Resilient applications using
MPIl-level constructs

MPI| Forum March 2-5, 2015
Aurélien Bouteiller

icLor

INNOVATIVE

CUI\/IF’UTING LABORATORY
ue UNIVERSITY of TENNESSEE

An API for diverse FT approaches

Coordinated Checkpoint/Restart, Automatic, Naturally Fault Tolerant Applications, Master-Worker,
Compiler Assisted, User-driven Checkpointing, etc. Domain Decomposition, etc.
In-place restart (i.e., without disposing of non-failed processes) Application continues a simple communication pattern,
accelerates recovery, permits in-memory checkpoint ignoring failures
... >
Master -
Worker0
Worker1
! Worker2

ULFM MPI

Specification

Uncoordinated Checkpoint/Restart,
Transactional FT, Migration,
Replication, etc.

ULFM makes these approaches portable across MPI implementations ULFM allows for the deployment =~ == == === —— - — = >

e >T
of ultra-scalable, algorithm]
- ctr
specific FT techniques. E trailing matrix gr
{ | { |) & protection S
q M M _ § § update by =
— w e — - g § applying the §
gr 5 same 2
3 operations

User Level Failure Mitigation: a set of MPI interface extensions to
enable MPI programs to restore MPI communication capabilities
disabled by failures

ULFM MPI: Software Infrastructure

. |mp|eme_ntati0n in Open Performance w/failures
M P I ava I | a b | e ULFM Fault Tolerant MPI Performance with failures

. IMB Ping-pong between ranks 0 and 1 (IB20G)
« ANL working on MPICH]
implementation, close to release

Y
N

lOpen]MPI]
L. X FT Open MPI (w/failure at rank 3)

=y
-

 Very good performance ;: :5:2:; [0 v/ R B v
w/o failures 3.5, i}
» Optimization and i
performance NN ENA S

improvements of critical b o]
recove ry ro Uti n eS a re 1 ; 1; 64 2;6 1IK 4IK 16K 64K Z;GK 1‘M 47M
Close to release MESSAGE SIZE (Bytes)

e New revoke The failure of rank 3 is detected and managed by rank 2 during the 512 bytes

message test. The connectivity and bandwidth between rank 0 and rank 1
* NeW Agreement are unaffected by failure handling activities at rank 2.

Applications

Lattice Boltzmann Flow Solver
University College London

SO Credits: ETH Zurich

E(p) [kg/m?
20.0
17.5
15.0
12.5
10.0
7.5
5.0
2.5
0.0

(a) failure-free (b) few failures (c) many failures

mean of rho at t=0.06 mean of rho at t=0.06

20.0
17.5 17.5
15.0 15.0
12,5 125
10.0 10.0
7.5 7.5
5.0 5.0

2.5 2.5
0.0 0.0

20.0

Processor fails

> Re-initialize substitute processor
with average mass flow, velocity
from neighbors
passable error in domain size and
magnitude if real solution sufficiently smooth
Long running computations

> Small errors can be eliminated
by numerical procedure

Figure 5. Results of the FI-MLMC implementation for three different failure scenarios.

CRESTAN
P, reult ol WP EASC 2013 | sachs SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12
+ ORNL: Molecular Dynamic simulation, C/R in memory 12 Results: Scalability

with Shrink S—
« UAB: transactional FT programming model A ACO P AC: 1 - -4 —AC:2
« Tsukuba: Phalanx Master-worker framework e

« Georgia University: Wang Landau Polymer Freezing and
Collapse, localized subdomain C/R restart

