
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

October 21, 2019
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 8

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various param-
eters that relate to the MPI implementation and the execution environment (such as error
handling). The procedures for entering and leaving the MPI execution environment are also
described here.

8.1 Implementation Information

8.1.1 Version Inquiries

In order to cope with changes to the MPI Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The “version” will be represented by two separate integers, for the version and subver-
sion: In C,

#define MPI_VERSION 3

#define MPI_SUBVERSION 1

in Fortran,

INTEGER :: MPI_VERSION, MPI_SUBVERSION

PARAMETER (MPI_VERSION = 3)

PARAMETER (MPI_SUBVERSION = 1)

For runtime determination,

MPI_GET_VERSION(version, subversion)

OUT version version number (integer)

OUT subversion subversion number (integer)

int MPI_Get_version(int *version, int *subversion)

MPI_Get_version(version, subversion, ierror)

INTEGER, INTENT(OUT) :: version, subversion

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

MPI_GET_VERSION can be called before MPI_INIT and after MPI_FINALIZE. This
function must always be thread-safe, as defined in Section 12.4. Valid (MPI_VERSION,
MPI_SUBVERSION) pairs in this and previous versions of the MPI standard are (3,1), (3,0),
(2,2), (2,1), (2,0), and (1,2).

MPI_GET_LIBRARY_VERSION(version, resultlen)

OUT version version string (string)

OUT resultlen Length (in printable characters) of the result returned

in version (integer)

int MPI_Get_library_version(char *version, int *resultlen)

MPI_Get_library_version(version, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_LIBRARY_VERSION_STRING), INTENT(OUT) :: version

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)

CHARACTER*(*) VERSION

INTEGER RESULTLEN,IERROR

This routine returns a string representing the version of the MPI library. The version
argument is a character string for maximum flexibility.

Advice to implementors. An implementation of MPI should return a different string
for every change to its source code or build that could be visible to the user. (End of
advice to implementors.)

The argument version must represent storage that is
MPI_MAX_LIBRARY_VERSION_STRING characters long. MPI_GET_LIBRARY_VERSION may
write up to this many characters into version.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at version[resultlen]. The value of resultlen cannot
be larger than MPI_MAX_LIBRARY_VERSION_STRING - 1. In Fortran, version is padded on
the right with blank characters. The value of resultlen cannot be larger than
MPI_MAX_LIBRARY_VERSION_STRING.

MPI_GET_LIBRARY_VERSION can be called before MPI_INIT and after
MPI_FINALIZE. This function must always be thread-safe, as defined in Section 12.4.

8.1.2 Environmental Inquiries

A set of attributes that describe the execution environment are attached to the communi-
cator MPI_COMM_WORLD when MPI is initialized. The values of these attributes can be
inquired by using the function MPI_COMM_GET_ATTR described in Section 6.7 and in
Section 18.2.7. It is erroneous to delete these attributes, free their keys, or change their
values.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.1. IMPLEMENTATION INFORMATION 3

The list of predefined attribute keys include

MPI_TAG_UB Upper bound for tag value.

MPI_HOST Host process rank, if such exists, MPI_PROC_NULL, otherwise.

MPI_IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same
communicator may return different values for this parameter.

MPI_WTIME_IS_GLOBAL Boolean variable that indicates whether clocks are synchronized.

Vendors may add implementation-specific parameters (such as node number, real mem-
ory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI_INIT)
and MPI completion (MPI_FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes
is a pointer to an int containing the requested value. (End of advice to users.)

The required parameter values are discussed in more detail below:

Tag Values

Tag values range from 0 to the value returned for MPI_TAG_UB, inclusive. These values are
guaranteed to be unchanging during the execution of an MPI program. In addition, the tag
upper bound value must be at least 32767. An MPI implementation is free to make the
value of MPI_TAG_UB larger than this; for example, the value 230 − 1 is also a valid value
for MPI_TAG_UB.

The attribute MPI_TAG_UB has the same value on all processes of MPI_COMM_WORLD.

Host Rank

The value returned for MPI_HOST gets the rank of the HOST process in the group associated
with communicator MPI_COMM_WORLD, if there is such. MPI_PROC_NULL is returned if
there is no host. MPI does not specify what it means for a process to be a HOST, nor does
it requires that a HOST exists.

The attribute MPI_HOST has the same value on all processes of MPI_COMM_WORLD.

IO Rank

The value returned for MPI_IO is the rank of a processor that can provide language-standard
I/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported
(e.g., OPEN, REWIND, WRITE). For C, this means that all of the ISO C I/O operations are
supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/O, then the value MPI_ANY_SOURCE

will be returned. Otherwise, if the calling process can provide language-standard I/O,
then its rank will be returned. Otherwise, if some process can provide language-standard
I/O then the rank of one such process will be returned. The same value need not be
returned by all processes. If no process can provide language-standard I/O, then the value
MPI_PROC_NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does not indicate
which process can or does provide input. (End of advice to users.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Clock Synchronization

The value returned for MPI_WTIME_IS_GLOBAL is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise. A collection of clocks is considered
synchronized if explicit effort has been taken to synchronize them. The expectation is that
the variation in time, as measured by calls to MPI_WTIME, will be less then one half the
round-trip time for an MPI message of length zero. If time is measured at a process just
before a send and at another process just after a matching receive, the second time should
be always higher than the first one.

The attribute MPI_WTIME_IS_GLOBAL need not be present when the clocks are not
synchronized (however, the attribute key MPI_WTIME_IS_GLOBAL is always valid). This
attribute may be associated with communicators other then MPI_COMM_WORLD.

The attribute MPI_WTIME_IS_GLOBAL has the same value on all processes of
MPI_COMM_WORLD.

Inquire Processor Name

MPI_GET_PROCESSOR_NAME(name, resultlen)

OUT name A unique specifier for the actual (as opposed to vir-

tual) node.

OUT resultlen Length (in printable characters) of the result returned

in name

int MPI_Get_processor_name(char *name, int *resultlen)

MPI_Get_processor_name(name, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)

CHARACTER*(*) NAME

INTEGER RESULTLEN, IERROR

This routine returns the name of the processor on which it was called at the moment
of the call. The name is a character string for maximum flexibility. From this value it
must be possible to identify a specific piece of hardware; possible values include “processor
9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the
running homogeneous system). The argument name must represent storage that is at least
MPI_MAX_PROCESSOR_NAME characters long. MPI_GET_PROCESSOR_NAME may write
up to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at name[resultlen]. The value of resultlen cannot
be larger than MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with
blank characters. The value of resultlen cannot be larger than MPI_MAX_PROCESSOR_NAME.

Rationale. This function allows MPI implementations that do process migration to
return the current processor. Note that nothing in MPI requires or defines process

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.1. IMPLEMENTATION INFORMATION 5

migration; this definition of MPI_GET_PROCESSOR_NAME simply allows such an
implementation. (End of rationale.)

Advice to users. The user must provide at least MPI_MAX_PROCESSOR_NAME space
to write the processor name — processor names can be this long. The user should
examine the output argument, resultlen, to determine the actual length of the name.
(End of advice to users.)

Inquire Hardware Resource Names

There are two possible designs for this routine:

• a local version: with 2 subdesigns (in purple)

– return the types to which the calling process is bound

– return all possible types, need a supplemental info key

• a collective version

MPI_GET_HW_SUBDOMAIN_TYPES(hw_info)

OUT hw_info new info object (handle)

int MPI_Get_hw_subdomain_types(MPI_Info *hw_info)

MPI_Get_hw_subdomain_types(hw_info, ierror)

TYPE(MPI_Info), INTENT(OUT) :: hw_info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_HWSUBDOMAIN_TYPES(HW_INFO, IERROR)

HW_INFO, IERROR

This routine returns an info object containing information pertaining to the hardware
platform on which the calling MPI process is executing at the moment of the call. The
information available is stored in the following info keys:

• mpi_hw_res_nresources is an integer that represents the number of hardware resource
types recognized by the MPI implementation and to which the calling MPI process
is/can be restricted.

• mpi_hw_res_i_type is the type of the i-th hardware resource to which the calling MPI
process is/can be restricted (with i ∈ {0, . . . ,mpi_hw_res_nresources− 1}).

