Exposition, Clarification, and Expansion of
MPI Semantic Terms and Conventions

Is a nonblocking MPI function permitted to block?

Purushotham V. Bangalore
Department of Computer Science
University of Alabama at Birmingham
Birmingham, AL, USA
puri@uab.edu

Julien Jaeger
CEA, DAM, DIF
F-91297 Arpajon, France
julien.jaeger@cea.fr

Rolf Rabenseifner
High-Performance Computing Center
Stuttgart, University of Stuttgart
Stuttgart, Germany
rabenseifner@hlrs.de

Guillaume Mercier
Bordeaux Institute of Technology
Inria, LaBRI, F-33400 Talence, France
guillaume.mercier@bordeaux-inp.fr

Anthony Skjellum

Univ. of Tennessee at Chattanooga
Chattanooga, TN, USA
tony-skjellum@utc.edu

Daniel J. Holmes
EPCC, The University of Edinburgh
Edinburgh, Scotland, UK
d.-holmes@epcc.ed.ac.uk

Claudia Blaas-Schenner
VSC Research Center, TU Wien
A-1040 Vienna, Austria
claudia.blaas-schenner@tuwien.ac.at

ABSTRACT

This paper offers a timely study and proposed clarifications, revi-
sions, and enhancements to the Message Passing Interface’s (MPI’s)
Semantic Terms and Conventions. To enhance MPI, a clearer un-
derstanding of the meaning of the key terminology has proven
essential, and, surprisingly, important concepts remain underspeci-
fied, ambiguous and, in some cases, inconsistent and/or conflicting
despite 26 years of standardization. This work addresses these con-
cerns comprehensively and usefully informs MPI developers, imple-
mentors, those teaching and learning MPI, and power users alike
about key aspects of existing conventions, syntax, and semantics.
This paper will also be a useful driver for great clarity in current
and future standardization and implementation efforts for MPI.

CCS CONCEPTS

« Computing methodologies — Parallel computing method-
ologies.

KEYWORDS

MPI, message-passing, semantic terms, naming conventions

ACM Reference Format:

Purushotham V. Bangalore, Rolf Rabenseifner, Daniel J. Holmes, Julien
Jaeger, Guillaume Mercier, Claudia Blaas-Schenner, and Anthony Skjellum.
2019. Exposition, Clarification, and Expansion of MPI Semantic Terms and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7175-9/19/09...$15.00
https://doi.org/10.1145/3343211.3343213

Conventions: Is a nonblocking MPI function permitted to block?. In 26th
European MPI Users’ Group Meeting (EuroMPI 2019), September 11-13, 2019,
Ziirich, Switzerland. ACM, New York, NY, USA, 10 pages. https://doi.org/10.
1145/3343211.3343213

1 INTRODUCTION

This paper offers a timely study and proposed clarifications, revi-
sions, and enhancements to the Message Passing Interface’s (MPI’s)
Semantic Terms and Conventions. To enhance MPI moving forward,
a clearer understanding of the meaning of the key terminology has
proven essential. Surprisingly, important concepts remain insuf-
ficiently specified, ambiguous, and in some cases, inconsistent or
conflicting despite 26 years of standardization, implementation, and
utilization. The current draft of MPI-4 [7] (as currently approved
by the MPI Forum) is used for the basis of this study.

This paper addresses these concerns comprehensively and will
usefully inform MPI developers, implementors, those teaching and
learning MPI, and power users alike about key aspects of existing
conventions, syntax, and semantics. This paper will also serve as a
useful driver for great clarity in current and future standardization
and implementation efforts for the Message Passing Interface.

None of the changes proposed is likely to impact major MPI im-
plementations’ functionally. Nor do we expect typical applications
to have widely misinterpreted the use of MPL Rather, this paper
provides the de facto concepts of the MPI Standard as well as a path
for these to become the de jure syntax, semantics, and conventions
in future editions of the MPI Standard. Stipulating that the authors
of this paper do not expect to cause practical disruptions with this
set of clarifications, these clarifications nonetheless are crucial to
avoiding confusion and ambiguity in key aspects of MPI moving
forward. Such concerns are likely to grow as we add and improve
certain aspects of MPL, and when we seek to bridge gaps to stan-
dards interoperability, to new user communities and applications,
and into new operating environments such as Exascale systems.


https://doi.org/10.1145/3343211.3343213
https://doi.org/10.1145/3343211.3343213
https://doi.org/10.1145/3343211.3343213

EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

The remainder of this paper is organized as follows: Section 2
describes various semantic terms defined in the different versions of
the MPI Standard while identifying certain discrepancies between
these terms. Section 3 defines new semantic terms and clarifies the
original intent of other currently used semantic terms. Section 4
overviews the semantics of all communication procedures in MPL
Section 5 mentions related work and Section 6 summarizes the
paper and identifies future work.

2 EXISTING TERM DEFINITIONS:
EXPOSING THE ORIGINAL MEANING

For MPI-3.1 and below, a blocking MPI procedure might not
actually block in the traditional sense.

The term blocking was first defined in MPI-1.0 as follows: “If
return from the procedure indicates the user is allowed to re-use re-
sources specified in the call” [3]. This was later modified in MPI-2.0
to: “A procedure is blocking if return from the procedure indicates
the user is allowed to reuse resources specified in the call” [4].
In common usage, a procedure blocks when its return is delayed
until some anticipated event takes place or some desired system
state is reached. For example, we might expect that a blocking send
procedure will return only once the send operation is complete.
However, these MPI definitions of the term blocking only discuss
usage of parameters given to procedures, they do not include any
mention of delaying the return of the procedure until a matching
MPI procedure is called at another MPI process. A blocking proce-
dure is permitted to return as soon as the supplied parameters can
be reused. Therefore, despite possible expectations derived from
commonplace usage of the word ‘blocking’ in English, a block-
ing procedure is permitted to: execute quickly, return before
the associated MPI operation is complete, and return before
other MPI processes have started the MPI operation. For ex-
ample, MPI_BSEND is a blocking procedure that is local. The new
definition of blocking is discussed in Sections 3.1.1 and 3.2.9.

For MPI-3.1 and below, a nonblocking MPI procedure might
actually block in the traditional sense.

The term nonblocking was first defined in MPI-1.0 as follows:
“If the procedure may return before the operation completes, and
before the user is allowed to re-use resources (such as buffers)
specified in the call” [3]. This definition was later modified in MPI-
2.1 to read as follows: “A procedure is nonblocking if the procedure
may return before the operation completes, and before the user is
allowed to reuse resources (such as buffers) specified in the call.
A nonblocking request is started by the call that initiates it, e.g.,
MPI_ISEND. The word complete is used with respect to operations,
requests, and communications. An operation completes when the
user is allowed to reuse resources, and any output buffers have been
updated; i.e. a call to MPI_TEST will return flag = true. A request is
completed by a call to wait, which returns, or a test or get status call
which returns flag = true. This completing call has two effects: the
status is extracted from the request; in the case of test and wait, if
the request was nonpersistent, it is freed, and becomes inactive if it
was persistent. A communication completes when all participating
operations complete” [5].

