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An API for diverse FT approaches  
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User Level Failure Mitigation: a set of MPI interface extensions to 
enable MPI programs to restore MPI communication capabilities 
disabled by failures 



ULFM MPI: Software Infrastructure 
•  Implementation in Open 

MPI available 
•  ANL working on MPICH 

implementation, close to release 

• Very good performance 
w/o failures 
• Optimization and 

performance 
improvements of critical 
recovery routines are 
close to release 
•  New revoke 
•  New Agreement 
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operations. Its failure free performance is unchanged whether it is deployed 

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes 
message test. The connectivity and bandwidth between rank 0 and rank 1 
are unaffected by failure handling activities at rank 2.
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HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
 

Processor fails 
¾ Re-initialize substitute processor 

with average mass flow, velocity 
from neighbors  
passable error in domain size and 
magnitude if real solution sufficiently smooth 
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Long running computations  
¾ Small errors can be eliminated 

by numerical procedure 

HemeLB HemeLB 

Lattice Boltzmann Flow Solver 
 University College London 
 

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability
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• results on OPL cluster, max.
resolution of 213

• in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

• RC and AC also show best
scalability

• plots for 2 failures erratic
due to high overheads in �
version of ULFM MPI
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RC=Replication/resampling 
AC=Alternate recombination 
CR=Checkpoint/Restart 

OPL cluster node: 2x6 
cores Xeon5670, QDR IB 

(a) failure-free (b) few failures (c) many failures

Figure 5. Results of the FT-MLMC implementation for three different failure scenarios.

In Fig. 5 we show three different results, the mean of the density ⇢ at t = 0.06s,
obtained by FT-MLMC. The result in Fig. 5(a) is computed failure-free. In Fig. 5(b) a
result is shown where 3 out of 46 processes where killed. Figure 5(c) shows the result of
a FT-MLMC run where 9 out of 46 processes where killed, among them both processes
dealing with levels 2, such that all samples of this level are missing. The deterioration of
the result is obvious.

In Fig. 6 several quantities of the FT-MLMC method for different MTBFs are pre-
sented. They are discussed in the next section. Figure 6(a) presents two measurements
for the “intermediate save” strategy. (The results for the “late save” strategy are similar.)
First, we show the percentage of processes failed during the computation. Second, the “at
least a failure” probability is shown which measures the fraction of FT-MLMC runs that
experience at least one failure. (All other FT-MLMC runs are failure-free.) Remember
that standard MPI crashes if a failure occurs.

The measurement of the FT-MLMC error versus MTBF is shown in Fig. 6(b). The
error of the failure-free ALSVID-UQ is shown at MTBF = 2 ·104 s, where the fault
tolerant strategies (“intermediate save” and “late save”) are of the same quality. For
MTBF > 200 s the error remains rather constant. This can be seen for MTBF < 200 s
where the error slightly grows. It explodes at MTBF < 40 s for the “late save” strategy,
and at MTBF < 20 s for the “intermediate save” strategy.

Figure 6(c) shows the measured wall-clock run-time for the two fault tolerant strate-
gies and the failure-free run. Between the two fault tolerant versions no significant dif-
ference is measured. At MTBF = 2 ·104 s we see the small overhead (around 5%) of
both fault tolerant runs, compared to the standard failure-free ALSVID-UQ implemen-
tation. For the fault tolerant versions the run-time remains approximately constant for
MTBF > 100 s. Then the run-time decreases.

Figure 6(d) presents two measurements for the “intermediate save” strategy. (The re-
sults for the “late save” strategy are similar.) The first measurement “all samples failed”
shows how often no samples at all could be computed, since too many processes failed.
Then no FT-MLMC result is computed, such that these runs are ignored in the error com-
putation of Fig. 6(b). The same holds for runs which crashed (indicated by “program
crashed”).

Credits: ETH Zurich 

Tens of papers using ULFM 
last year alone. 