• mpi_hw_res_i_naliases is an integer that represents the number of hardware resource
types that are aliases to mpi_hw_res_i_type (with i ∈ {0, . . . ,mpi_hw_res_nresources −
1}).

• mpi_hw_res_i_alias_k with k ∈ {0, . . . ,mpi_hw_res_i_naliases − 1} is an integer j (with
j ∈ {0, . . . ,mpi_hw_res_nresources − 1}) such that mpi_hw_res_j_type is an alias to
mpi_hw_res_i_type.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

• mpi_hw_res_i_occupied, where i ∈ {0, . . . ,mpi_hw_res_nresources − 1}, is
true if the calling MPI process is restricted to hardware resource number i at the
moment of the call.

OR:

MPI_GET_HW_SUBDOMAIN_TYPES(comm, hw_info)

IN comm intracommunicator (handle)

OUT hw_info new info object (handle)

int MPI_Get_hw_subdomain_types(MPI_Comm comm, MPI_Info *hw_info)

MPI_Get_hw_subdomain_types(comm, hw_info, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(OUT) :: hw_info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_HW_SUBDOMAIN_TYPES(COMM, HW_INFO, IERROR)

INTEGER COMM, HW_INFO, IERROR

This routine returns an info object that contains information about the hardware re-
sources that are usable by the MPI processes members of the group associated with comm
at the time of the call.

Advice to users. On heterogeneous hardware, some of the provided hardware resource
types may be not valid for all MPI processes. (End of advice to users.)

This routine is collective and returns the same information in the process group of comm.
The information available is stored in the following info keys:

• mpi_hw_res_nresources is an integer that represents the number of hardware resource
types recognized by the MPI implementation and to which the calling MPI process
may be restricted.

• mpi_hw_res_i_type is the type of the i-th hardware resource to which the calling MPI
process can be restricted (with i ∈ {0, . . . ,mpi_hw_res_nresources− 1}).

• mpi_hw_res_i_naliases is an integer that represents the number of hardware resource
types that are aliases to mpi_hw_res_i_type (with i ∈ {0, . . . ,mpi_hw_res_nresources −
1}).

• mpi_hw_res_i_alias_k with k ∈ {0, . . . ,mpi_hw_res_i_naliases − 1} is an integer j (with
j ∈ {0, . . . ,mpi_hw_res_nresources − 1}) such that mpi_hw_res_j_type is an alias to
mpi_hw_res_i_type.

• mpi_hw_res_i_occupied, where i ∈ {0, . . . ,mpi_hw_res_nresources − 1}, is
true if the calling MPI process is restricted to hardware resource number i at the
moment of the call.

The following text applies to both designs:

The user is responsible for freeing hw_info via MPI_INFO_FREE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.2. MEMORY ALLOCATION 7

Advice to users. The types returned by this routine can be used in
MPI_COMM_SPLIT_TYPE as key values for the info key mpi_hw_subdomain_type. How-
ever, the information returned in hw_info may not be constant throughout the execu-
tion of the program because an MPI process can relocate (e.g., migrate or change its
hardware restrictions). (End of advice to users.)

8.2 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster
when accessing specially allocated memory (e.g., memory that is shared by the other pro-
cesses in the communicating group on an SMP). MPI provides a mechanism for allocating
and freeing such special memory. The use of such memory for message-passing or RMA
is not mandatory, and this memory can be used without restrictions as any other dynam-
ically allocated memory. However, implementations may restrict the use of some RMA
functionality as defined in Section 11.5.3.

MPI_ALLOC_MEM(size, info, baseptr)

IN size size of memory segment in bytes (non-negative inte-

ger)

IN info info argument (handle)

OUT baseptr pointer to beginning of memory segment allocated

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

MPI_Alloc_mem(size, info, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must
be provided in the mpi module and should be provided in mpif.h through overloading,
i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND)

BASEPTR, but with a different specific procedure name:

INTERFACE MPI_ALLOC_MEM

SUBROUTINE MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

The base procedure name of this overloaded function is MPI_ALLOC_MEM_CPTR. The
implied specific procedure names are described in Section 18.1.5.

The info argument can be used to provide directives that control the desired location
of the allocated memory. Such a directive does not affect the semantics of the call. Valid
info values are implementation-dependent; a null directive value of info = MPI_INFO_NULL
is always valid.

The function MPI_ALLOC_MEM may return an error code of class MPI_ERR_NO_MEM

to indicate it failed because memory is exhausted.

MPI_FREE_MEM(base)

IN base initial address of memory segment allocated by

MPI_ALLOC_MEM (choice)

int MPI_Free_mem(void *base)

MPI_Free_mem(base, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: base

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FREE_MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

The function MPI_FREE_MEM may return an error code of class MPI_ERR_BASE to
indicate an invalid base argument.

Rationale. The C bindings of MPI_ALLOC_MEM and MPI_FREE_MEM are similar
to the bindings for the malloc and free C library calls: a call to
MPI_Alloc_mem(. . ., &base) should be paired with a call to MPI_Free_mem(base) (one
less level of indirection). Both arguments are declared to be of same type
void* so as to facilitate type casting. The Fortran binding is consistent with the C
bindings: the Fortran MPI_ALLOC_MEM call returns in baseptr the TYPE(C_PTR)

pointer or the (integer valued) address of the allocated memory. The base argument
of MPI_FREE_MEM is a choice argument, which passes (a reference to) the variable
stored at that location. (End of rationale.)

Advice to implementors. If MPI_ALLOC_MEM allocates special memory, then a
design similar to the design of C malloc and free functions has to be used, in order
to find out the size of a memory segment, when the segment is freed. If no special

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.2. MEMORY ALLOCATION 9

memory is used, MPI_ALLOC_MEM simply invokes malloc, and MPI_FREE_MEM
invokes free.

A call to MPI_ALLOC_MEM can be used in shared memory systems to allocate mem-
ory in a shared memory segment. (End of advice to implementors.)

Example 8.1 Example of use of MPI_ALLOC_MEM, in Fortran with
TYPE(C_PTR) pointers. We assume 4-byte REALs.

USE mpi_f08 ! or USE mpi (not guaranteed with INCLUDE ’mpif.h’)

USE, INTRINSIC :: ISO_C_BINDING

TYPE(C_PTR) :: p

REAL, DIMENSION(:,:), POINTER :: a ! no memory is allocated

INTEGER, DIMENSION(2) :: shape

INTEGER(KIND=MPI_ADDRESS_KIND) :: size

shape = (/100,100/)

size = 4 * shape(1) * shape(2) ! assuming 4 bytes per REAL

CALL MPI_Alloc_mem(size,MPI_INFO_NULL,p,ierr) ! memory is allocated and

CALL C_F_POINTER(p, a, shape) ! intrinsic ! now accessible via a(i,j)

... ! in ISO_C_BINDING

a(3,5) = 2.71;

...

CALL MPI_Free_mem(a, ierr) ! memory is freed

Example 8.2 Example of use of MPI_ALLOC_MEM, in Fortran with non-standard Cray-
pointers. We assume 4-byte REALs, and assume that these pointers are address-sized.

REAL A

POINTER (P, A(100,100)) ! no memory is allocated

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

SIZE = 4*100*100

CALL MPI_ALLOC_MEM(SIZE, MPI_INFO_NULL, P, IERR)

! memory is allocated

...

A(3,5) = 2.71;

...

CALL MPI_FREE_MEM(A, IERR) ! memory is freed

This code is not Fortran 77 or Fortran 90 code. Some compilers may not support this
code or need a special option, e.g., the GNU gFortran compiler needs -fcray-pointer.

Advice to implementors. Some compilers map Cray-pointers to address-sized integers,
some to TYPE(C_PTR) pointers (e.g., Cray Fortran, version 7.3.3). From the user’s
viewpoint, this mapping is irrelevant because Examples 8.2 should work correctly
with an MPI-3.0 (or later) library if Cray-pointers are available. (End of advice to
implementors.)

Example 8.3 Same example, in C.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

float (* f)[100][100];

/* no memory is allocated */

MPI_Alloc_mem(sizeof(float)*100*100, MPI_INFO_NULL, &f);

/* memory allocated */

...

(*f)[5][3] = 2.71;

...

