/pull/19

32

This file

D
iff

https://github.com/mpi-forum/mpi-standard/pull/665/files
https://github.com/mpiwg-ft/mpi-standard/pull/17
https://github.com/mpiwg-ft/mpi-standard/pull/18/files
https://github.com/mpiwg-ft/mpi-standard/pull/19/files
https://github.com/mpiwg-ft/mpi-standard/pull/19

ANY Source matching,
or why PROC_FAILED_PENDING?
• Mix of NAMED and ANY_SOURCE matching in receiver queue
• If we PROC_FAILED the iANY, the matching the matching order is changed
• Thus we need to maintain the matching queue in order => (PF_PENDING)

33

P4: Receiver Queue (posted/pending receives)

P1: S1t1, S2
P2: S1t2, S2t2
P3: dead

Senders:

iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY)

iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY)

iR3(2, t=2), iR1(ANY, t=2), iR2(ANY,t=1), iR4(ANY)

ERR_PROC_FAILED: completes in error

User repost: messages now in disorder/matching incorrect

Case1: iANY cause PROC_FAILED
iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY)

iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY)
ERR_PROC_FAILED_PENDING: procedure returns, request still pending

Calling completion on ANY returns from procedure with error
Matching still active and in order meanwhile
User Calls ACK_FAILED (acking P3) to stop procedures returning with PFP

iR1(ANY, t=2), iR2(ANY,t=1), iR3(2, t=2), iR4(ANY)

Case2: iANY cause PROC_FAILED_PENDING