Bangalore, Rabenseifer, et al.

A new definition was again proposed in MPI-3.1 and now reads
as follows: “A procedure is nonblocking if it may return before the
associated operation completes, and before the user is allowed to
reuse resources (such as buffers) specified in the call. The word
complete is used with respect to operations and any associated
requests and/or communications. An operation completes when
the user is allowed to reuse resources, and any output buffers have
been updated” [6].

The term nonblocking is not formally a word in English, but its
meaning can be extrapolated as the opposite of blocking; that is, it
would seem reasonable to assume that nonblocking means will not
block or must not block. However, as with the term blocking, these
MPI definitions of the term nonblocking only address the usage of
parameters given to procedures; they do not include any mention
of delaying the return of the procedure until a matching completing
MPI procedure is called at the same MPI process. A nonblocking
procedure is permitted to return as soon as possible, but also as
late as possible. A nonblocking procedure is even permitted to
complete its operation before returning. Therefore, despite possible
expectations derived from commonplace understanding of the word
nonblocking in English, a nonblocking procedure is permitted to:
execute slowly, return once the associated MPI operation is
complete, and return only after other MPI processes have
started the MPI operation. The new definition of this term is
discussed in Sections 3.1.2 and 3.2.10.

The initialization procedures for persistent collective operations
(approved for MPI-4.0) are examples of nonblocking procedures
according to the definitions in MPI-1.0-MPI-3.1. However, they are
non-local and are therefore classified as blocking procedures in our
new nomenclature (see Section 3).

There is no such thing as a persistent MPI procedure; only MPI
operations can be persistent.

Thus far, the term persistent has not been included in the Terms
and Conventions chapter of the MPI Standard. It has only been de-
fined by example as part of the specification of the persistent MPI
point-to-point communication functionality. However, the recently
accepted functionality for persistent collective communication [7]
extends the scope of persistence in MPI and requires a new defini-
tion to clarify the usage of the term in the context of MPIL. The new
definition of this term is discussed in section 3.1.3.

The concept of locality classifying an MPI procedure as local or
non-local has always meant what the English words suggested.

The term local was first defined in MPI-1.0 as follows: “If comple-
tion of the procedure depends only on the local executing process.
Such an operation does not require communication with another
user process” [3]. This was later modified in MPI-2.0 to read as
follows: “A procedure is local if completion of the procedure de-
pends only on the local executing process” [4]. The MPI definition
of the term local follows the English definition: The return of a
local procedure depends only on what occurs at the calling MPI
process and should not wait for any operations or procedures at
any other MPI process.

The term non-local was first defined in MPI-1.0 as follows: “If
completion of the operation may require the execution of some MPI



MPI Semantic Terms and Conventions

procedure on another MPI process. Such an operation may require
communication occurring with another user process” [3]. This was
later modified in MPI-2.0 as follows: “A procedure is non-local if
completion of the operation may require the execution of some
MPI procedure on another process. Such an operation may require
communication occurring with another user process” [4]. The MPI
definition of the term non-local follows the English definition as the
opposite of local. The return of a non-local procedure may depend
on the execution of another operation or procedure(s) at one or
more MPI processes other than itself.

3 NEW TERM DEFINITIONS:
CLARIFYING THE ORIGINAL INTENT

The MPI Standard uses the words function, routine, procedure, pro-
cedure call, and call interchangeably to specify the language inde-
pendent bindings and their corresponding ISO C and Fortran APIs.
MPI procedures are defined in terms of MPI operations. However,
the MPI Standard fails to define an operation. Therefore, we first
define an MPI operation, then describe the various stages associated
within an operation, and different types of MPI operations and MPI
procedures. When describing operations, the MPI Standard also
uses the terms completes, started, initiates and freed in the definition
of other terms (such as nonblocking) without first properly defining
them. We offer consistent definitions for these terms as well.

3.1 MPI Operation and its Stages

An MPI operation consists of four stages: initialization, start-
ing, completion, and freeing.

Initialization The initialization! stage hands over the argu-
ment list to the operation but not the content of data buffer(s),
if any. The specification of an operation may state that array
arguments must not be changed until the operation is freed.

Starting The starting stage hands over the control of the data
buffer, if any, to the associated operation.

Note that the term initiation in MPI refers to the combina-
tion in sequence of the initialization and starting stages.
Completion The completion! stage returns control of the con-
tent of the data buffer to the application and indicates that

output buffers, if any, have been updated.
Note that an MPI operation is complete when the MPI pro-
cedure implementing the completion stage returns.

Freeing The freeing stage returns control of the rest of the
argument list (e.g., the buffer address and array arguments).

3.1.1  Blocking Operation. For a blocking operation, all four stages
are combined in a single procedure call (as shown in Figure 1).

3.1.2  Nonblocking Operation. For a nonblocking operation, the
initialization and starting stages are combined into a single non-
blocking procedure call and the completion and freeing stages are
combined into a separate, single procedure call, which can be block-
ing or nonblocking (as shown in Figure 2).

1We choose initialization and completion (nouns) intentionally instead of initializing
and completing because the ...ing forms (gerunds serving as nouns) are only rarely
used from Chapters 2 through the end in existing MPI Standard documents. However,
where these appear, their meaning is identical to their corresponding parts of speech.

EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

3.1.3  Persistent Operation. For a persistent operation, all four
stages are effected with separate procedure calls, each of which
may be blocking or nonblocking (as shown in Figure 3).

3.1.4  Collective Operation. Collective MPI operations (groupwise
communications) are available as blocking, nonblocking, or persis-
tent operations.

For nonblocking and persistent collective operations, the comple-
tion stage may or may not finish before all processes in the group
have started the operation.

O Initialization & Starting
&

Completion & Freeing

@<«

Figure 1: Blocking Operations State Transition Diagram

Initialization & Starting

‘aka Initiation) .
‘ ( 5 Active
(aka Initiated

aka Started)

0 )«
Completion & Freeing
(aka Completing)

Figure 2: Nonblocking Operations State Transition Dia-
gram?

Initialization (
Starting

(aka Initializing)
F" I Active

(CLERSCUED))
C Freeing e Complethn
o

Figure 3: Persistent Operations State Transition Diagram

3

3.2 MPI Procedure

An MPI operation is implemented as a set of one or more MPI
procedures. The semantics of MPI procedures are described
using two orthogonal (independent) concepts: completeness
(which stages are included) and locality.