MPI_Free_mem(f);

8.3 Error Handling

An MPI implementation cannot or may choose not to handle some errors that occur during
MPI calls. These can include errors that generate exceptions or traps, such as floating point
errors or access violations. The set of errors that are handled by MPI is implementation-
dependent. Each such error generates an MPI exception.

The above text takes precedence over any text on error handling within this document.
Specifically, text that states that errors will be handled should be read as may be handled.
More background information about how MPI treats errors can be found in Section 2.8.

A user can associate error handlers to three types of objects: communicators, windows,
and files. The specified error handling routine will be used for any MPI exception that
occurs during a call to MPI for the respective object. MPI calls that are not related to
any objects are considered to be attached to the communicator MPI_COMM_SELF. When
MPI_COMM_SELF is not initialized (i.e., before MPI_INIT / MPI_INIT_THREAD or after
MPI_FINALIZE) the error raises the initial error handler (set during the launch operation,
see 10.3.4). The attachment of error handlers to objects is purely local: different processes
may attach different error handlers to corresponding objects.

Several predefined error handlers are available in MPI:

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to abort all con-
nected MPI processes. This is similar to calling MPI_ABORT using a communica-
tor containing all connected processes with an implementation-specific value as the
errorcode argument.

MPI_ERRORS_ABORT The handler, when called, is invoked on a communicator in a man-
ner similar to calling MPI_ABORT on that communicator. If the error handler is
invoked on an window or a file, it is similar to calling MPI_ABORT using a com-
municator containing the group of MPI processes associated with the window or file,
respectively. In either case, the value that would be provided as the errorcode argu-
ment to MPI_ABORT is implementation-specific.

MPI_ERRORS_RETURN The handler has no effect other than returning the error code to
the user.

Advice to implementors. The implementation-specific error information resulting
from MPI_ERRORS_ARE_FATAL and MPI_ERRORS_ABORT provided to the invoking en-
vironment should be meaningful to the end-user, for example a predefined error class.
(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.3. ERROR HANDLING 11

Implementations may provide additional predefined error handlers and programmers
can code their own error handlers.

Unless otherwise requested, the error handler MPI_ERRORS_ARE_FATAL is set as the
default initial error handler and associated with predefined communicators. Thus, if the
user chooses not to control error handling, every error that MPI handles is treated as fatal.
Since (almost) all MPI calls return an error code, a user may choose to handle errors in its
main code, by testing the return code of MPI calls and executing a suitable recovery code
when the call was not successful. In this case, the error handler MPI_ERRORS_RETURN will
be used. Usually it is more convenient and more efficient not to test for errors after each
MPI call, and have such error handled by a non-trivial MPI error handler. Note that unlike
predefined communicators, windows and files do not inherit from the initial error handler,
as defined in Sections 11.6 and 13.7 respectively.

After an error is detected, MPI will provide the user as much information as possible
about that error using error classes. Some errors might prevent MPI from completing
further API calls successfully and those functions will continue to report errors until the
cause of the error is corrected or the user terminates the application. The user can make
the determination of whether or not to attempt to continue after detecting such an error.

Advice to users. For example, users may be unable to correct errors corresponding
to some error classes, such as MPI_ERR_INTERN. Such errors may cause subsequent
MPI calls to complete in error. (End of advice to users.)

Advice to implementors. A high-quality implementation will, to the greatest possible
extent, circumscribe the impact of an error, so that normal processing can continue
after an error handler was invoked. The implementation documentation will provide
information on the possible effect of each class of errors and available recovery actions.
(End of advice to implementors.)

An MPI error handler is an opaque object, which is accessed by a handle. MPI calls are
provided to create new error handlers, to associate error handlers with objects, and to test
which error handler is associated with an object. C has distinct typedefs for user defined
error handling callback functions that accept communicator, file, and window arguments.
In Fortran there are three user routines.

An error handler object is created by a call to MPI_XXX_CREATE_ERRHANDLER,
where XXX is, respectively, COMM, WIN, or FILE.

An error handler is attached to a communicator, window, or file by a call to
MPI_XXX_SET_ERRHANDLER. The error handler must be either a predefined error han-
dler, or an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER,
with matching XXX. The predefined error handlers MPI_ERRORS_RETURN and
MPI_ERRORS_ARE_FATAL can be attached to communicators, windows, and files.

The error handler currently associated with a communicator, window, or file can be
retrieved by a call to MPI_XXX_GET_ERRHANDLER.

The MPI function MPI_ERRHANDLER_FREE can be used to free an error handler that
was created by a call to MPI_XXX_CREATE_ERRHANDLER.

MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler ob-
ject is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark the error handler for deallocation.
This provides behavior similar to that of MPI_COMM_GROUP and MPI_GROUP_FREE.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Advice to implementors. High-quality implementations should raise an error when
an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER is
attached to an object of the wrong type with a call to MPI_YYY_SET_ERRHANDLER.
To do so, it is necessary to maintain, with each error handler, information on the
typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.

8.3.1 Error Handlers for Communicators

MPI_COMM_CREATE_ERRHANDLER(comm_errhandler_fn, errhandler)

IN comm_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function

*comm_errhandler_fn, MPI_Errhandler *errhandler)

MPI_Comm_create_errhandler(comm_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Comm_errhandler_function) :: comm_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CREATE_ERRHANDLER(COMM_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL COMM_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to communicators.
The user routine should be, in C, a function of type MPI_Comm_errhandler_function, which

is defined as
typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second is the error code to be
returned by the MPI routine that raised the error. If the routine would have returned
MPI_ERR_IN_STATUS, it is the error code returned in the status for the request that caused
the error handler to be invoked. The remaining arguments are “varargs” arguments whose
number and meaning is implementation-dependent. An implementation should clearly doc-
ument these arguments. Addresses are used so that the handler may be written in Fortran.
With the Fortran mpi_f08 module, the user routine comm_errhandler_fn should be of the
form:
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_errhandler_function(comm, error_code)

TYPE(MPI_Comm) :: comm

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine COMM_ERRHANDLER_FN
should be of the form:
SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)

INTEGER COMM, ERROR_CODE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.3. ERROR HANDLING 13

Rationale. The variable argument list is provided because it provides an ISO-
standard hook for providing additional information to the error handler; without this
hook, ISO C prohibits additional arguments. (End of rationale.)

Advice to users. A newly created communicator inherits the error handler that
is associated with the “parent” communicator. In particular, the user can specify
a “global” error handler for all communicators by associating this handler with the
communicator MPI_COMM_WORLD immediately after initialization. (End of advice to
users.)

MPI_COMM_SET_ERRHANDLER(comm, errhandler)

INOUT comm communicator (handle)

IN errhandler new error handler for communicator (handle)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_Comm_set_errhandler(comm, errhandler, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Attaches a new error handler to a communicator. The error handler must be either
a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER.

MPI_COMM_GET_ERRHANDLER(comm, errhandler)

IN comm communicator (handle)

OUT errhandler error handler currently associated with communicator

(handle)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_Comm_get_errhandler(comm, errhandler, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a communicator.
For example, a library function may register at its entry point the current error handler

for a communicator, set its own private error handler for this communicator, and restore
before exiting the previous error handler.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

8.3.2 Error Handlers for Windows

MPI_WIN_CREATE_ERRHANDLER(win_errhandler_fn, errhandler)

IN win_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function

*win_errhandler_fn, MPI_Errhandler *errhandler)

MPI_Win_create_errhandler(win_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Win_errhandler_function) :: win_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CREATE_ERRHANDLER(WIN_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL WIN_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a window object. The user routine
should be, in C, a function of type MPI_Win_errhandler_function which is defined as
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

The first argument is the window in use, the second is the error code to be returned.
With the Fortran mpi_f08 module, the user routine win_errhandler_fn should be of the form:
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_errhandler_function(win, error_code)

TYPE(MPI_Win) :: win

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine WIN_ERRHANDLER_FN should
be of the form:
SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)

INTEGER WIN, ERROR_CODE

MPI_WIN_SET_ERRHANDLER(win, errhandler)

INOUT win window (handle)

IN errhandler new error handler for window (handle)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

MPI_Win_set_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.3. ERROR HANDLING 15

Attaches a new error handler to a window. The error handler must be either a pre-
defined error handler, or an error handler created by a call to
MPI_WIN_CREATE_ERRHANDLER.

