
Resilient applications using
MPI-level constructs

MPI Forum March 2-5, 2015
Aurélien Bouteiller

An API for diverse FT approaches

2

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
disabled by failures

ULFM MPI: Software Infrastructure
•  Implementation in Open

MPI available
•  ANL working on MPICH

implementation, close to release

• Very good performance
w/o failures
• Optimization and

performance
improvements of critical
recovery routines are
close to release
•  New revoke
•  New Agreement

3

operations. Its failure free performance is unchanged whether it is deployed

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

Performance w/failures

4

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
17

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

Processor fails
¾ Re-initialize substitute processor

with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth

epcc|cresta
Visual Identity Designs

CREST

Applications

4/11/2013 Fault Tolerance in MPI | EASC 2013 | sachs@cray.com
16

Long running computations
¾ Small errors can be eliminated

by numerical procedure

HemeLB HemeLB

Lattice Boltzmann Flow Solver
 University College London

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

RC: 0 RC: 1 RC: 2

AC: 0 AC: 1 AC: 2

CR: 0 CR: 1 CR: 2

number of cores

n
o
rm

a
liz

e
d
 e

f f
ic

ie
n
c
y
 (

%
)

• results on OPL cluster, max.
resolution of 213

• in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

• RC and AC also show best
scalability

• plots for 2 failures erratic
due to high overheads in �
version of ULFM MPI

JJ J • I II ⇥

RC=Replication/resampling
AC=Alternate recombination
CR=Checkpoint/Restart

OPL cluster node: 2x6
cores Xeon5670, QDR IB

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich

Tens of papers using ULFM
last year alone.

•  ORNL: Molecular Dynamic simulation, C/R in memory
with Shrink

•  UAB: transactional FT programming model
•  Tsukuba: Phalanx Master-worker framework
•  Georgia University: Wang Landau Polymer Freezing and

Collapse, localized subdomain C/R restart
•  Sandia, INRIA, Cray: PDE sparse solver
•  Cray: CREST miniapps, PDE solver Schwartz, PPStee

(Mesh, automotive), HemeLB (Lattice Boltzmann)
•  ETH Zurich: Monte-Carlo, on failure the global

communicator (that contains spares) is shrunk, ranks
reordered to recreate the same domain decomposition

•  …

ULFM MPI API
Part rationale, part examples

5

Summary of existing functions

• MPI_Comm_create_errhandler(errh,
errhandler_fct)
•  Declare an error handler with the MPI library

• MPI_Comm_set_errhandler(comm, errh)
•  Attach a declared error handler to a communicator
•  Newly created communicators inherits the error handler that is associated

with their parent
•  Predefined error handlers:

•  MPI_ERRORS_ARE_FATAL (default)
•  MPI_ERRORS_RETURN

6

Minimal Feature Set for FT MPI
•  Failure Notification
• Error Propagation
• Error Recovery

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and recovery.
ULFM is not a recovery strategy, but a minimalistic
set of building blocks for more complex recovery
strategies.

7

MPI

Checkpoint/
Restart

Uniform
Collectives Others

Application

FAILURE_ACK | REVOKE |
SHRINK | AGREE

Integration with existing mechanisms

• New error codes to deal with failures
•  MPI_ERROR_PROC_FAILED: report that the operation discovered a newly

dead process. Returned from all blocking function, and all completion
functions.

•  MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking
MPI_ANY_SOURCE potential sender has been discovered dead.

•  MPI_ERROR_REVOKED: a communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery
functions

•  Is that all?
•  Matching order (MPI_ANY_SOURCE), collective communications

8

Summary of new functions

•  MPI_Comm_failure_ack(comm)
•  Resumes matching for MPI_ANY_SOURCE

•  MPI_Comm_failure_get_acked(comm, &group)
•  Returns to the user the group of processes acknowledged to have failed

•  MPI_Comm_revoke(comm)
•  Non-collective, interrupts all operations on comm (future or active, at all

ranks) by raising MPI_ERR_REVOKED

•  MPI_Comm_shrink(comm, &newcomm)
•  Collective, creates a new communicator without failed processes (identical at all ranks)

•  MPI_Comm_agree(comm, &mask)
•  Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce)

N
otification

Propagation
Recovery

Failure Discovery
• Discovery of failures is local (different processes

may know of different failures)
• MPI_COMM_FAILURE_ACK(comm)
•  This local operation gives the users a way to acknowledge all locally notified

failures on comm. After the call, unmatched MPI_ANY_SOURCE receive
operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING
due to those acknowledged failures.

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp)
•  This local operation returns the group grp of processes, from the

communicator comm, that have been locally acknowledged as failed by
preceding calls to MPI_COMM_FAILURE_ACK.