MPI procedures can be either incomplete, or completing, or free-
ing, or completing and freeing based on the status of the associated
operation at the time the procedure returns. MPI procedures can
either be local or non-local. MPI procedures can also be described
as either blocking or nonblocking but these latter two terms refer
to combinations of the completeness and locality concepts.

3.2.1 |Initialization Procedure. An MPI procedure is an initial-
ization procedure if return from the procedure indicates that the
associated operation has completed its initialization stage, which
implies that the user has handed over control of the argument list
(but not the contents of the message buffers) to MPI. The user is
still allowed to modify the contents of the data buffers.

2For nonblocking operations we use “completing” in common parlance to refer to the
combination of completion and freeing.

3We use “completing” in common parlance to refer only to completion for persistent
operations; compare Figure 2.



EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

3.2.2 Starting Procedure. An MPI procedure is a starting pro-
cedure if return from the procedure indicates that the associated
operation has completed its starting stage, which implies that the
user has handed over control of the data buffers to MPL

3.2.3 Initiation Procedure. An MPI procedure is an initiation
procedure if it is both an initialization procedure and a starting
procedure, which implies control of the entire argument list is
handed over to MPL

3.24 Incomplete Procedure. An MPI procedure is incomplete
if it may return before the associated operation has finished its
completion stage, which implies that the user is not allowed to
reuse parameters (such as buffers) specified when initializing the
operation. Therefore, an incomplete procedure only includes the
initialization and/or* starting stages.

3.25 Completing Procedure. An MPI procedure is completing
if return from the procedure indicates that at least one associated
operation has finished its completion stage, which implies that the
user can rely on the content of the output data buffers and modify
the content of input and output data buffers.

If a completing procedure is not also a freeing procedure (see
Section 3.2.6) then the user is not permitted to deallocate the data
buffers or to modify the array arguments. Procedures not associated
with an operation are also defined to be completing.

3.2.6 Freeing Procedure. An MPI procedure is freeing if return
from the procedure indicates that the associated operation has
finished its freeing stage, which implies that the user can reuse all
parameters specified when initializing the associated operation.

3.2.7 Local Procedure. An MPI procedure is local if it returns
control to the calling MPI process based only on the state of the
local MPI process that invoked it. Local procedures may be of short
or long duration, but their behavior is wholly independent of the
activity of other MPI processes or procedure invocations.

3.2.8 Non-local Procedure. An MPI procedure is non-local if
returning may require the execution of some MPI procedure on
another MPI process. Such procedures may require communication
occurring with another MPI process.

3.2.9 Blocking Procedure. An MPI procedure is blocking if
it is completing, and/or freeing, and/or non-local.

3.2.10 Nonblocking Procedure. An MPI procedure is non-
blocking if it is incomplete and local.

3.2.11 Collective Procedure. An MPI procedure is collective if
all processes in a process group need to invoke the procedure.

Initialization procedures of collective operations over the same
process group must be executed in the same order by all members
of the process group.

3.2.12  Synchronizing Procedure. An MPI collective procedure
is synchronizing if it will only return once all MPI processes (in
the associated group of its communicator) have called the same
MPI procedure.

4We use and/or to mean the logical operation inclusive OR throughout this paper.

Bangalore, Rabenseifer, et al.

MPI Operation: Persistent

Blocking Nonblocking

MPI_ISEND (Local)
or
MPI_IRECV (Local)

MPI_SEND (Non-local) or
MPI_IBCAST (Local)

MPLOSrSEND (Non-local)
MPl_?arSEND (Local)
MPl_ORrSEND (Local)
MPL?’{{ECV (Non-local)

(Incomplete) MPI_START (Local)

2. Starting

(Incomplete)

or
. MPI_BCAST (Non-local) MPI_WAIT (Non-local)
3. Completion PR
(Completing + Freeing) MRV EI(doppocal)

(Completing + Freeing) | \ip|_ REQUEST_FREE (Local)

4. Freeing P

Figure 4: The Four Stages of an MPI Operation

The procedures for blocking collective operations and the initial-
ization procedures for persistent collective operations are collective
procedures and may or may not be synchronizing. That is, they
may or may not return before all processes in the group have called
the procedure.

The initiation procedures for nonblocking collective operations

and the starting procedures for persistent collective operations are
local and shall not be synchronizing.
3.2.13 Common cases and counterexamples. For most communi-
cation-related MPI procedures, incomplete procedures are local
and completing procedures are non-local. For most nonblocking
MPI procedures, an additional prefix letter I (an abbreviation of
incomplete and immediate) is included in the procedure name.

Example procedures that show common usage follow:

Nonblocking procedures (incomplete and local):

MPI_ISEND, MPI_IRECV, MPI_IBCAST, MP1_PUT, MPI_GET, MPI-
_ACCUMULATE, MPI_IMPROBE, MPI_{SENDRECV}_INIT, ...
Blocking procedures:

e complete and non-local: MPI_SEND, MPI_RECV, MPI_BCAST,
MPI_PROBE, ...

e incomplete and non-local: MPI_MPROBE, MPI_BCAST _INIT,
MPI_FILE_READ_{AT ALL|ALL|ORDERED}_BEGIN,
MPI_FILE WRITE_{AT ALL|ALL|ORDERED} BEGIN,....

e complete and local: MPI_BSEND, MPI_RSEND, MPI_IPROBE,
MPI_MRECV.

Figure 4 illustrates how the four different stages of an MPI opera-
tion relate to blocking, nonblocking, and persistent operations with
some examples of MPI procedures for each type of operation. The
MPI_TEST and its variants applied within nonblocking operations
are local and incomplete when they produce a false outcome; but are
local, completing, and freeing when they produce a true outcome.
For persistent operations, MPI_TEST and its variants are local and
incomplete when these produce a false outcome; they are local, com-
pleting, but not freeing when they produce a true outcome. When
multiple requests are involved for MPI_TEST {ALL|ANY|SOME},
the abovenamed semantics apply request-by-request.

3.2.14 Historical evolution of semantics for procedures. The def-
inition of the MPI semantic term nonblocking, in particular, has
been clarified. The de jure meaning before MPI-4 was equivalent
to the MPI-4 meaning of the MPI semantic term incomplete. But,
the de facto usage of the term nonblocking, when applied to MPI



MPI Semantic Terms and Conventions

procedure calls, has always been the combination of incomplete and
local. Thus, the definition of the MPI semantic term blocking has
been clarified to be completing, and/or freeing, and/or non-local.