MPI_WIN_GET_ERRHANDLER(win, errhandler)

IN win window (handle)

OUT errhandler error handler currently associated with window (han-

dle)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

MPI_Win_get_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a window.

8.3.3 Error Handlers for Files

MPI_FILE_CREATE_ERRHANDLER(file_errhandler_fn, errhandler)

IN file_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_File_create_errhandler(MPI_File_errhandler_function

*file_errhandler_fn, MPI_Errhandler *errhandler)

MPI_File_create_errhandler(file_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_File_errhandler_function) :: file_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CREATE_ERRHANDLER(FILE_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL FILE_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a file object. The user routine should
be, in C, a function of type MPI_File_errhandler_function, which is defined as
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

The first argument is the file in use, the second is the error code to be returned.
With the Fortran mpi_f08 module, the user routine file_errhandler_fn should be of the form:
ABSTRACT INTERFACE

SUBROUTINE MPI_File_errhandler_function(file, error_code)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

TYPE(MPI_File) :: file

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine FILE_ERRHANDLER_FN should
be of the form:
SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)

INTEGER FILE, ERROR_CODE

MPI_FILE_SET_ERRHANDLER(file, errhandler)

INOUT file file (handle)

IN errhandler new error handler for file (handle)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

MPI_File_set_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

Attaches a new error handler to a file. The error handler must be either a predefined
error handler, or an error handler created by a call to MPI_FILE_CREATE_ERRHANDLER.

MPI_FILE_GET_ERRHANDLER(file, errhandler)

IN file file (handle)

OUT errhandler error handler currently associated with file (handle)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

MPI_File_get_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.3. ERROR HANDLING 17

8.3.4 Freeing Errorhandlers and Retrieving Error Strings

MPI_ERRHANDLER_FREE(errhandler)

INOUT errhandler MPI error handler (handle)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

MPI_Errhandler_free(errhandler, ierror)

TYPE(MPI_Errhandler), INTENT(INOUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)

INTEGER ERRHANDLER, IERROR

Marks the error handler associated with errhandler for deallocation and sets errhandler
to MPI_ERRHANDLER_NULL. The error handler will be deallocated after all the objects
associated with it (communicator, window, or file) have been deallocated.

MPI_ERROR_STRING(errorcode, string, resultlen)

IN errorcode Error code returned by an MPI routine

OUT string Text that corresponds to the errorcode

OUT resultlen Length (in printable characters) of the result returned

in string

int MPI_Error_string(int errorcode, char *string, int *resultlen)

MPI_Error_string(errorcode, string, resultlen, ierror)

INTEGER, INTENT(IN) :: errorcode

CHARACTER(LEN=MPI_MAX_ERROR_STRING), INTENT(OUT) :: string

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)

INTEGER ERRORCODE, RESULTLEN, IERROR

CHARACTER*(*) STRING

Returns the error string associated with an error code or class. The argument string
must represent storage that is at least MPI_MAX_ERROR_STRING characters long.

The number of characters actually written is returned in the output argument, resultlen.
This function must always be thread-safe, as defined in Section 12.4. It is one of the

few routines that may be called before MPI is initialized or after MPI is finalized.

Rationale. The form of this function was chosen to make the Fortran and C bindings
similar. A version that returns a pointer to a string has two difficulties. First, the
return string must be statically allocated and different for each error message (allowing
the pointers returned by successive calls to MPI_ERROR_STRING to point to the

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

correct message). Second, in Fortran, a function declared as returning CHARACTER*(*)

can not be referenced in, for example, a PRINT statement. (End of rationale.)

8.4 Error Codes and Classes

The error codes returned by MPI are left entirely to the implementation (with the exception
of MPI_SUCCESS). This is done to allow an implementation to provide as much information
as possible in the error code (for use with MPI_ERROR_STRING).

To make it possible for an application to interpret an error code, the routine
MPI_ERROR_CLASS converts any error code into one of a small set of standard error codes,
called error classes. Valid error classes are shown in Table 8.1 and Table 8.2.

The error classes are a subset of the error codes: an MPI function may return an error
class number; and the function MPI_ERROR_STRING can be used to compute the error
string associated with an error class. The values defined for MPI error classes are valid MPI
error codes.

The error codes satisfy,

0 = MPI_SUCCESS < MPI_ERR_. . . ≤ MPI_ERR_LASTCODE.

Rationale. The difference between MPI_ERR_UNKNOWN and MPI_ERR_OTHER is that
MPI_ERROR_STRING can return useful information about MPI_ERR_OTHER.

Note that MPI_SUCCESS = 0 is necessary to be consistent with C practice; the sepa-
ration of error classes and error codes allows us to define the error classes this way.
Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

MPI_ERROR_CLASS(errorcode, errorclass)

IN errorcode Error code returned by an MPI routine

OUT errorclass Error class associated with errorcode

int MPI_Error_class(int errorcode, int *errorclass)

MPI_Error_class(errorcode, errorclass, ierror)

INTEGER, INTENT(IN) :: errorcode

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)

INTEGER ERRORCODE, ERRORCLASS, IERROR

The function MPI_ERROR_CLASS maps each standard error code (error class) onto
itself.

This function must always be thread-safe, as defined in Section 12.4. It is one of the
few routines that may be called before MPI is initialized or after MPI is finalized.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.4. ERROR CODES AND CLASSES 19

MPI_SUCCESS No error
MPI_ERR_BUFFER Invalid buffer pointer
MPI_ERR_COUNT Invalid count argument
MPI_ERR_TYPE Invalid datatype argument
MPI_ERR_TAG Invalid tag argument
MPI_ERR_COMM Invalid communicator
MPI_ERR_RANK Invalid rank
MPI_ERR_REQUEST Invalid request (handle)
MPI_ERR_ROOT Invalid root
MPI_ERR_GROUP Invalid group
MPI_ERR_OP Invalid operation
MPI_ERR_TOPOLOGY Invalid topology
MPI_ERR_DIMS Invalid dimension argument
MPI_ERR_ARG Invalid argument of some other kind
MPI_ERR_UNKNOWN Unknown error
MPI_ERR_TRUNCATE Message truncated on receive
MPI_ERR_OTHER Known error not in this list
MPI_ERR_INTERN Internal MPI (implementation) error
MPI_ERR_IN_STATUS Error code is in status
MPI_ERR_PENDING Pending request
MPI_ERR_KEYVAL Invalid keyval has been passed
MPI_ERR_NO_MEM MPI_ALLOC_MEM failed because memory

is exhausted
MPI_ERR_BASE Invalid base passed to MPI_FREE_MEM
MPI_ERR_INFO_KEY Key longer than MPI_MAX_INFO_KEY

MPI_ERR_INFO_VALUE Value longer than MPI_MAX_INFO_VAL

MPI_ERR_INFO_NOKEY Invalid key passed to MPI_INFO_DELETE
MPI_ERR_SPAWN Error in spawning processes
MPI_ERR_PORT Invalid port name passed to

MPI_COMM_CONNECT
MPI_ERR_SERVICE Invalid service name passed to

MPI_UNPUBLISH_NAME
MPI_ERR_NAME Invalid service name passed to

MPI_LOOKUP_NAME
MPI_ERR_WIN Invalid win argument
MPI_ERR_SIZE Invalid size argument
MPI_ERR_DISP Invalid disp argument
MPI_ERR_INFO Invalid info argument
MPI_ERR_LOCKTYPE Invalid locktype argument
MPI_ERR_ASSERT Invalid assert argument
MPI_ERR_RMA_CONFLICT Conflicting accesses to window
MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls

Table 8.1: Error classes (Part 1)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_ERR_RMA_RANGE Target memory is not part of the win-
dow (in the case of a window created
with MPI_WIN_CREATE_DYNAMIC, tar-
get memory is not attached)

MPI_ERR_RMA_ATTACH Memory cannot be attached (e.g., because
of resource exhaustion)

MPI_ERR_RMA_SHARED Memory cannot be shared (e.g., some pro-
cess in the group of the specified commu-
nicator cannot expose shared memory)

MPI_ERR_RMA_FLAVOR Passed window has the wrong flavor for the
called function

MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error
MPI_ERR_LASTCODE Last error code

Table 8.2: Error classes (Part 2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 21

8.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and
this library may have its own set of error codes and classes. An example of such a library
is an I/O library based on MPI, see Chapter 13. For this purpose, functions are needed to:

1. add a new error class to the ones an MPI implementation already knows.