» Sandia, INRIA, Cray: PDE sparse solver
» Cray: CREST miniapps, PDE solver Schwartz, PPStee

e results on OPL cluster, max.
resolution of 213

e in terms of absolute time,
CR is always more longer
(however, uses fewer pro-

cesses)
(Mesh, automotive), HemeLB (Lattice Boltzmann) RO airdl A 2las S BEG
« ETH Zurich: Monte-Carlo, on failure the global scalability

communicator (that contains spares) is shrunk, ranks
reordered to recreate the same domain decomposition

normalized efficiency (%)

e plots for 2 failures erratic
due to high overheads in
version of ULFM MPI

0 50 100 150 200 250 300 350 400

TenS Of pa perS USin ULFM number of cores OPL cluster node: 2x6

—— | t | g . RC=Replication/resampling el eame it Dbk 2
as year alone. AC=Alternate recombination

CR=Checkpoint/Restart e

Part rationale, part examples

ULFM MPI API

Summary of existing functions

« MPI_Comm_create_errhandler(errh,
errhandler_fct)

« Declare an error handler with the MPI library

« MPl_Comm_set_errhandler(comm, errh)

« Attach a declared error handler to a communicator

* Newly created communicators inherits the error handler that is associated
with their parent

* Predefined error handlers:
« MPI_ERRORS_ARE_FATAL (default)
« MPI_ERRORS_RETURN

Minimal Feature Set for FT MPI

 Failure Notification Application

 Error Propagation
CHECKPOINTY gnioenm

 Error Recovery Restart OUIETE

FAIEURETACKS FREVOKEH
SHRINKSFAGREE

Not all recovery strategies
require all of these features,
that’s why the interface splits
notification, propagation and recovery.

ULFM is not a recovery strategy, but a minimalistic
set of building blocks for more complex recovery
strategies.

‘

IVIPI

| B

Integration with existing mechanisms

* New error codes to deal with failures
: report that the operation discovered a newly
dead process. Returned from all blocking function, and all completion

functions.
: report that a non-blocking

MPI_ANY_SOURCE potential sender has been discovered dead.

: @ communicator has been declared improper for
further communications. All future communications on this communicator
will raise the same error code, with the exception of a handful of recovery

functions

* Is that all?
« Matching order (MPI_ANY_SOURCE), collective communications

—

- MPI_Comm_failure_ack(comm) z
+ Resumes matching for MPI_ANY_SOURCE C’é;’
« MPI_Comm_failure_get_acked(comm, &group) =
» Returns to the user the group of processes acknowledged to have failed S
- MPI_Comm_revoke(comm) 3
* Non-collective, interrupts all operations on comm (future or active, at all 2
ranks) by raising MPI_ERR_REVOKED)
=

- MPI_Comm_shrink(comm, &newcomm)
« Collective, creates a new communicator without failed processes (identical at all ranks) ?
« MPI_Comm_agree(comm, &mask) 2
» Agree on the AND value on binary mask, ignoring failed processes (reliable AllReduce) <

Failure Discovery

» Discovery of failures is local (different processes
may know of different failures)

(comm)

» This local operation gives the users a way to acknowledge all locally notified
failures on comm. After the call, unmatched MPI_ANY_SOURCE receive

operations proceed without further raising MPI_ERR_PROC_FAILED_PENDING
due to those acknowledged failures.

(comm, &grp)

» This local operation returns the group grp of processes, from the
communicator comm, that have been locally acknowledged as failed by
preceding calls to MPI_COMM_FAILURE_ACK.

 Employing the combination ack/get_acked, a
process can obtain the list of all failed ranks (as
seen from its local perspective)

Continuing through errors

Recv (ANY)
Detected W1

Mm:v:i N\ 3 /7\/ N /\

Error notifications do not break MPI

» App can continue to communicate on the communicator

* More errors may be raised if the op cannot complete (typically, most collective
ops are expected to fail), but p2p between non-failed processes works

In this Master-Worker example, we can continue
W/0 recovery!