The definition of the MPI semantic term collective has also been
clarified. MPI-1 defined blocking collective operations, so all collec-
tive procedures were complete and non-local. The de facto usage of
collective, when applied to MPI procedure calls, was extended in
MPI-2 by the inclusion of split collective I/O operations (because
the ‘begin’ procedures are defined to be incomplete and non-local).
The de facto usage of collective, when applied to MPI procedure
calls, was extended in MPI-3 by the inclusion of initiation proce-
dures for nonblocking collective operations, which are defined to
be incomplete and local (i.e., they must not be synchronizing).

Figure 5 shows the minimal necessary meaning for collective:
technically only a subset of the possible interpretation of the de jure
meaning, but aligned with the de facto and du jour (current) mean-
ings, because there were no examples of procedures that required
the full extent of the de jure meaning. In plain English, the blue
box is only in the upper-right quadrant, even though its definition
permits it to extend into the lower-right quadrant, because there
were no collective, non-local, incomplete procedures in MPI-1.

In Figure 6, the de facto and de jure meanings coincide. In plain
English, MPI-2 added split collective I/O procedures, which were
the first examples of collective, non-local, incomplete procedures;
that addition requires the blue box to be extended downwards into
the lower-right quadrant.

In Figure 7, the de facto meaning for collective was further ex-
tended such that it actually conflicts with the de jure meaning,
which was not updated in line with the functionality extensions in
MPI-3. In plain English, adding nonblocking collective operations in
MPI-3 was done by adding the first examples of procedures defined
to be collective, local, incomplete. That requires the blue box
to be extended leftwards into the lower-left quadrant but with a
restriction of “must not be synchronizing.” Being local, these proce-
dures must not be synchronizing, which directly conflicts with the
strict definition of collective in all versions of the MPI Standard.

In Figure 8, we show that the de facto meaning of collective in
MPI-4 is unchanged from that of MPI-3. Additional examples of col-
lective, non-local, incomplete procedures were added, namely
the initialization procedures for persistent collective operations.

Local Non-local
Blocking Blocking
Bsend Recv

Rsend Probe

Bupsjdwon

Iprobe (must be synchronizing)
reduce
Barrier

Ibsend
Irsend
Isend
Irecv
Send_init
Recv_init

Nonblocking

aje|dwoou|

Nonblocking

Figure 5: MPI-1 Communication Concepts

EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

Local Non-local
Blocking Blocking
Bsend Send Recv Q
Rsend Ssend Probe g
k=1
Iprobe. o
(mustbe synchronizing){} 5
Allreduce «Q
Barrier
Fence
Ibsend
Irsend
Isend 5
Irecv. 8
Send_init 3
Recv_init k=3
@
e
Put @
Get ) .
Nonblocking Blocking

Figure 6: MPI-2 Communication Concepts

Local Non-local

Blocking Blocking

Recv
Probe

Bsend
Rsend

Iprobe
(must be synchronizing}

Allreduce
Barrier
Fence

Bunejdwo)

Ibsend
Irsend
Isend
Irecv.
Send_init
Recv_init
Put Rput
Get Rget
Compare_and_swap Improbe
Nonblocking

a)a|dwoou|

Mprobe

Blocking

Figure 7: MPI-3 Communication Concepts

Local I Non-local

Blocking Blocking

Recv
Probe

Bsend
Rsend

Iprobe
(must be synchronizing}

Allreduce
Barrier
Fence

Bunsjdwo)

Ibsend
Irsend
Isend
Irecvy
Send_init
Recv_init
Put Rput
Get Rget
Compare_and_swap Improbe

Nonblocking

a)a|dwoou|

Mprobe
Blocking

Figure 8: MPI-4 Communication Concepts

4 SEMANTICS OF MPI PROCEDURES

In this section, we break down the semantics of the various com-
munication procedures provided in the MPI Standard chapter-by-
chapter. A complete summary of these procedures is provided in
Appendix A. We clarify whether these procedures are i) blocking or
nonblocking, ii) complete or incomplete, iii) local or non-local, and
iv) collective or noncollective. In the case of blocking procedures,
we identify the resource(s) that is/are being blocked, if any. Fig-
ure 8 illustrates the current state of orthogonal MPI communication
properties, as discussed earlier.



EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

4.1 Point-to-Point Communication

The Point-to-point chapter includes procedures to support blocking,
nonblocking, and persistent communication operations. MPI pro-
vides four different send modes: standard, buffered, synchronous,
and ready mode [3]. All point-to-point procedures for blocking op-
erations are complete, but some are local and others are non-local.
Buffered mode and ready mode send procedures are local — even
for blocking operations — because they return without depending
on the execution of any MPI procedure in any other MPI process.
Hence, MPI_BSEND and MPI_RSEND are two exceptions to the
general rule that blocking point-to-point communication routines
are both complete and non-local.

All initiation procedures for nonblocking send and receive op-
erations and all initialization procedures for persistent send and
receive operations are nonblocking procedures because they are
both incomplete and local. In all these cases, the buffers used to
send/receive the data are the resources that the user is prohibited
to reuse until the corresponding operation is complete. Persistent
initialization procedures do not have the I prefix in their proce-
dure names even though they are nonblocking procedures and so
comprise exceptions to the general rule that the prefix Iis used to in-
dicate incomplete and immediate for nonblocking procedures. The
procedure MPI_BSEND_INIT has an additional blocked resource,
the attached buffer, in addition to the send buffer, which must not
be freed or deallocated before the operation is completed.

The procedure MPI_WAIT, and variants, are non-local. For non-
blocking operations, MPI_ WAIT performs both the completion
and freeing stages of the MPI operation. For persistent operations,
MPI_WAIT performs only the completion stage.

The procedure MPI_TEST, and its variants, are local. If MPI_TEST
returns flag=FALSE then no stages of the MPI operation were per-
formed. If flag=TRUE is returned, then MPI_TEST will have per-
formed the same operation stages as MPI_WAIT would have done.

The procedures MPI_PROBE, MPI_IPROBE, and MPI_MPROBE
are all blocking procedures. MPI_PROBE and MPI_IPROBE are
blocking because they are complete by definition since there is no as-
sociated MPI operation. MPI_PROBE is non-local while MPI_IPROBE
is local. For MPI_IPROBE, the I stands for immediate and not for
incomplete. This is one of the exceptions where a complete pro-
cedure is local. MPI_MPROBE is blocking because it is non-local;
it is also incomplete because the associated receive operation is
not complete until a later call to MPI_MRECV. MPI_MPROBE is
one of the exceptions where an incomplete procedure is non-local.
On the other hand, the MPI_IMPROBE procedure is a nonblocking
procedure because it is both incomplete and local.