2. associate error codes with this error class, so that MPI_ERROR_CLASS works.

3. associate strings with these error codes, so that MPI_ERROR_STRING works.

4. invoke the error handler associated with a communicator, window, or object.

Several functions are provided to do this. They are all local. No functions are provided
to free error classes or codes: it is not expected that an application will generate them in
significant numbers.

MPI_ADD_ERROR_CLASS(errorclass)

OUT errorclass value for the new error class (integer)

int MPI_Add_error_class(int *errorclass)

MPI_Add_error_class(errorclass, ierror)

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

Creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set
by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorclass in the same deterministic way on all processes. (End of advice to
implementors.)

Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass
may not be returned on all processes that make this call. Thus, it is not safe to assume
that registering a new error on a set of processes at the same time will yield the same
errorclass on all of the processes. However, if an implementation returns the new
errorclass in a deterministic way, and they are always generated in the same order on
the same set of processes (for example, all processes), then the value will be the same.
However, even if a deterministic algorithm is used, the value can vary across processes.
This can happen, for example, if different but overlapping groups of processes make
a series of calls. As a result of these issues, getting the “same” error on multiple
processes may not cause the same value of error code to be generated. (End of advice
to users.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

The value of MPI_ERR_LASTCODE is a constant value and is not affected by new user-
defined error codes and classes. Instead, a predefined attribute key MPI_LASTUSEDCODE is
associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the
current maximum error class including the user-defined ones. This is a local value and may
be different on different processes. The value returned by this key is always greater than or
equal to MPI_ERR_LASTCODE.

Advice to users. The value returned by the key MPI_LASTUSEDCODE will not change
unless the user calls a function to explicitly add an error class/code. In a multi-
threaded environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. (End of
advice to users.)

MPI_ADD_ERROR_CODE(errorclass, errorcode)

IN errorclass error class (integer)

OUT errorcode new error code to associated with errorclass (integer)

int MPI_Add_error_code(int errorclass, int *errorcode)

MPI_Add_error_code(errorclass, errorcode, ierror)

INTEGER, INTENT(IN) :: errorclass

INTEGER, INTENT(OUT) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

Creates new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conflicts with existing error codes and classes, the value of the
new error code is set by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorcode in the same deterministic way on all processes. (End of advice to
implementors.)

MPI_ADD_ERROR_STRING(errorcode, string)

IN errorcode error code or class (integer)

IN string text corresponding to errorcode (string)

int MPI_Add_error_string(int errorcode, const char *string)

MPI_Add_error_string(errorcode, string, ierror)

INTEGER, INTENT(IN) :: errorcode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 23

CHARACTER(LEN=*), INTENT(IN) :: string

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

Associates an error string with an error code or class. The string must be no more
than MPI_MAX_ERROR_STRING characters long. The length of the string is as defined in the
calling language. The length of the string does not include the null terminator in C. Trailing
blanks will be stripped in Fortran. Calling MPI_ADD_ERROR_STRING for an errorcode that
already has a string will replace the old string with the new string. It is erroneous to call
MPI_ADD_ERROR_STRING for an error code or class with a value ≤ MPI_ERR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return a empty
string (all spaces in Fortran, "" in C).

Section 8.3 describes the methods for creating and associating error handlers with
communicators, files, and windows.

MPI_COMM_CALL_ERRHANDLER(comm, errorcode)

IN comm communicator with error handler (handle)

IN errorcode error code (integer)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

MPI_Comm_call_errhandler(comm, errorcode, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

This function invokes the error handler assigned to the communicator with the error
code supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if
the error handler was successfully called (assuming the process is not aborted and the error
handler returns).

MPI_WIN_CALL_ERRHANDLER(win, errorcode)

IN win window with error handler (handle)

IN errorcode error code (integer)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

MPI_Win_call_errhandler(win, errorcode, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)

INTEGER WIN, ERRORCODE, IERROR

This function invokes the error handler assigned to the window with the error code
supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. In contrast to communicators, the error handler
MPI_ERRORS_ARE_FATAL is associated with a window when it is created. (End of
advice to users.)

MPI_FILE_CALL_ERRHANDLER(fh, errorcode)

IN fh file with error handler (handle)

IN errorcode error code (integer)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

MPI_File_call_errhandler(fh, errorcode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

This function invokes the error handler assigned to the file with the error code supplied.
This function returns MPI_SUCCESS in C and the same value in IERROR if the error handler
was successfully called (assuming the process is not aborted and the error handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior
for files is to have MPI_ERRORS_RETURN. (End of advice to users.)

Advice to users. Users are warned that handlers should not be called recursively
with MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite
recursion is created. This can occur if MPI_COMM_CALL_ERRHANDLER,
MPI_FILE_CALL_ERRHANDLER, or MPI_WIN_CALL_ERRHANDLER is called inside
an error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
they are given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler. (End of advice to users.)

8.6 Timers and Synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 25

timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high resolution timers. See also Section 2.6.4.

MPI_WTIME()

double MPI_Wtime(void)

DOUBLE PRECISION MPI_Wtime()

DOUBLE PRECISION MPI_WTIME()

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

{

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL in Section 8.1.2).

MPI_WTICK()

double MPI_Wtick(void)

DOUBLE PRECISION MPI_Wtick()

DOUBLE PRECISION MPI_WTICK()

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 10−3.

8.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed
before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_Init(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INIT(IERROR)

INTEGER IERROR

All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are erro-
neous. The only MPI functions that may be invoked before the MPI initialization routines
are called are MPI_GET_VERSION, MPI_GET_LIBRARY_VERSION, MPI_INITIALIZED,
MPI_FINALIZED, MPI_ERROR_CLASS, MPI_ERROR_STRING, and any function with the
prefix MPI_T_ (within the constraints for functions with this prefix listed in Section 14.3.4).
The version for ISO C accepts the argc and argv that are provided by the arguments to main

or NULL:

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

/* parse arguments */

/* main program */

MPI_Finalize(); /* see below */

return 0;

}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc and argv arguments of main in C.
Failures may disrupt the execution of the program before or during MPI initialization.

A high-quality implementation shall not deadlock during MPI initialization, even in the
presence of failures. Except for functions with the MPI_T_ prefix, failures in MPI operations
prior to or during MPI initialization are reported by invoking the initial error handler.
Users can use the mpi_initial_errhandler info key during the launch of MPI processes (e.g.,
MPI_COMM_SPAWN / MPI_COMM_SPAWN_MULTIPLE, or mpiexec) to set a non-fatal
initial error handler before MPI initialization. When the initial error handler is set to
MPI_ERRORS_ABORT, raising an error before or during initialization aborts the local MPI
process (i.e., it is similar to calling MPI_ABORT on MPI_COMM_SELF). An implementation
may not always be capable of determining, before MPI initialization, what constitutes the
local MPI process, or the set of connected processes. In this case, errors before initialization

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 27

may cause a different set of MPI processes to abort than specified. After MPI initialization,
the initial error handler is associated with MPI_COMM_WORLD, MPI_COMM_SELF, and the
communicator returned by MPI_COMM_GET_PARENT (if any).

Advice to implementors. Some failures may leave MPI in an undefined state, or raise
an error before the error handling capabilities are fully operational, in which cases
the implementation may be incapable of providing the desired error handling behav-
ior. Of note, in some implementations, the notion of an MPI process is not clearly
established in the early stages of MPI initialization (for example, when the implemen-
tation considers threads that called MPI_INIT as independent MPI processes); in this
case, before MPI is initialized, the MPI_ERRORS_ABORT error handler may abort what
would have become multiple MPI processes.

When a failure occurs during MPI initialization, the implementation may decide to
return MPI_SUCCESS from the MPI initialization function instead of raising an error.
It is recommended that an implementation masks an initialization error only when it
expects that later MPI calls will result in well specified behavior (i.e., barring addi-
tional failures, either the outcome of any call will be correct, or the call will raise an
appropriate error). For example, it may be difficult for an implementation to avoid
unspecified behavior when the group of MPI_COMM_WORLD does not contain the same
set of MPI processes at all members of the communicator, or if the communicator re-
turned from MPI_COMM_GET_PARENT was not initialized correctly. (End of advice
to implementors.)