•  ORNL: Molecular Dynamic simulation, C/R in memory 
with Shrink 

•  UAB: transactional FT programming model 
•  Tsukuba: Phalanx Master-worker framework 
•  Georgia University: Wang Landau Polymer Freezing and 

Collapse, localized subdomain C/R restart 
•  Sandia, INRIA, Cray: PDE sparse solver 
•  Cray: CREST miniapps, PDE solver Schwartz, PPStee 

(Mesh, automotive), HemeLB (Lattice Boltzmann) 
•  ETH Zurich: Monte-Carlo, on failure the global 

communicator (that contains spares) is shrunk, ranks 
reordered to recreate the same domain decomposition 

•  … 



ULFM MPI API 
Part rationale, part examples 
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Summary of existing functions 

• MPI_Comm_create_errhandler(errh, 
errhandler_fct) 
•  Declare an error handler with the MPI library 

• MPI_Comm_set_errhandler(comm, errh) 
•  Attach a declared error handler to a communicator 
•  Newly created communicators inherits the error handler that is associated 

with their parent 
•  Predefined error handlers:  

•  MPI_ERRORS_ARE_FATAL (default) 
•  MPI_ERRORS_RETURN 
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Minimal Feature Set for FT MPI 
•  Failure Notification 
• Error Propagation 
• Error Recovery 

Not all recovery strategies  
require all of these features,  
that’s why the interface splits  
notification, propagation and recovery. 
ULFM is not a recovery strategy, but a minimalistic 
set of building blocks for more complex recovery 
strategies. 
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Integration with existing mechanisms 

• New error codes to deal with failures 
•  MPI_ERROR_PROC_FAILED: report that the operation discovered a newly 

dead process. Returned from all blocking function, and all completion 
functions. 

•  MPI_ERROR_PROC_FAILED_PENDING: report that a non-blocking 
MPI_ANY_SOURCE potential sender has been discovered dead. 

•  MPI_ERROR_REVOKED: a communicator has been declared improper for 
further communications. All future communications on this communicator 
will raise the same error code, with the exception of a handful of recovery 
functions 

•  Is that all? 
•  Matching order (MPI_ANY_SOURCE), collective communications 

8 



Summary of new functions 

•  MPI_Comm_failure_ack(comm) 
•  Resumes matching for MPI_ANY_SOURCE 

•  MPI_Comm_failure_get_acked(comm, &group) 
•  Returns to the user the group of processes acknowledged to have failed 

•  MPI_Comm_revoke(comm) 
•  Non-collective, interrupts all operations on comm (future or active, at all 

ranks) by raising MPI_ERR_REVOKED 

•  MPI_Comm_shrink(comm, &newcomm) 
•  Collective, creates a new communicator without failed processes (identical at all ranks) 

•  MPI_Comm_agree(comm, &mask) 
•  Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce) 

N
otification 

Propagation 
Recovery 



Failure Discovery 
• Discovery of failures is local (different processes 

may know of different failures) 
• MPI_COMM_FAILURE_ACK(comm) 
•  This local operation gives the users a way to acknowledge all locally notified 

failures on comm. After the call, unmatched MPI_ANY_SOURCE receive 
operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING 
due to those acknowledged failures.  

• MPI_COMM_FAILURE_GET_ACKED(comm, &grp) 
•  This local operation returns the group grp of processes, from the 

communicator comm, that have been locally acknowledged as failed by 
preceding calls to MPI_COMM_FAILURE_ACK.  

• Employing the combination ack/get_acked, a 
process can obtain the list of all failed ranks (as 
seen from its local perspective) 
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Continuing through errors 
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Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

• Error notifications do not break MPI 
•  App can continue to communicate on the communicator 
•  More errors may be raised if the op cannot complete (typically, most collective 

ops are expected to fail), but p2p between non-failed processes works 

•  In this Master-Worker example, we can continue 
w/o recovery! 
•  Master sees a worker failed 
•  Resubmit the lost work unit onto another worker 
•  Quietly continue 