Two procedures that combine send and receive operations (MPI_-
SENDRECV and MPI_SENDRECV_REPLACE) are similar to block-
ing send and receive procedures, which are complete and non-local.

4.2 Collective Communication

The MPI Standard supports three different types of collective oper-
ations: blocking, nonblocking, and persistent.

All procedures for blocking collective operations are complete
and non-local. In addition, they are collective and may be synchro-
nizing. By way of contrast, all initiation procedures for nonblocking
collective operations are incomplete and local. Some nonblocking
and persistent operations support variable message length for each

Bangalore, Rabenseifer, et al.

MPI process (identified by the initialization procedure having a
suffix of V or W). These operations specify additional resources,
such as the array of counts, array of displacements, and/or array of
datatypes, which (in addition to the data buffers) cannot be reused
until the corresponding operations are complete.

Initialization procedures for persistent collective operations are
blocking procedures because they are non-local. Unlike initializa-
tion procedures for point-to-point operations, which are nonblock-
ing, local, and not even permitted to communicate, these initializa-
tion procedures are collective and may be synchronizing. They are
also incomplete; an exception to the general rule that incomplete
procedures are local.

The ordering requirement for collective operations applies to the
initialization stage only, unless an MPI_INFO assertion is supplied
by the user to extend that requirement to include the starting stage
as well. Within each communicator, procedures for blocking collec-
tive operations, initiation of nonblocking collective operations, and
initialization of persistent operations must be called in the same
order at all participating processes.

4.3 Communicators

Nearly all procedures described in the “Groups, Contexts, and Com-
municators” chapter of the MPI Standard that support operations
on communicators and groups are blocking procedures that are
complete, non-local, and collective. The only exceptions are the two
nonblocking constructor operations for communicators; these are
initiated by the MPL COMM_IDUP and MPL_ COMM_IDUP_WITH-
_INFO procedures, which are collective procedures and nonblocking
because they are incomplete and local.

4.4 Process Topologies

This chapter provides procedures that create or query virtual topolo-
gies and procedures that support blocking, nonblocking, and per-
sistent neighborhood collective communication operations. The
procedures for creating a communicator with a virtual topology
are blocking because they are complete and non-local. They are
also collective and may be synchronizing. Virtual topology query
procedures are all blocking because they are complete and local.
Also, all procedures for neighborhood collective operations follow
the corresponding semantics as described in Section 4.2.

4.5 Process Creation and Management
Process creation and management procedures are blocking and
collective; they are complete and non-local, with no exceptions.

4.6 One-Sided Communication

All windows creation procedures (e.g., MPI_WIN_CREATE) are
non-local and collective. But, all one-sided communication pro-
cedures are nonblocking because they are incomplete and local.
However, they lack the I prefix in their procedure names. This is
another of the exceptions where nonblocking procedures do not
include a letter I as a prefix in the procedure name. This applies
both to one-sided operations that support individual completion by
returning an MPI_Request, for example, MPI_RPUT, and to those
such as MPI_PUT, where completion is guaranteed by a window
synchronization procedure. It also applies to atomic communica-
tion operations, such as MPI_COMPARE_AND_SWAP, where the
output value is only guaranteed to become valid after completion
of the operation during the subsequent window synchronization.



MPI Semantic Terms and Conventions

The MPI_FENCE procedure for active-target window synchro-
nization is complete, non-local, collective, and therefore blocking.

The “One-sided Communications” chapter allows the seman-
tics of blocking and nonblocking to vary within compliant im-
plementations. For general active-target synchronization, either
MPI_WIN_START, all of the communication functions, or MPI_ WIN-
_COMPLETE, must be non-local, but the standard explicitly al-
lows freedom of implementation to determine which is non-local.
For passive-target synchronization, the target process is not in-
volved, so these procedures are local. The MPI_ WIN_LOCK and
MPI_WIN_LOCK_ALL procedures are incomplete and so nonblock-
ing whereas the MPI. WIN_UNLOCK and MPI_WIN_UNLOCK_ALL
procedures are complete and therefore blocking.

Additional study of the semantics and alternative valid imple-
mentations of one-sided communication is needed given the free-
dom offered to implementors by the MPI Standard to choose which
operations are non-local and which are not.

4.7 1/0

Data access procedures in the “I/O” chapter of the MPI Standard
comprise procedures that support creating, opening, closing, and
deleting files, reading data from files, and writing data to files. Data
access procedures for reading or writing are categorized accord-
ing to three orthogonal aspects: positioning, synchronism®, and
coordination. Three types of positioning are supported: explicit
offsets (denoted by a suffix of _AT), individual file pointers (with
no suffix), shared file pointer (denoted by a suffix of _'SHARED or
_ORDERED). Three types of synchronism are supported: blocking,
nonblocking, and split collective®. Two types of coordination are
supported: collective (denoted by the suffix _ALL or _ORDERED)
and non-collective (no suffix). All I/O chapter procedures specified
as non-collective are local because completion is defined only to
depend on the local process.

All procedures defined in the I/O chapter as nonblocking have an
Iprefix in their procedure names. However, the I'prefix appears after
MPI_FILE_ and not after MPI_ (as is the case with most nonblocking
procedures). The I stands for incomplete.

Unlike the definitions given in the “Terms and Conventions”
chapter of the MPI Standard and used for all other communication
procedures, the I/O chapter defines blocking and nonblocking as
follows: “A blocking 1/O call will not return until the I/O request
is completed. A nonblocking 1/O call initiates an I/O operation, but
does not wait for it to complete” [6]. The I/O chapter’s definition
for blocking is a subset of the new definition for blocking given
in Section 3. The I/O chapter states that blocking means complete,
whereas the new definition states that blocking means completing,
and/or freeing, and/or non-local. Thus, all procedures specified as
blocking in the I/O chapter are blocking under both definitions.

But, the I/O chapter’s definition for nonblocking is a synonym
for incomplete, whereas the new definition given in Section 3 also
requires the local semantic. Thus, procedures specified as nonblock-
ing in the I/O chapter are nonblocking if they are local but they are

SIdeally, the word ‘synchronism’, which only appears in the I/O Chapter and only since
MPI-2, would be replaced in future with completeness (i.e., ‘complete’ vs ‘incomplete’).
This will be apt once split-collectives are removed from the MPI Standard in future.
6Split collective syntax is deprecated and will be removed in future. Nonblocking I/O
already exists in MPI-3 and is strongly preferred.

EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

blocking if they are non-local, for example, if they are collective.
1/O procedures that are both complete and local include these:

e MPI_FILE_[READ|WRITE]{ |_AT| SHARED}
e MPI_FILE_{DELETE|SEEK|GET_VIEW}.
1/O procedures that are complete and non-local include these:

o MPI_FILE_[READ|WRITE]_{ALL|AT_ALL|ORDERED}
e MPI_FILE_{OPEN|CLOSE|SYNC}

o MPI_FILE_{SEEK_SHARED|PREALLOCATE}

e MPI_FILE_SET {VIEW|SIZE[INFO|JATOMICITY}.

The semantics for split collective I/O procedures are described
in the MPI Standard (see Section 13.4.5 of MPI-3.1 Standard [6]).
The begin part of the split collective procedure that starts the cor-
responding operation and has the suffix _BEGIN in the procedure
name is a blocking procedure that is incomplete and non-local. The
end part of the split collective procedure that completes the opera-
tion and has the suffix _END in the procedure name is a blocking
procedure that is completing and non-local.

The semantics of collective communication calls defined in Sec-
tion 4.2 apply to all of collective I/O procedures.

5 RELATED WORK

Several efforts have sought to define formal specifications for the
MPI standard [8-11] as well as tools to verify the correctness of MPI
programs [12-14]. But, these efforts defined formal specifications
for a subset of MPI; moreover, these formal mechanisms are not
used by the MPI Forum when adding new functionality nor are
these tools used widely in the HPC community. There is broad
recognition that formal methods are necessary to define APIs and
assist with debugging and verification of HPC applications [8].
While this paper focuses on clarifying and defining the semantic
terms used in the MPI standard in plain English without using
any formal methods, it nonetheless provides a solid foundation for
defining such formal mechanisms and automated tools.

6 CONCLUSION AND FUTURE WORK

This paper provides clarifications, revisions, and enhancements to
the current MPI Standard Semantic Terms and Conventions. It is
just a first constructive step towards refining and enhancing the
semantic terms and conventions found therein. We noted where
extant rules apply and where terminology needed to be clarified,
such as situations where nonblocking functions apparently are
blocking. Several new terms were defined, and the four stages of an
MPI operation were enumerated and illustrated. The key takeaway
is that we have separated operation from procedure (aka routine,
function, call, function call) and delineated the four stages of an
operation. We reviewed the MPI Standard chapter-by-chapter, and
described the nature of the procedures defined in each, noting
exceptions. Appendix A provides a comprehensive summary of the
entirety of all MPI communication procedures semantics, including
a table enumerating all classes and cases regarding the four stages of
operations comprising a given procedure and remarks concerning
the use of resources and blocking status.

Another value of this work is that it could be used, in conjunc-
tion with the formal standardization of new MPI operations and
procedures, to validate and expose where they fit in MPI's concep-
tual functionality as illustrated in Figures 5-8. For instance, if there



EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

were an architecture board for MPI, it could require all proposers to
relate their MPI extensions or changes to this existing framework in
order to ensure interoperability and clarity before new or modified
functionality is accepted for standardization. Barring that, such
an analysis could simply become an added, required acceptance
procedure under the Forum’s current standardization process.
Much work remains in updating the MPI Standard to use these
terms consistently across its entirety while identifying other terms
that are currently used within it but lack explicit definition and/or
require clarification. Further investigation and exposition are also
merited to ensure that all MPI terms and conventions are or be-
come consistent and interoperable with other standards such as
OpenMP [2], OpenSHMEM [1], and even POSIX [15]. For instance,
the meaning of a process and thread in MPI may differ markedly or
subtly from that concept’s understanding in POSIX, OpenMP, and
OpenSHMEM. We should also consider cross-cutting terminology
and parallel constructs of language standards (e.g., C, Fortran, C++).

ACKNOWLEDGMENTS

This work was performed with partial support from the National
Science Foundation (NSF) under Grants Nos. CCF-1562306, CCF-
1822191, CCF-1821431. Any opinions, findings, and conclusions
or recommendations expressed in this material are those of the
authors and do not necessarily reflect the views of the National
Science Foundation. This work was part-funded by the European
Union’s Horizon 2020 Research and Innovation programme under
Grant Agreement 801039 (the EPIGRAM-HS project).

The authors acknowledge valuable feedback provided by the
members of the MPI Forum and the EuroMPI reviewers.

The authors wish to thank Ms. Holley Beeland for her extensive
help with the diagrams presented in this paper.

REFERENCES

[1] Barbara Chapman, Tony Curtis, Swaroop Pophale, Stephen Poole, Jeff Kuehn,
Chuck Koelbel, and Lauren Smith. 2010. Introducing OpenSHMEM: SHMEM
for the PGAS Community. In Proceedings of the Fourth Conference on Partitioned
Global Address Space Programming Model (PGAS ’10). ACM, New York, NY, USA,
Article 2, 3 pages. https://doi.org/10.1145/2020373.2020375

[2] Leonardo Dagum and Ramesh Menon. 1998. OpenMP: An Industry-Standard
API for Shared-Memory Programming. IEEE Comput. Sci. Eng. 5, 1 (Jan. 1998),
46-55. https://doi.org/10.1109/99.660313

[3] Message Passing Interface Forum. 1994. MPI: A Message-Passing Interface Stan-
dard. Version 1.0. Technical Report. Univ. of Tennessee, Knoxville, TN, USA.

[4] Message Passing Interface Forum. 1997. MPI: A Message-Passing Interface Stan-
dard. Version 2.0. Technical Report. Univ. of Tennessee, Knoxville, TN, USA.

[5] Message Passing Interface Forum. 2008. MPI: A Message-Passing Interface Stan-
dard. Version 2.1. Technical Report. Univ. of Tennessee, Knoxville, TN, USA.

[6] Message Passing Interface Forum. 2015. MPI: A Message-Passing Interface Stan-
dard. Version 3.1. Technical Report. Univ. of Tennessee, Knoxville, TN, USA.

[7] Message Passing Interface Forum. 2018. MPI: A Message-Passing Interface Stan-
dard. 2018 Draft Specification. Technical Report. Univ. of Tennessee, Knoxville,
TN, USA. Note: This is the first MPI-4 Draft Specification.

[8] Ganesh Gopalakrishnan, Robert M. Kirby, Stephen F. Siegel, Rajeev Thakur,
William Gropp, Ewing L. Lusk, Bronis R. de Supinski, Martin Schulz, and Greg
Bronevetsky. 2011. Formal analysis of MPI-based parallel programs. Commun.
ACM 54, 12 (2011), 82-91. https://doi.org/10.1145/2043174.2043194

[9] Guodong Li, Michael Delisi, Ganesh Gopalakrishnan, and Robert M. Kirby. 2008.

Formal Specification of the MPI-2.0 Standard in TLA+. In Proceedings of the 13th

ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming

(PPoPP °08). ACM, New York, NY, USA, 283-284.