While MPI is initialized, the application can access information about the execution
environment by querying the predefined info object MPI_INFO_ENV. The following keys are
predefined for this object, corresponding to the arguments of MPI_COMM_SPAWN or of
mpiexec:

command Name of program executed.

argv Space separated arguments to command.

maxprocs Maximum number of MPI processes to start.

mpi_initial_errhandler Name of the initial errhandler.

soft Allowed values for number of processors.

host Hostname.

arch Architecture name.

wdir Working directory of the MPI process.

file Value is the name of a file in which additional information is specified.

thread_level Requested level of thread support, if requested before the program started exe-
cution.

Note that all values are strings. Thus, the maximum number of processes is represented
by a string such as “1024” and the requested level is represented by a string such as
“MPI_THREAD_SINGLE”.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

The info object MPI_INFO_ENV need not contain a (key,value) pair for each of these
predefined keys; the set of (key,value) pairs provided is implementation-dependent. Imple-
mentations may provide additional, implementation specific, (key,value) pairs.

In case where the MPI processes were started with MPI_COMM_SPAWN_MULTIPLE
or, equivalently, with a startup mechanism that supports multiple process specifications,
then the values stored in the info object MPI_INFO_ENV at a process are those values that
affect the local MPI process.

Example 8.4 If MPI is started with a call to

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

Then the first 5 processes will have have in their MPI_INFO_ENV object the pairs (command,

ocean), (maxprocs, 5), and (arch, sun). The next 10 processes will have in MPI_INFO_ENV

(command, atmos), (maxprocs, 10), and (arch, rs6000)

Advice to users. The values passed in MPI_INFO_ENV are the values of the arguments
passed to the mechanism that started the MPI execution — not the actual value
provided. Thus, the value associated with maxprocs is the number of MPI processes
requested; it can be larger than the actual number of processes obtained, if the soft

option was used. (End of advice to users.)

Advice to implementors. High-quality implementations will provide a (key,value) pair
for each parameter that can be passed to the command that starts an MPI program.
(End of advice to implementors.)

MPI_FINALIZE()

int MPI_Finalize(void)

MPI_Finalize(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FINALIZE(IERROR)

INTEGER IERROR

This routine cleans up all MPI state. If an MPI program terminates normally (i.e.,
not due to a call to MPI_ABORT or an unrecoverable error) then each process must call
MPI_FINALIZE before it exits.

Before an MPI process invokes MPI_FINALIZE, the process must perform all MPI calls
needed to complete its involvement in MPI communications: It must locally complete all
MPI operations that it initiated and must execute matching calls needed to complete MPI
communications initiated by other processes. For example, if the process executed a non-
blocking send, it must eventually call MPI_WAIT, MPI_TEST, MPI_REQUEST_FREE, or
any derived function; if the process is the target of a send, then it must post the matching
receive; if it is part of a group executing a collective operation, then it must have completed
its participation in the operation.

The call to MPI_FINALIZE does not free objects created by MPI calls; these objects are
freed using MPI_XXX_FREE calls.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 29

over the union of all processes that have been and continue to be connected, as explained
in Section 10.5.4.

The following examples illustrates these rules

Example 8.5 The following code is correct

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Example 8.6 Without a matching receive, the program is erroneous

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();

Example 8.7 This program is correct: Process 0 calls MPI_Finalize after it has executed
the MPI calls that complete the send operation. Likewise, process 1 executes the MPI call
that completes the matching receive operation before it calls MPI_Finalize.

Process 0 Proces 1

-------- --------

MPI_Init(); MPI_Init();

MPI_Isend(dest=1); MPI_Recv(src=0);

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 8.8 This program is correct. The attached buffer is a resource allocated by the
user, not by MPI; it is available to the user after MPI is finalized.

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

buffer = malloc(1000000); MPI_Recv(src=0);

MPI_Buffer_attach(); MPI_Finalize();

MPI_Send(dest=1)); exit();

MPI_Finalize();

free(buffer);

exit();

Example 8.9 This program is correct. The cancel operation must succeed, since the
send cannot complete normally. The wait operation, after the call to MPI_Cancel, is local
— no matching MPI call is required on process 1. Cancelling a send request by calling
MPI_CANCEL is deprecated.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Process 0 Process 1

--------- ---------

MPI_Issend(dest=1); MPI_Finalize();

MPI_Cancel();

MPI_Wait();

MPI_Finalize();

Advice to implementors. Even though a process has executed all MPI calls needed to
complete the communications it is involved with, such communication may not yet be
completed from the viewpoint of the underlying MPI system. For example, a blocking
send may have returned, even though the data is still buffered at the sender in an MPI
buffer; an MPI process may receive a cancel request for a message it has completed
receiving. The MPI implementation must ensure that a process has completed any
involvement in MPI communication before MPI_FINALIZE returns. Thus, if a process
exits after the call to MPI_FINALIZE, this will not cause an ongoing communication
to fail. The MPI implementation should also complete freeing all objects marked for
deletion by MPI calls that freed them. (End of advice to implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called,
except for MPI_GET_VERSION, MPI_GET_LIBRARY_VERSION, MPI_INITIALIZED,
MPI_FINALIZED, MPI_ERROR_CLASS, MPI_ERROR_STRING, and any function with the
prefix MPI_T_ (within the constraints for functions with this prefix listed in Section 14.3.4).

Failures may disrupt MPI operations during and after MPI finalization. A high quality
implementation shall not deadlock in MPI finalization, even in the presence of failures. The
normal rules for MPI error handling continue to apply. After MPI_COMM_SELF has been
“freed” (see 8.7.1), errors that are not associated with a communicator, window, or file raise
the initial error handler (set during the launch operation, see 10.3.4).

Although it is not required that all processes return from MPI_FINALIZE, it is required
that, when it has not failed or aborted, at least the MPI process that was assigned rank 0
in MPI_COMM_WORLD returns, so that users can know that the MPI portion of the com-
putation is over. In addition, in a POSIX environment, users may desire to supply an exit
code for each process that returns from MPI_FINALIZE.

Note that a failure may terminate the MPI process that was assigned rank 0 in
MPI_COMM_WORLD, in which case it is possible that no MPI process returns from
MPI_FINALIZE.

Advice to users. Applications that handle errors are encouraged to implement all
rank-specific code before the call to MPI_FINALIZE. In Example 8.10 below, the pro-
cess with rank 0 in MPI_COMM_WORLD may have been terminated before, during,
or after the call to MPI_FINALIZE, possibly leading to the code after MPI_FINALIZE
never being executed. (End of advice to users.)

Example 8.10 The following illustrates the use of requiring that at least one process
return and that it be known that process 0 is one of the processes that return. One wants
code like the following to work no matter how many processes return.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 31

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

...

MPI_Finalize();

if (myrank == 0) {

resultfile = fopen("outfile", "w");

dump_results(resultfile);

fclose(resultfile);

}

exit(0);

MPI_INITIALIZED(flag)

OUT flag Flag is true if MPI_INIT has been called and false
otherwise.

int MPI_Initialized(int *flag)

MPI_Initialized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INITIALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

This routine may be used to determine whether MPI_INIT has been called.
MPI_INITIALIZED returns true if the calling process has called MPI_INIT. Whether
MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. It is one
of the few routines that may be called before MPI_INIT is called. This function must always
be thread-safe, as defined in Section 12.4.

MPI_ABORT(comm, errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_Abort(comm, errorcode, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ABORT(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

code. However, a Unix or POSIX environment should handle this as a return errorcode

from the main program.
It may not be possible for an MPI implementation to abort only the processes repre-

sented by comm if this is a subset of the processes. In this case, the MPI implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted, or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.