• Employing the combination ack/get_acked, a
process can obtain the list of all failed ranks (as
seen from its local perspective)

10

Continuing through errors

11

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI
•  App can continue to communicate on the communicator
•  More errors may be raised if the op cannot complete (typically, most collective

ops are expected to fail), but p2p between non-failed processes works

•  In this Master-Worker example, we can continue
w/o recovery!
•  Master sees a worker failed
•  Resubmit the lost work unit onto another worker
•  Quietly continue

Resolving transitive dependencies

•  P1 fails
•  P2 raises an error and

wants to change
comm pattern to do
application recovery

•  but P3..Pn are stuck in
their posted recv

•  P2 can unlock them
with Revoke J

•  P3..Pn join P2 in the
recovery

12

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) {
 MPI_Comm_revoke(comm);
 recovery(comm);
 }
}
ft_transitive_deps(void) {
 for(i=0; i<nbrecv; i++) {
 if(myrank>0) MPI_Irecv(buff, count, datatype,
 myrank-1, tag, comm, &req);
 if(myrank<n) MPI_Send(buff2, count, datatype,
 myrank+1, tag, comm, &req);
 }
}

Errors and Collective Operations

• Exceptions are raised only at ranks where the
Bcast couldn’t succeed (lax consistency)
•  In a tree-based Bcast, only the subtree under the failed process sees the

failure
•  Other ranks succeed and proceed to the next Bcast
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and
forces an exception (and triggers recovery) at all ranks

13

proc_failed_err_handler(MPI_Comm comm, int err) {
 if(err == MPI_ERR_PROC_FAILED ||
 err == MPI_ERR_REVOKED) recovery(comm);
}

deadlocking_collectives(void) {
 for(i=0; i<nbrecv; i++) {
 MPI_Bcast(buff, count, datatype, 0, comm);
 }
}

Full Recovery

• Restores full communication capability (all
collective ops, etc).
• MPI_COMM_SHRINK(comm, newcomm)
•  Creates a new communicator excluding failed processes
•  New failures are absorbed during the operation
•  The communicator can be restored to full size with MPI_COMM_SPAWN

14

P1

P2

P3

Pn
B

cast

B
cast

Shrink

B
cast

Spaw
n

OPEN MPI IMPLEMENTATION UPDATE

Collective and p2p
•  Systematic verification of

correct behavior for
“tuned” collective module
under failure cases

•  Backport of latest trunk
“tuned” collective
component completed

•  Backport of latest “basic”
collective module in
progress

•  Vader BTL (shared
memory transport) from
trunk importation: in
progress (main benefit is
better support for
xpmem)

16

TI
M

E
(u

s)

MESSAGE SIZE (Bytes)

IMB AllReduce over ULFM (Darter, np=128)
bynode, vader/ugni, coll tuned)

ompi-trunk (1.9 series, coll ml)
ulfm (w/o ft)
ulfm (w/ ft)

 10

 100

 1000

 10000

 100000

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

Evaluating Revoke Cost

•  Two duplicate of MPI_COMM_WORLD: blue, green
•  On the blue communicator:
•  Repeat allreduce (measure baseline time)
•  At some iteration, one rank revokes the blue communicator
•  Measure the time it takes for the last allreduce to be revoked at all ranks

•  Immediately after, on the green communicator
•  Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)
•  Measure the time it takes for the first, second, third, allreduce, until the noise generated by background

revoke cannot be observed

17

Al
lR

ed
uc

e
(re

vo
ke

d)

Al
lR

ed
uc

e
(1

st

po
st

 re
vo

ke
)

Al
lR

ed
uc

e
(b

ef
or

e
re

vo
ke

)

Al
lR

ed
uc

e
(b

ef
or

e
re

vo
ke

)

One rank Revokes;
Revoke echoes from other ranks

Al
lR

ed
uc

e
(2

nd

po
st

 re
vo

ke
)

Al
lR

ed
uc

e
(3

rd

po
st

 re
vo

ke
)

1. The cost of Revoke at
the initial caller is
essentially 0 (immediate
operation, completes in
the background)
2. But, even after a
Revoke has delivered to
all ranks, the “revoke
tokens” are still
circulating on the network

Cost of Revoke
•  Propagation time for

Revoke messages ~=
small message
allreduce latency
•  After the revoke has

propagated, noise
continue for another
small message
allreduce latency
•  Only the first

allreduce is impacted

18

TI
M

E
(m

s)

MESSAGE SIZE (Bytes)

Revoke Time and Perturbation in Allreduce (np=128, IB20G)

Fault Free Allreduce
Fault Free [Min:Avg+Standard Dev.]
Revoked Allreduce
1st post-revoke Allreduce
1st post-revoke [Min:Avg+Standard Dev]
2nd post-revoke Allreduce
3rd post-revoke Allreduce

 0.1

 1

 10

 100

16 64 256 1K 4K 16K 64K 256K 1M 4M

Cost of Revoke (Darter, 4k cores)

Same story at
scale on Darter:
 the noise of the
agreement is
invisible for as
small as 512 msg
size.