Guodong Li, Robert Palmer, Michael DeLisi, Ganesh Gopalakrishnan, and

Robert M. Kirby. 2011. Formal specification of MPI 2.0: Case study in speci-

fying a practical concurrent programming APL Science of Computer Programming

76, 2 (2011), 65 — 81. https://doi.org/10.1016/j.scico.2010.03.007

[10

Bangalore, Rabenseifer, et al.

[11] Robert Palmer, Michael DeLisi, Ganesh Gopalakrishnan, and Robert M. Kirby.
2008. An Approach to Formalization and Analysis of Message Passing Libraries.
In Formal Methods for Industrial Critical Systems, Stefan Leue and Pedro Merino
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 164-181.

Stephen F. Siegel. 2007. Model Checking Nonblocking MPI Programs. In Veri-

fication, Model Checking, and Abstract Interpretation, Byron Cook and Andreas

Podelski (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 44-58.

[13] StephenF. Siegel and George S. Avrunin. 2004. Verification of MPI-Based Software
for Scientific Computation. In Model Checking Software, Susanne Graf and Laurent
Mounier (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 286-303.

[14] Sarvani Vakkalanka, Anh Vo, Ganesh Gopalakrishnan, and Robert M. Kirby.
2009. Reduced Execution Semantics of MPI: From Theory to Practice. In FM
2009: Formal Methods, Ana Cavalcanti and Dennis R. Dams (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 724-740.

[15] StephenR. Walli. 1995. The POSIX Family of Standards. StandardView 3, 1 (March
1995), 11-17. https://doi.org/10.1145/210308.210315

[12

A SUMMARY OF SEMANTICS OF ALL MPI
COMMUNICATION PROCEDURES
Table Legend:

Stages: i=initialization, s=starting, c=completion, f=freeing

o Cpl: ic=incomplete, c=completing, f=freeing procedure

e Loc: I=local, nl=non-local

o Bold: exceptions, e.g., ic+nl = incomplete+non-local, and c+| = com-
pleting+local (both are defined as blocking)

o Blk: b=blocking, nb=nonblocking. Note that from a user’s view
point, this column is only a hint. Relevant is, whether a routine is
local or not and which resources are blocked until when. See both
previous and last columns.

o Bold: exceptions, e.g., nonblocking procedures without prefix "I" or
that "I" only marks immediate return.

e Op: part of operation type: b-op = blocking operation, nb-op =
nonblocking operation, p-op = persistent operation

e Collective procedures:

- C = all processes of the group must call the procedure

- sq = in the same sequence

- S1 = blocking synchronization

- S2 = start-complete-synchronization

Blocked resources: They are blocked after the call until the end of

the subsequent stage where this resource is not mentioned further.

Table Footnotes:

1) Musn’t return before corresponding MPI receive operation is started.

2) In a correct MPI program, a call to MPI_(I)RSEND requires that the
receiver has already started the corresponding receive. Under this
assumptions, the call is local.

3) Usually, MPI_ WAIT is non-local, but in this case it is local.

4) In case of a MPI_(I)BARRIER, the S1/S2 synchronization is required

(instead of “may or may not”).

Collective: all processes must be completing, but with the free choice

of using MPI_WAIT or MPI_TEST returning flag=TRUE.

6) It also may not return until MPI_INIT was called in the children.

7) Addresses are cached on the request handle.

8) One of the rare cases that an incomplete call is non-local and there-

fore blocking.

One shall not free or deallocate the buffer before the operation is

freed, that is MPI_REQUEST_FREE returned.

For MPI_WAIT and MPI_TEST, see corresponding lines for a) MPI-

_BSEND, or b) MPI_IBCAST.

11) The prefix "I" marks only that this procedure returns immediately.

It is not incomplete.

12) One of the exceptions that a blocking procedure is local.

13) It is complete because it is not associated with an operation.

14) Nonblocking procedure without an "I" prefix.

wl
~

=

O
~

10

=


https://doi.org/10.1145/2020373.2020375
https://doi.org/10.1109/99.660313
https://doi.org/10.1145/2043174.2043194
https://doi.org/10.1016/j.scico.2010.03.007
https://doi.org/10.1145/210308.210315

MPI Semantic Terms and Conventions EuroMPI 2019, September 11-13, 2019, Zirich, Switzerland

Procedure Stages |Cpl Loc Blk|Op Collective|Blocked resources

C sq S1/2 |and remarks
MPI_SEND i-s-c-f [c+#f nl b |b-op |-
MPI_SSEND i-s-c-f [c+¢f nl b |b-op |- 1)
MPI_RSEND i-s-c-f |c+¢f | b |b-op |- 2) 12)
MPI_BSEND i-s-c-f |e¢f | b |b-op |- 12)
MPI_RECV i-s-c-f |c+#f nl b |b-op |-
MPI_ISEND, MPI_ISSEND i-s---- |lic | 'nb|nb-op |- buffer
MPI_IRECV i-s---- [ic | nb|nb-op|- buffer
corresponding MPI_WAIT ----c-f |c+f nl nb-op |-
corr. MPI_TEST returning flag=TRUE ----c-f |c+f | nb-op |-
corr. MPI_TEST retuming flag=FALSE =~ [------- I nb-op |- buffer cached on req
MPI_IBSEND i-s---- |lic | 'nb|nb-op |- buffer
MPI_IRSEND i-s-—--- |lic | 'nb|nb-op |- buffer 2)
corresponding MPI_WAIT ----c-f |c+f | nb-op |- 3)
corr. MPI_TEST returning flag=TRUE ----c-f |c+f | nb-op |-
corr. MPI_TEST retuming flag=FALSE =~ [------- I nb-op |- buffer 7)
MPI_PROBE i-s-c-f |c+#f nl b |b-op |- 13)
MPI_IPROBE i-s-c-f [c+¢f | b - 11) 12) 13)
MPI_RECV of a probed message i-s-c-f [c¢f | b |b-op |- 12)
MPI_IRECV of a probed message i-s-—--- |lic | 'nb|nb-op |- buffer
corresponding MPI_WAIT ----c-f |c+f | nb-op |- 3)
corr. MPI_TEST returning flag=TRUE ----c-f |c+f | nb-op |-
corr. MPI_TEST returning flag=FALSE =~ |---—-- I nb-op |- buffer 7)
MPI_MPROBE i-s-c-f lic nl b |b-op |- the message itself 8)
MPI_IMPROBE i-s-c-f lic | 'nb|b-op |- the message itself
MPI_MRECV of a probed message i-s-c-f [c¢f | b |b-op |- 12)
MPI_IMRECV of a probed message i-s---- |lic | 'nb|nb-op |- buffer
corresponding MPI_WAIT ----c-f |c+f | nb-op |- 3)
corr. MPI_TEST returning flag=TRUE ----c-f |c+f | nb-op |-
corr. MPI_TEST returning flag=FALSE =~ |---—-- I nb-op |- buffer 7)
MPI_(-|S|B|R)SEND_INIT, MPI_RECV_INIT j---mm- ic | 'nb|p-op |- buffer address 9) 14)
corresponding MPI_START, MPI_STARTALL --s---- |ic | 'nb|p-op |- buffer address+content 7),14)
corresponding MPI_WAIT (for (B|R)SEND req.) |----c-- |¢ | p-op |- buffer address 3}, 7), 9)
corresponding MPI_WAIT (for other request) ----c-- |¢ nl p-op |- buffer address 7), 9)
corr. MPI_TEST returning flag=TRUE e p-op |- buffer address 7), 9)
corr. MPI_TEST returning flag=FALSE =~ |---—-- I p-op |- buffer content+address 7)
corr. MPI_REQUEST_FREE (for inactive req-handle) [------ f|f | p-op |-
MPI_CANCEL of nonblock./persistent pt-to-pt I p-op |-
MPI_SENDRECV(_REPLACE) i-s-c-f |[c+f nl b |b-op |-




EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland Bangalore, Rabenseifer, et al.

Procedure Stages |Cpl Loc Blk|Op Collective|Blocked resources
C sq $1/2 |and remarks
MPI_BCAST and others i-s-c-f |[c+f nl b |b-op |Csq S1 |4)
MPI_IBCAST and others i-s---- |lic | nb|nb-op|Csq buffer 4)
MP|_IGATHERV and other..V /..W i-s—-- [ic | nb|nb-op|Csq buffer, array arguments
corresponding MPI_WAIT -——--¢-f |c+f nl nb-op |C S2 |4)5)
corr. MPI_TEST returning flag=TRUE -—-c-f |cHf | nb-op|C S2 |4)5)
corr. MPI_TEST returning flag=FALSE |-~ I nb-op buffer, array arguments 7)
MPI_BCAST INIT and others - ic nl b |pop |Csq S1 |bufferaddress8)9)
MPI_GATHERV INITand other ..V/..W _INIT j----m- ic nl b |p-op |Csq S1 |bufferaddress,
array arguments 8) 9)
corresponding MP|_START, MPI_STARTALL --s-—-— |lic | nb|p-op |C buffer addr.+content, 4,7),14)
corresponding MPI_WAIT ----¢-- |¢  nl p-op |C S$2 |buffer address and array
arguments cached on the
reqest handle, 4,5,7,9)
corr. MPI_TEST returning flag=TRUE - |c | p-op |C S$2 |buf-addr&arr-args 4,5,7,9)
corr. MPI_TEST retuming flag=FALSE =~ [--—-- I p-op buf addr+content&arr-args 7)
corr. MPI_REQUEST FREE |- fif | p-op
MPI_COMM CREATE i-s-¢c- ¢ nl b |b-op [Csq S1 |[coll.overcomm arg.
MPI_COMM_CREATE_GROUP i-s-c-- |c nl b |b-op |Csq S1 |[coll. overgroup arg.

MPI_COMM_DUP, MPI_COMM_DUP_WITH_INFO, MP1_COMM _SPLIT, MPI_COMM _SPLIT_TYPE,
MP|_CART_CREATE, MPI_GRAPH_CREATE, MPI_DIST_GRAPH_CREATE_ADJACENT, MPI_DIST_GRAPH_CREATE,
MP|_CART SUB: see MPI_COMM CREATE

MPI_INTERCOMM_CREATE, i-s-c-- [c nl b |b-op |Csq S1 |coll. overunion of
MPI_INTERCOMM_ MERGE local & remote group
MPI_COMM _IDUP i-s—-—- |ic | nb|nb-op|Csq communicator handle
corresponding MPI_WAIT --—--¢c-- |c  nl nb-op|C S2 |[5)
corr. MPI_TEST returning flag=TRUE s i L nb-op |C s2 |5)
corr. MPI_TEST returning flag=FALSE ~ |---—-- I nb-op
MPI_COMM FREE |- fif nl b |b-op |Csq S1 |see, 6.4.3, Adv.toimpl.
MPI_INIT, MPI_INIT THREAD i-s-¢-f |e+¢f nl b |b-op |Csq S1 |[collective over
MPI_COMM_WORLD
MPI_FINALIZE i-s-¢-f |c+¢f nl b |b-op [Csg S1 |[collective overall connected
processes
MPI_COMM_SPAWN, .... MULTIPLE i-s-c-f |c#f nl b |b-op |Csq S1 [collective over
comm, 6)

MPI_COMM_ACCEPT, MPI_ COMM CONNECT |[i-s-¢-f |c+f nl b |b-op |Csq S1 |collective over comm

MP1_PUT, MP|_GET, MPI_ACCUMULATE —-s—— |ic | nb|nb-op|- buffer 14)
Other one-sided procedures See corresponding chapter
MP|_FILE READ/WRITE[ AT|SHARED], iscf c#fl b |bop | 12)

MP| FILE DELETE/SEEK/GET VIEW
MP|_FILE_READ/WRITE[_AT]_[ALL|ORDERED], [i-s-c-f |c+f nl b |b-op |Csq S1
MP|_FILE_ OPEN/CLOSE/SEEK_SHARED,
MP|_FILE_PREALLOCATE/SYNC,
MP|_FILE_SET VIEW/SIZE/INFO/ATOMICITY
MP|_FILE_IREAD/IWRITE[ AT|SHARED] i-s—- |ic | nb|nb-op|- buffer 10a)
MP|_FILE_IREAD/IWRITE[ AT]_ALL i-s—- |ic | nb|nb-op|Csq buffer 10b)
MP|_FILE_READ/WRITE[_AT]_ALL| ORDERED_BEGIN[i-s—- |ic nl b |b-op |Csq S1 |buffer8)
MP|_FILE_READ/WRITE[_AT]_ALL| ORDERED_END |----c-f |c+f nl b |b-op |Csq S1




	Abstract
	1 Introduction
	2 Existing term definitions: exposing the original meaning
	3 New term definitions: clarifying the original intent
	3.1 MPI Operation and its Stages
	3.2 MPI Procedure

	4 Semantics of MPI Procedures
	4.1 Point-to-Point Communication
	4.2 Collective Communication
	4.3 Communicators
	4.4 Process Topologies
	4.5 Process Creation and Management
	4.6 One-Sided Communication
	4.7 I/O

	5 Related Work
	6 Conclusion and Future Work
	Acknowledgments
	References
	A Summary of Semantics of All MPI Communication Procedures