Advice to implementors. After aborting a subset of processes, a high quality im-
plementation should be able to provide error handling for communicators, windows,
and files involving both aborted and non-aborted processes. As an example, if the
user changes the error handler for MPI_COMM_WORLD to MPI_ERRORS_RETURN or a
custom error handler, when a subset of MPI_COMM_WORLD is aborted, the remaining
processes in MPI_COMM_WORLD should be able to continue communicating with each
other and receive appropriate error codes when attempting communication with an
aborted process. (End of advice to implementors.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

8.7.1 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when an MPI process
finishes. For example, a routine may do initializations that are useful until the MPI job (or
that part of the job that being terminated in the case of dynamically created processes) is
finished. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF

with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent
of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function
to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that
they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then
no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts
of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any
of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the
actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.8. PORTABLE MPI PROCESS STARTUP 33

8.7.2 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do
this cleanly, it needs to know if MPI is active. In MPI the function MPI_INITIALIZED was
provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
finalized. Once MPI has been finalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI_FINALIZED(flag)

OUT flag true if MPI was finalized (logical)

int MPI_Finalized(int *flag)

MPI_Finalized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

This routine returns true if MPI_FINALIZE has completed. It is valid to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE. This function must always be
thread-safe, as defined in Section 12.4.

Advice to users. MPI is “active” and it is thus safe to call MPI functions if MPI_INIT
has completed and MPI_FINALIZE has not completed. If a library has no other
way of knowing whether MPI is active or not, then it can use MPI_INITIALIZED and
MPI_FINALIZED to determine this. For example, MPI is “active” in callback functions
that are invoked during MPI_FINALIZE. (End of advice to users.)

8.8 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the “standard” command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI specifies mpiexec.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI_COMM_WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI_COMM_SPAWN (See Section 10.3.4).

Analogous to MPI_COMM_SPAWN, we have

mpiexec -n <maxprocs>

-soft < >

-host < >

-arch < >

-wdir < >

-path < >

-file < >

-initial-errhandler < >

...

<command line>

for the case where a single command line for the application program and its arguments
will suffice. See Section 10.3.4 for the meanings of these arguments. For the case
corresponding to MPI_COMM_SPAWN_MULTIPLE there are two possible formats:

Form A:

mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }

As with MPI_COMM_SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be specified at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument
to MPI_COMM_SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, file-based form is allowed:

Form B:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.8. PORTABLE MPI PROCESS STARTUP 35

mpiexec -configfile <filename>

where the lines of <filename> are of the form separated by the colons in Form A.
Lines beginning with ‘#’ are comments, and lines may be continued by terminating
the partial line with ‘\’.

Example 8.11 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 8.12 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

Example 8.13 Start three copies of the same program with different command-line
arguments:

mpiexec myprog infile1 : myprog infile2 : myprog infile3

Example 8.14 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order specified.

Example 8.15 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s (Form B):

mpiexec -configfile myfile

where myfile contains

-n 5 -arch sun ocean

-n 10 -arch rs6000 atmos

(End of advice to implementors.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

CONST:(arch, rs6000), 28
CONST:(arch, sun), 28
CONST:(command, atmos), 28
CONST:(command, ocean), 28
CONST:(maxprocs, 10), 28
CONST:(maxprocs, 5), 28
CONST:XXX, 11
CONST:“1024”, 27
CONST:“MPI_THREAD_SINGLE”, 27
CONST:arch, 27
CONST:argv, 27
CONST:CHARACTER*(*), 18
CONST:COMM, 11
CONST:command, 27
CONST:errorcode, 17, 18
CONST:FILE, 11
CONST:file, 27
CONST:host, 27
CONST:IERROR, 26
CONST:LASTCODE, 18
CONST:maxprocs, 27, 28
CONST:MPI_ANY_SOURCE, 3
CONST:MPI_COMM_SELF, 10, 26, 27, 30,

32
CONST:MPI_COMM_WORLD, 2–4, 13, 22,

27, 28, 30, 32, 34
CONST:MPI_ERR_. . . , 18
CONST:MPI_ERR_ACCESS, 20
CONST:MPI_ERR_AMODE, 20
CONST:MPI_ERR_ARG, 19
CONST:MPI_ERR_ASSERT, 19
CONST:MPI_ERR_BAD_FILE, 20
CONST:MPI_ERR_BASE, 8, 19
CONST:MPI_ERR_BUFFER, 19
CONST:MPI_ERR_COMM, 19
CONST:MPI_ERR_CONVERSION, 20
CONST:MPI_ERR_COUNT, 19
CONST:MPI_ERR_DIMS, 19
CONST:MPI_ERR_DISP, 19
CONST:MPI_ERR_DUP_DATAREP, 20

CONST:MPI_ERR_FILE, 20
CONST:MPI_ERR_FILE_EXISTS, 20
CONST:MPI_ERR_FILE_IN_USE, 20
CONST:MPI_ERR_GROUP, 19
CONST:MPI_ERR_IN_STATUS, 12, 19
CONST:MPI_ERR_INFO, 19
CONST:MPI_ERR_INFO_KEY, 19
CONST:MPI_ERR_INFO_NOKEY, 19
CONST:MPI_ERR_INFO_VALUE, 19
CONST:MPI_ERR_INTERN, 11, 19
CONST:MPI_ERR_IO, 20
CONST:MPI_ERR_KEYVAL, 19
CONST:MPI_ERR_LASTCODE, 18, 20, 22,

23
CONST:MPI_ERR_LOCKTYPE, 19
CONST:MPI_ERR_NAME, 19
CONST:MPI_ERR_NO_MEM, 8, 19
CONST:MPI_ERR_NO_SPACE, 20
CONST:MPI_ERR_NO_SUCH_FILE, 20
CONST:MPI_ERR_NOT_SAME, 20
CONST:MPI_ERR_OP, 19
CONST:MPI_ERR_OTHER, 18, 19
CONST:MPI_ERR_PENDING, 19
CONST:MPI_ERR_PORT, 19
CONST:MPI_ERR_QUOTA, 20
CONST:MPI_ERR_RANK, 19
CONST:MPI_ERR_READ_ONLY, 20
CONST:MPI_ERR_REQUEST, 19
CONST:MPI_ERR_RMA_ATTACH, 20
CONST:MPI_ERR_RMA_CONFLICT, 19
CONST:MPI_ERR_RMA_FLAVOR, 20
CONST:MPI_ERR_RMA_RANGE, 20
CONST:MPI_ERR_RMA_SHARED, 20
CONST:MPI_ERR_RMA_SYNC, 19
CONST:MPI_ERR_ROOT, 19
CONST:MPI_ERR_SERVICE, 19
CONST:MPI_ERR_SIZE, 19
CONST:MPI_ERR_SPAWN, 19
CONST:MPI_ERR_TAG, 19
CONST:MPI_ERR_TOPOLOGY, 19

36

INDEX 37

CONST:MPI_ERR_TRUNCATE, 19
CONST:MPI_ERR_TYPE, 19
CONST:MPI_ERR_UNKNOWN, 18, 19
CONST:MPI_ERR_UNSUPPORTED_DATAREP,

20
CONST:MPI_ERR_UNSUPPORTED_OPERATION,

20
CONST:MPI_ERR_WIN, 19
CONST:MPI_Errhandler, 12, 13–17
CONST:MPI_ERRHANDLER_NULL, 17
CONST:MPI_ERRORS_ABORT, 10, 26, 27
CONST:MPI_ERRORS_ARE_FATAL, 10, 11,

24
CONST:MPI_ERRORS_RETURN, 10, 11,

24, 32
CONST:MPI_File, 15, 16, 24
CONST:MPI_HOST, 3
CONST:mpi_hw_res_i_alias_k, 5, 6
CONST:mpi_hw_res_i_naliases, 5, 6
CONST:mpi_hw_res_i_occupied, 6
CONST:mpi_hw_res_i_type, 5, 6
CONST:mpi_hw_res_j_type, 5, 6
CONST:mpi_hw_res_i_naliases, 5, 6
CONST:mpi_hw_res_nresources, 5, 6
CONST:mpi_hw_subdomain_type, 7
CONST:MPI_Info, 7
CONST:MPI_INFO_ENV, 27, 28
CONST:mpi_initial_errhandler, 26, 27
CONST:MPI_IO, 3
CONST:MPI_LASTUSEDCODE, 22
CONST:MPI_MAX_ERROR_STRING, 17,