19

��
�
��
��
��

��������������������

���

��������������������
����������������������������������
�����������������
�������������������������
��������������������������������������
�������������������������
�������������������������

�����

����

��

���

�� ��� �� �� ���

New Agreement

20

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 110
 120

D
u
ra

tio
n
 o

f
a
 s

in
g
le

 a
g
re

e
m

e
n
t
(s

)

Number of ranks

R
ef

er
en

ce
 A

gr
ee

m
en

t

 0

 0.0002

 0.0004

 0.0006

 0.0008

 0.001

 0.0012

 0.0014

 10
 20

 30
 40

 50
 60

 70
 80

 90
 100

 110
 120

D
u
ra

tio
n
 o

f
a
 s

in
g
le

 a
g
re

e
m

e
n
t
(s

)

Number of ranks

Tw
o

Pha
se

 C
om

m
it
Agr

ee
m

en
t

Optimized Agreement

New Agreement with logarithmic complexity

Will resolve previously reported bad performance at scale in
MPI_Comm_shrink J

Fault Tolerant App performance

•  In previous implementation, Agree would
dominate

21

MTBF (second!)

RDI2

4. Recovering from high-frequency failures

Conclusions:
•  Online recovery allows the usage of in-memory

checkpointing, O(0.1s)
•  Efficient recovery from high frequency node

failures, as exascale compels
•  With failures injected every 189, 94 and 47

seconds, the total job run-time penalty is 10%,
15% and 31%, respectively

•  Note that current production runs’ fault
tolerance cost is 31%!

•  This can dramatically improve by optimizing
ULFM shrink

Agreement performance at scale

22

��

���

����

����

����

����

����

����� ����� ����� ����� ����� �����

��

��

���

�������������
�����������������
�������������������

FT RMA ONGOING WORK AND
DIRECTIONS

23

Post failure RMA Semantic
•  March 2014:
•  A failure during an RMA operation damages only

the memory specifically targeted by remote write
operations

•  Considered too strong consistency, possibly hard
to implement with hypothetical pathological
hardware

•  September/December 2014
•  A failure during an RMA operation damages all

memory exposed by the window at all ranks
•  Considered too hard to used, limited usefulness

•  New proposition (thanks Jeff
Hammond)
•  A failure during an RMA operation damages all

memory exposed by the window at a rank that has
been the target of a remote write (since the last
successful “epoch changing” operation

•  The goal is that data exposed through RMA do not
become corrupt even when we do “double
buffering” or similar techniques where the data/
checkpoint is “read only” during the epoch.

Corrupt Safe Safe

put

Failed

Corrupt

put

Failed

Safe Safe Safe

put

Failed

Corrupt Corrupt

Corrupt

RMA consistency, side cases
•  Memory exposed by

multiple windows
become corrupted in
all windows where it
is exposed (even
though no errors
may be raised in this
window)

•  True shared memory
can become
corrupted at ranks
that have not failed
in the window
•  It should remain “accessible/

addressable”, it is
implementation’s business to
make it so.

25

Dead Corrupt Safe

put

W1: no dead process,
memory corrupted through
exposure in W2

W2: contains a dead process, put
corrupts the target

W3: true shared memory:
no put, but true sharing
with a dead => memory
corrupted

Tentative text
•  \par When an operation on a window raises an exception related to
•  -process failure, the state of all data held in memory exposed
•  -by that window becomes undefined at all ranks.
•  +process failure, the state of all data held in memory exposed by that
•  +window becomes undefined at all ranks for which a one-sided
•  +communication operation could have modified local data (an origin in
•  +a remote read operation or a target in a remote write or accumulate operation),

and the
•  +operation completion has not been guaranteed by a successful
•  +synchronization.
• 
•  \begin{users}
•  A high quality implementation may be able to limit the scope of the exposed
•  - memory that becomes undefined (for example, only the memory that has been
•  - targeted by a remote write, or has been an origin in a remote read).
•  + memory that becomes undefined (for example, only the memory addresses that

have been
•  + targeted by a remote write, or have been an origin in a remote read).

26

Vengeance of the deads
•  Possible issue with stalled

(buffered?) RDMA
messages
•  P0 posts a RDMA send/put to P1
•  P0 dies
•  P1 detects P0 is dead, marks requests

as completed (in error), frees the
window, the target buffer, etc.

•  Stall RDMA message from P0 gets
delivered from network buffer, writes into
the memory of P1 with no warning when
it is not expected anymore

•  Scenario is possible but of
little practical relevance
•  Failure notification “faster” than RDMA

message, really?...
•  In most transports (ugni, ib, etc), it is

possible to remove the rdma key that
exposes the memory (so the stall
message is safely discarded)

•  K computer does not have this feature
(yet), but it is being integrated as we
speak (for security reasons, not for FT,
because letting people write everywhere
in your memory w/o checks is a bad idea
anyway)

•  Even if the memory registration key
cannot be removed from the hardware,
an implementation can still use timeouts
when clearing operations that are
potentially releasing memory targeted by
RDMA

27

Current position: the implementation must take care of it (either dropping the stall
packets, or waiting long enough before reporting a process dead so that all stall buffers
are guaranteed empty)

Want to participate?

• main forum ticket:
https://svn.mpi-forum.org/trac/mpi-forum-
web/attachment/ticket/323/
• Demand access to the standard draft

development repo (with discussions bug
tracking and milestone tickets, etc):
https://bitbucket.org/bosilca/mpi3ft
• Open MPI implementation repo

http://fault-tolerance.org

28