Resolving transitive dependencies 

•  P1 fails 
•  P2 raises an error and 

wants to change 
comm pattern  to do 
application recovery 

•  but P3..Pn are stuck in 
their posted recv 

•  P2 can unlock them 
with Revoke J 

•  P3..Pn join P2 in the 
recovery 
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Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED || 
     err == MPI_ERR_REVOKED ) { 
    MPI_Comm_revoke(comm); 
    recovery(comm); 
  } 
} 
ft_transitive_deps(void) { 
  for(i=0; i<nbrecv; i++) { 
    if(myrank>0) MPI_Irecv(buff, count, datatype, 
                           myrank-1, tag, comm, &req); 
    if(myrank<n) MPI_Send(buff2, count, datatype, 
                           myrank+1, tag, comm, &req); 
  } 
} 



Errors and Collective Operations 

• Exceptions are raised only at ranks where the 
Bcast couldn’t succeed (lax consistency) 
•  In a tree-based Bcast, only the subtree under the failed process sees the 

failure 
•  Other ranks succeed and proceed to the next Bcast 
•  Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted 

at other ranks => MPI_Comm_revoke(comm) interrupts unmatched Bcast and 
forces an exception (and triggers recovery) at all ranks 
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proc_failed_err_handler(MPI_Comm comm, int err) { 
  if(err == MPI_ERR_PROC_FAILED ||  
     err == MPI_ERR_REVOKED ) recovery(comm); 
} 
 
deadlocking_collectives(void) { 
  for(i=0; i<nbrecv; i++) { 
     MPI_Bcast(buff, count, datatype, 0, comm); 
  } 
} 



Full Recovery 

• Restores full communication capability (all 
collective ops, etc). 
• MPI_COMM_SHRINK(comm, newcomm) 
•  Creates a new communicator excluding failed processes 
•  New failures are absorbed during the operation 
•  The communicator can be restored to full size with MPI_COMM_SPAWN 
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OPEN MPI IMPLEMENTATION UPDATE 



Collective and p2p 
•  Systematic verification of 

correct behavior for 
“tuned” collective module 
under failure cases 

•  Backport of latest trunk 
“tuned” collective 
component completed 

•  Backport of latest “basic” 
collective module in 
progress 

•  Vader BTL (shared 
memory transport) from 
trunk importation: in 
progress (main benefit is 
better support for 
xpmem) 
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Evaluating Revoke Cost 

•  Two duplicate of MPI_COMM_WORLD: blue, green 
•  On the blue communicator: 
•  Repeat allreduce (measure baseline time) 
•  At some iteration, one rank revokes the blue communicator 
•  Measure the time it takes for the last allreduce to be revoked at all ranks 

•  Immediately after, on the green communicator 
•  Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors) 
•  Measure the time it takes for the first, second, third, allreduce, until the noise generated by background 

revoke cannot be observed 
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One rank Revokes; 
Revoke echoes from other ranks 
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1. The cost of Revoke at 
the initial caller is 
essentially 0 (immediate 
operation, completes in 
the background) 
2. But, even after a 
Revoke has delivered to 
all ranks, the “revoke 
tokens” are still 
circulating on the network  



Cost of Revoke 
•  Propagation time for 

Revoke messages ~= 
small message 
allreduce latency 
•  After the revoke has 

propagated, noise 
continue for another 
small message 
allreduce latency 
•  Only the first 

allreduce is impacted 
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Cost of Revoke (Darter, 4k cores) 

Same story at 
scale on Darter: 
 the noise of the 
agreement is 
invisible for as 
small as 512 msg 
size. 
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New Agreement 
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New Agreement with logarithmic complexity 
 
Will resolve previously reported bad performance at scale in 
MPI_Comm_shrink J 



Fault Tolerant App performance 

•  In previous implementation, Agree would 
dominate  

21 

MTBF (second!) 

RDI2 

4. Recovering from high-frequency failures 

Conclusions: 
•  Online recovery allows the usage of in-memory 

checkpointing, O(0.1s) 
•  Efficient recovery from high frequency node 

failures, as exascale compels 
•  With failures injected every 189, 94 and 47 

seconds, the total job run-time penalty is 10%, 
15% and 31%, respectively 

•  Note that current production runs’ fault 
tolerance cost is 31%! 

