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An API for diverse FT approaches

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.
In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures
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Specification

Uncoordinated Checkpoint/Restart,
Transactional FT, Migration,
Replication, etc.
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User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
disabled by failures




ULFM MPI: Software Infrastructure
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e New revoke The failure of rank 3 is detected and managed by rank 2 during the 512 bytes

message test. The connectivity and bandwidth between rank 0 and rank 1
* NeW Agreement are unaffected by failure handling activities at rank 2.




Applications

Lattice Boltzmann Flow Solver
University College London

SO Credits: ETH Zurich
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Processor fails

> Re-initialize substitute processor
with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth
Long running computations

> Small errors can be eliminated
by numerical procedure

Figure 5. Results of the FI-MLMC implementation for three different failure scenarios.
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« UAB: transactional FT programming model A ACO P AC: 1 - -4 —AC:2
« Tsukuba: Phalanx Master-worker framework e

« Georgia University: Wang Landau Polymer Freezing and
Collapse, localized subdomain C/R restart

» Sandia, INRIA, Cray: PDE sparse solver
» Cray: CREST miniapps, PDE solver Schwartz, PPStee
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reordered to recreate the same domain decomposition
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Part rationale, part examples

ULFM MPI API




Summary of existing functions

« MPI_Comm_create_errhandler(errh,
errhandler_fct)

« Declare an error handler with the MPI library

« MPl_Comm_set_errhandler(comm, errh)

« Attach a declared error handler to a communicator

* Newly created communicators inherits the error handler that is associated
with their parent

* Predefined error handlers:
« MPI_ERRORS_ARE_FATAL (default)
« MPI_ERRORS_RETURN




Minimal Feature Set for FT MPI

 Failure Notification Application

 Error Propagation
CHECKPOINTY gnioenm

 Error Recovery Restart OUIETE

FAIEURETACKS FREVOKEH
SHRINKSFAGREE

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and recovery.

ULFM is not a recovery strategy, but a minimalistic
set of building blocks for more complex recovery
strategies.
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Integration with existing mechanisms

* New error codes to deal with failures
: report that the operation discovered a newly
dead process. Returned from all blocking function, and all completion

functions.
: report that a non-blocking

MPI_ANY_SOURCE potential sender has been discovered dead.

: @ communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery

functions

* Is that all?
« Matching order (MPI_ANY_SOURCE), collective communications
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- MPI_Comm_failure_ack(comm) z
+ Resumes matching for MPI_ANY_SOURCE C’é;’
« MPI_Comm_failure_get_acked(comm, &group) =
» Returns to the user the group of processes acknowledged to have failed S
- MPI_Comm_revoke(comm) 3
* Non-collective, interrupts all operations on comm (future or active, at all 2
ranks) by raising MPI_ERR_REVOKED )
=

- MPI_Comm_shrink(comm, &newcomm)
« Collective, creates a new communicator without failed processes (identical at all ranks) ?
« MPI_Comm_agree(comm, &mask) 2
» Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce) <




Failure Discovery

» Discovery of failures is local (different processes
may know of different failures)

(comm)

» This local operation gives the users a way to acknowledge all locally notified
failures on comm. After the call, unmatched MPI_ANY_SOURCE receive

operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING
due to those acknowledged failures.

(comm, &grp)

» This local operation returns the group grp of processes, from the
communicator comm, that have been locally acknowledged as failed by
preceding calls to MPI_COMM_FAILURE_ACK.

 Employing the combination ack/get_acked, a
process can obtain the list of all failed ranks (as
seen from its local perspective)




Continuing through errors

Recv (ANY)
Detected W1

Mm:v:i N\ 3 /7\/ N /\

Error notifications do not break MPI

» App can continue to communicate on the communicator

* More errors may be raised if the op cannot complete (typically, most collective
ops are expected to fail), but p2p between non-failed processes works

In this Master-Worker example, we can continue
W/0 recovery!

« Master sees a worker failed
« Resubmit the lost work unit onto another worker
* Quietly continue




Resolving transitive dependencies

Recv(P1): failure

SA& & W

WETNRENY

- P1 fails

« P2 raises an error and
wants to change
comm pattern to do
application recovery

« but P3..Pn are stuck in
their posted recv

P2 can unlock them
with Revoke ©

 P3..Pnjoin P2 in the
recovery




Errors and Collective Operations

proc_failed err_handler (MPI_Comm comm, 1int err) {
if(err == ||
err == ) recovery(comm) ;

}

deadlocking_collectives(void) {
for(i=0; 1i<nbrecv; i++) {
MPI_Bcast(buff, count, datatype, 0, comm);

}
}

« Exceptions are raised only at ranks where the
Bcast couldn’t succeed (lax consistency)

* In a tree-based Bcast, only the subtree under the failed process sees the
failure

« Other ranks succeed and proceed to the next Bcast

« Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted
at other ranks => (comm) interrupts unmatched Bcast and

forces an exception (and triggers recovery) at all ranks




Full Recovery

» Restores full communication capability (all
collective ops, etc).