23
CONST:MPI_MAX_INFO_KEY, 19
CONST:MPI_MAX_INFO_VAL, 19
CONST:MPI_MAX_LIBRARY_VERSION_STRING,

2
CONST:MPI_MAX_PROCESSOR_NAME, 4,

5
CONST:MPI_PROC_NULL, 3
CONST:MPI_SUBVERSION, 2
CONST:MPI_SUCCESS, 18, 19, 23, 24, 27
CONST:MPI_TAG_UB, 3
CONST:MPI_VERSION, 2
CONST:MPI_Win, 14, 15, 23
CONST:MPI_WTIME_IS_GLOBAL, 3, 4, 25
CONST:PRINT, 18
CONST:soft, 27, 28
CONST:string, 17

CONST:thread_level, 27
CONST:true, 6
CONST:void*, 8
CONST:wdir, 27
CONST:WIN, 11

EXAMPLES:MPI_ALLOC_MEM, 9
EXAMPLES:MPI_Alloc_mem, 9
EXAMPLES:MPI_Barrier, 29
EXAMPLES:MPI_Buffer_attach, 29
EXAMPLES:MPI_Cancel, 29
EXAMPLES:MPI_Finalize, 29, 30
EXAMPLES:MPI_FREE_MEM, 9
EXAMPLES:MPI_INFO_ENV, 28
EXAMPLES:MPI_Iprobe, 29
EXAMPLES:MPI_Request_free, 29
EXAMPLES:MPI_Test_cancelled, 29
EXAMPLES:mpiexec, 28, 35

MPI_ABORT, 10, 26, 28
MPI_ABORT(comm, errorcode), 31
MPI_ADD_ERROR_CLASS, 21
MPI_ADD_ERROR_CLASS(errorclass), 21
MPI_ADD_ERROR_CODE(errorclass, error-

code), 22
MPI_ADD_ERROR_STRING, 23
MPI_ADD_ERROR_STRING(errorcode, string),

22
MPI_ALLOC_MEM, 8, 9, 19
MPI_ALLOC_MEM(size, info, baseptr), 7
MPI_ALLOC_MEM_CPTR, 8
MPI_CANCEL, 29
MPI_COMM_CALL_ERRHANDLER, 24
MPI_COMM_CALL_ERRHANDLER(comm,

errorcode), 23
MPI_COMM_CONNECT, 19
MPI_COMM_CREATE_ERRHANDLER, 11–

13
MPI_COMM_CREATE_ERRHANDLER(comm_errhandler_fn,

errhandler), 12
MPI_COMM_FREE, 28, 32
MPI_COMM_GET_ATTR, 2
MPI_COMM_GET_ERRHANDLER, 11
MPI_COMM_GET_ERRHANDLER(comm,

errhandler), 13
MPI_COMM_GET_PARENT, 27
MPI_COMM_GROUP, 11
MPI_COMM_SET_ERRHANDLER, 11

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 INDEX

MPI_COMM_SET_ERRHANDLER(comm, er-
rhandler), 13

MPI_COMM_SPAWN, 26, 27, 34
MPI_COMM_SPAWN_MULTIPLE, 26, 28,

34
MPI_COMM_SPLIT_TYPE, 7
MPI_ERRHANDLER_FREE, 11, 28
MPI_ERRHANDLER_FREE(errhandler), 17
MPI_ERROR_CLASS, 18, 21, 26, 30
MPI_ERROR_CLASS(errorcode, errorclass),

18
MPI_ERROR_STRING, 17, 18, 21, 23, 26,

30
MPI_ERROR_STRING(errorcode, string, re-

sultlen), 17
MPI_FILE_CALL_ERRHANDLER, 24
MPI_FILE_CALL_ERRHANDLER(fh, error-

code), 24
MPI_FILE_CREATE_ERRHANDLER, 11,

12, 16
MPI_FILE_CREATE_ERRHANDLER(file_errhandler_fn,

errhandler), 15
MPI_FILE_GET_ERRHANDLER, 11
MPI_FILE_GET_ERRHANDLER(file, errhan-

dler), 16
MPI_FILE_OPEN, 20
MPI_FILE_SET_ERRHANDLER, 11
MPI_FILE_SET_ERRHANDLER(file, errhan-

dler), 16
MPI_FILE_SET_VIEW, 20
MPI_FINALIZE, 2, 3, 10, 28–33
MPI_FINALIZE(), 28
MPI_FINALIZED, 26, 30, 32, 33
MPI_FINALIZED(flag), 33
MPI_FREE_MEM, 8, 9, 19
MPI_FREE_MEM(base), 8
MPI_GET_HW_SUBDOMAIN_TYPES(comm,

hw_info), 6
MPI_GET_HW_SUBDOMAIN_TYPES(hw_info),

5
MPI_GET_LIBRARY_VERSION, 2, 26, 30
MPI_GET_LIBRARY_VERSION(version, re-

sultlen), 2
MPI_GET_PROCESSOR_NAME, 4, 5
MPI_GET_PROCESSOR_NAME(name, re-

sultlen), 4
MPI_GET_VERSION, 2, 26, 30
MPI_GET_VERSION(version, subversion), 1

MPI_GROUP_FREE, 11, 28
MPI_INFO_DELETE, 19
MPI_INFO_FREE, 6, 28
MPI_INIT, 2, 3, 10, 26, 27, 30–33
MPI_INIT(), 26
MPI_INIT_THREAD, 10, 26, 32
MPI_INITIALIZED, 26, 30, 31, 33
MPI_INITIALIZED(flag), 31
MPI_LOOKUP_NAME, 19
MPI_OP_FREE, 28
MPI_REGISTER_DATAREP, 20
MPI_REQUEST_FREE, 28
MPI_TEST, 28
MPI_TYPE_FREE, 28
MPI_UNPUBLISH_NAME, 19
MPI_WAIT, 28
MPI_WIN_CALL_ERRHANDLER, 24
MPI_WIN_CALL_ERRHANDLER(win, er-

rorcode), 23
MPI_WIN_CREATE_DYNAMIC, 20
MPI_WIN_CREATE_ERRHANDLER, 11, 12,

15
MPI_WIN_CREATE_ERRHANDLER(win_errhandler_fn,

errhandler), 14
MPI_WIN_FREE, 28
MPI_WIN_GET_ERRHANDLER, 11
MPI_WIN_GET_ERRHANDLER(win, errhan-

dler), 15
MPI_WIN_SET_ERRHANDLER, 11
MPI_WIN_SET_ERRHANDLER(win, errhan-

dler), 14
MPI_WTICK, 25
MPI_WTICK(), 25
MPI_WTIME, 4, 25
MPI_WTIME(), 25
mpiexec, 26, 27, 32, 33, 34
mpirun, 33

TERM:cancel, 29
TERM:clock synchronization, 4
TERM:environmental inquiries, 2
TERM:error handling, 10

error codes and classes, 18, 21
error handlers, 12, 21
finalize, 30
initial error handler, 10, 11, 26, 30
startup, 26

TERM:exception, 10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

INDEX 39

TERM:finished, 33
TERM:host rank, 3
TERM:IO rank, 3
TERM:memory

allocation, 7
TERM:mpiexec, 27, 32, 34
TERM:mpirun, 33
TERM:processor name, 4
TERM:startup, 25

portable, 33
TERM:tag values, 3
TERM:timers and synchronization, 24
TERM:user functions at process termination,

32
TERM:version inquiries, 1
TERMnoindex:MPI exception, 10
TERMnoindex:HOST, 3
TYPEDEF:MPI_Comm_errhandler_function(MPI_Comm

*, int *, . . .), 12
TYPEDEF:MPI_File_errhandler_function(MPI_File

*, int *, . . .), 15
TYPEDEF:MPI_Win_errhandler_function(MPI_Win

*, int *, . . .), 14

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	MPI Environmental Management
	Implementation Information
	Version Inquiries
	Environmental Inquiries

	Memory Allocation
	Error Handling
	Error Handlers for Communicators
	Error Handlers for Windows
	Error Handlers for Files
	Freeing Errorhandlers and Retrieving Error Strings

	Error Codes and Classes
	Error Classes, Error Codes, and Error Handlers
	Timers and Synchronization
	Startup
	Allowing User Functions at Process Termination
	Determining Whether MPI Has Finished

	Portable MPI Process Startup