•  This can dramatically improve by optimizing 
ULFM shrink 



Agreement performance at scale 

22 

��

���

����

����

����

����

����

����� ����� ����� ����� ����� �����

��

��

���������������������������������������������������������������������

�������������
�����������������
�������������������



FT RMA ONGOING WORK AND  
DIRECTIONS 
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Post failure RMA Semantic 
•  March 2014: 
•  A failure during an RMA operation damages only 

the memory specifically targeted by remote write 
operations 

•  Considered too strong consistency, possibly hard 
to implement with hypothetical pathological 
hardware 

•  September/December 2014 
•  A failure during an RMA operation damages all 

memory exposed by the window at all ranks 
•  Considered too hard to used, limited usefulness 

•  New proposition (thanks Jeff 
Hammond) 
•  A failure during an RMA operation damages all 

memory exposed by the window at a rank that has 
been the target of a remote write (since the last 
successful “epoch changing” operation 

•  The goal is that data exposed through RMA do not 
become corrupt even when we do “double 
buffering” or similar techniques where the data/
checkpoint is “read only” during the epoch.  

Corrupt Safe Safe 

put 

Failed 

Corrupt 

put 

Failed 

Safe Safe Safe 

put 

Failed 

Corrupt Corrupt 

Corrupt 



RMA consistency, side cases 
•  Memory exposed by 

multiple windows 
become corrupted in 
all windows where it 
is exposed (even 
though no errors 
may be raised in this 
window) 

•  True shared memory 
can become 
corrupted at ranks 
that have not failed 
in the window  
•  It should remain “accessible/

addressable”, it is 
implementation’s business to 
make it so.  
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Dead Corrupt Safe 

put 

W1: no dead process, 
memory corrupted through  
exposure in W2 

W2: contains a dead process, put  
corrupts the target 

W3: true shared memory: 
no put, but true sharing 
with a dead => memory 
corrupted 



Tentative text 
•   \par When an operation on a window raises an exception related to 
•  -process failure, the state of all data held in memory exposed  
•  -by that window becomes undefined at all ranks. 
•  +process failure, the state of all data held in memory exposed by that 
•  +window becomes undefined at all ranks for which a one-sided 
•  +communication operation could have modified local data (an origin in 
•  +a remote read operation or a target in a remote write or accumulate operation), 

and the 
•  +operation completion has not been guaranteed by a successful 
•  +synchronization. 
•    
•   \begin{users} 
•       A high quality implementation may be able to limit the scope of the exposed 
•  -    memory that becomes undefined (for example, only the memory that has been 
•  -    targeted by a remote write, or has been an origin in a remote read). 
•  +    memory that becomes undefined (for example, only the memory addresses that 

have been 
•  +    targeted by a remote write, or have been an origin in a remote read). 
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Vengeance of the deads 
•  Possible issue with stalled 

(buffered?) RDMA 
messages 
•  P0 posts a RDMA send/put to P1 
•  P0 dies 
•  P1 detects P0 is dead, marks requests 

as completed (in error), frees the 
window, the target buffer, etc. 

•  Stall RDMA message from P0 gets 
delivered from network buffer, writes into 
the memory of P1 with no warning when 
it is not expected anymore 

•  Scenario is possible but of 
little practical relevance 
•  Failure notification “faster” than RDMA 

message, really?... 
•  In most transports (ugni, ib, etc), it is 

possible to remove the rdma key that 
exposes the memory (so the stall 
message is safely discarded) 

•  K computer does not have this feature 
(yet), but it is being integrated as we 
speak (for security reasons, not for FT, 
because letting people write everywhere 
in your memory w/o checks is a bad idea 
anyway)  

•  Even if the memory registration key 
cannot be removed from the hardware, 
an implementation can still use timeouts 
when clearing operations that are 
potentially releasing memory targeted by 
RDMA 

27 

Current position: the implementation must take care of it (either dropping the stall 
packets, or waiting long enough before reporting a process dead so that all stall buffers 
are guaranteed empty) 



Want to participate? 

• main forum ticket:
https://svn.mpi-forum.org/trac/mpi-forum-
web/attachment/ticket/323/ 
• Demand access to the standard draft 

development repo (with discussions bug 
tracking and milestone tickets, etc): 
https://bitbucket.org/bosilca/mpi3ft 
• Open MPI implementation repo 

http://fault-tolerance.org 
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