« MPI_COMM_SHRINK(comm, newcomm)

« Creates a new communicator excluding failed processes
* New failures are absorbed during the operation
« The communicator can be restored to full size with MPI_COMM_SPAWN
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OPEN MPI IMPLEMENTATION UPDATE




Collective and p2p

IMB AllIReduce over ULFM (Darter, np=128)
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Evaluating Revoke Cost

One rank Revokes; } 1. The cost of Revoke at
Revoke echoes from other ranks the initial caller is
essentially O (immediate
operation, completes in
the background)

2. But, even after a
Revoke has delivered to
all ranks, the “revoke
tokens” are still
circulating on the network

» Two duplicate of MPI_COMM_WORLD: blue, green

e On the blue communicator:
* Repeat allreduce (measure baseline time)
« At some iteration, one rank revokes the blue communicator
« Measure the time it takes for the last allreduce to be revoked at all ranks

* Immediately after, on the green communicator

» Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)

» Measure the time it takes for the first, second, third, allreduce, until the noise generated by background
revoke cannot be observed
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Cost of Revoke

Revoke Time and Perturbation in Allreduce (np=128, IB20G)

__ Fault Free Allreduce ' ' ' D

Fault Free [Min:Avg+Standard Dev.]
Revoked Alireduce

1st post-revoke Allreduce

1st post-revoke [Min:Avg+Standard Dev]
2nd post-revoke Allreduce

3rd post-revoke Allreduce
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» Propagation time for
Revoke messages ~=
small message
allreduce latency

 After the revoke has
propagated, noise
continue for another
small message
allreduce latency

* Only the first
allreduce is impacted




Cost of Revoke (Darter, 4k cores)

Revoke Time and Perturbation in Allreduce (np=4096, Darter, Ugni)
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Same story at
scale on Darter:

the noise of the
agreement is
invisible for as
small as 512 msg
size.




Duration of a single agreement (s)
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Will resolve previously reported bad performance at scale in
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RUTGERS
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Production

Injected system MTBF (s)

4. Recovering from high-frequency failures
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Agreement performance at scale
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FT RMA ONGOING WORK AND
DIRECTIONS




Post failure RMA Semantic

« March 2014:

» Afailure during an RMA operation damages only
the memory specifically targeted by remote write
operations

» Considered too strong consistency, possibly hard pu
to implement with hypothetical pathological

hardware Safe Safe Safe
« September/December 2014
» Afailure during an RMA operation damages all
memory exposed by the window at all ranks
» Considered too hard to used, limited usefulness pu

« New proposition (thanks Jeff Corrupt  Corrupt  Corrupt

Hammond)

» Afailure during an RMA operation damages all
memory exposed by the window at a rank that has
been the target of a remote write (since the last
successful “epoch changing” operation

» The goal is that data exposed through RMA do not

become corrupt even when we do “double pu
buffering” or similar techniques where the data/

checkpoint is “read only” during the epoch.
Safe Safe Corrupt

Failed

Failed

Failed




RMA consistency, side cases

« Memory exposed by
W1: no dead process, W3: true shared memory: multiple windows

memory corrupted through no put, but true sharing b ted |
exposure in W2 with a dead => memory eCO_me corrupte _m
all windows where it

1 corru pted
IS exposed (even

l though no errors
put

may be raised in this
window)
Safe Corrupt Dead - True shared memory
\ , can become
Y corrupted at ranks
that have not failed
in the window

W2: contains a dead process, put
corrupts the target

It should remain “accessible/
addressable”, it is
implementation’s business to
make it so.




—
Tentative text

« \par When an operation on a window raises an exception related to

« -process failure, the state of all data held in memory exposed

« -by that window becomes undefined at all ranks.

« +process failure, the state of all data held in memory exposed by that
« +window becomes undefined at all ranks for which a one-sided

« +communication operation could have modified local data (an origin in

- +a remote read operation or a target in a remote write or accumulate operation),
and the

« +operation completion has not been guaranteed by a successful
« +synchronization.

« \begin{users}

. A high quality implementation may be able to limit the scope of the exposed

« - memory that becomes undefined (for example, only the memory that has been
« - targeted by a remote write, or has been an origin in a remote read).

« + memory that becomes undefined (for example, only the memory addresses that
have been

+ targeted by a remote write, or have been an origin in a remote read).

icL>or




Vengeance of the deads

e Possible issue with stalled
(buffered?) RDMA
messages

PO posts a RDMA send/put to P1

PO dies

P1 detects PO is dead, marks requests
as completed (in error), frees the
window, the target buffer, etc.

Stall RDMA message from PO gets
delivered from network buffer, writes into
the memory of P1 with no warning when
it is not expected anymore

« Scenario is possible but of
little practical relevance

Failure notification “faster” than RDMA

message, really?...

In most transports (ugni, ib, etc), it is
possible to remove the rdma key that
exposes the memory (so the stall
message is safely discarded)

K computer does not have this feature
(yet), but it is being integrated as we
speak (for security reasons, not for FT,
because letting people write everywhere
in your memory w/o checks is a bad idea
anyway)

Even if the memory registration key
cannot be removed from the hardware,
an implementation can still use timeouts
when clearing operations that are
potentially releasing memory targeted by
RDMA

Current position: the implementation must take care of it (either dropping the stall
packets, or waiting long enough before reporting a process dead so that all stall buffers

are guaranteed empty)




Want to participate?

 main forum ticket:

https://svn.mpi-forum.org/trac/ mpi-forum-
web/attachment/ticket/323/

 Demand access to the standard draft
development repo (with discussions bug
tracking and milestone tickets, etc):
https://bitbucket.org/bosilca/mpi3ft

* Open MPI implementation repo
http://fault-tolerance.org