« Master sees a worker failed
« Resubmit the lost work unit onto another worker
* Quietly continue

Resolving transitive dependencies

Recv(P1): failure

SA& & W

WETNRENY

- P1 fails

« P2 raises an error and
wants to change
comm pattern to do
application recovery

« but P3..Pn are stuck in
their posted recv

P2 can unlock them
with Revoke ©

 P3..Pnjoin P2 in the
recovery

Errors and Collective Operations

proc_failed err_handler (MPI_Comm comm, 1int err) {
if(err == ||
err ==) recovery(comm) ;

}

deadlocking_collectives(void) {
for(i=0; 1i<nbrecv; i++) {
MPI_Bcast(buff, count, datatype, 0, comm);

}
}

« Exceptions are raised only at ranks where the
Bcast couldn’t succeed (lax consistency)

* In a tree-based Bcast, only the subtree under the failed process sees the
failure

« Other ranks succeed and proceed to the next Bcast

« Ranks that couldn’t complete enter “recovery”, do not match the Bcast posted
at other ranks => (comm) interrupts unmatched Bcast and

forces an exception (and triggers recovery) at all ranks

Full Recovery

» Restores full communication capability (all
collective ops, etc).

« MPI_COMM_SHRINK(comm, newcomm)

« Creates a new communicator excluding failed processes
* New failures are absorbed during the operation
« The communicator can be restored to full size with MPI_COMM_SPAWN

ic>or

OPEN MPI IMPLEMENTATION UPDATE

Collective and p2p

IMB AllIReduce over ULFM (Darter, np=128)

TIME (us)

bynode, vader/ugni, coll tuned) Systematic verification of
100000 _g'_ 3f?£izwy§¥t)(i.9 series, coll ml) ' ' g correct behavio_r for
ulfm (w/ ft) “tuned” collective module
- .*1 underfailure cases
joool gl < Backportof latesttrunk
S N “tuned” collective
LT f] component completed
+ 1 3 :
2@ 1« Backport of latest “basic”
1000 4 collective module in
e - progress
| /ez/ |« Vader BTL (shared
S I U U WO NS - OO WU WO |~ memory transport) from
/+ trunk importation: in
Y progress (main benefit is
L seewes better support for
ol xpmem)

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M
MESSAGE SIZE (Bytes)

—
Evaluating Revoke Cost

One rank Revokes; } 1. The cost of Revoke at
Revoke echoes from other ranks the initial caller is
essentially O (immediate
operation, completes in
the background)

2. But, even after a
Revoke has delivered to
all ranks, the “revoke
tokens” are still
circulating on the network

» Two duplicate of MPI_COMM_WORLD: blue, green

e On the blue communicator:
* Repeat allreduce (measure baseline time)
« At some iteration, one rank revokes the blue communicator
« Measure the time it takes for the last allreduce to be revoked at all ranks

* Immediately after, on the green communicator

» Repeat allreduce (this comm is not revoked, no deads, so everything works w/o errors)

» Measure the time it takes for the first, second, third, allreduce, until the noise generated by background
revoke cannot be observed
ic>or

]
e
o
>
O
-
+—
(@p]
o
o

AllIReduce
(before revoke)
I R
AllIReduce
I
post revoke)

AllIReduce (3™

©
c
o
O]
o
>
§®)
O]
o
<

AllReduce (1t

100 |

TIME (ms)

-y
o

0.1

Cost of Revoke

Revoke Time and Perturbation in Allreduce (np=128, IB20G)

__ Fault Free Allreduce ' ' ' D

Fault Free [Min:Avg+Standard Dev.]
Revoked Alireduce

1st post-revoke Allreduce

1st post-revoke [Min:Avg+Standard Dev]
2nd post-revoke Allreduce

3rd post-revoke Allreduce

/'

Srreeeeed o
I i i
16 64 256 1K 4K 16K 64K 256K 1M

MESSAGE SIZE (Bytes)

» Propagation time for
Revoke messages ~=
small message
allreduce latency

 After the revoke has
propagated, noise
continue for another
small message
allreduce latency

* Only the first
allreduce is impacted

Cost of Revoke (Darter, 4k cores)

Revoke Time and Perturbation in Allreduce (np=4096, Darter, Ugni)

10

TIME (ms)

o
-

0.01

— Fault Free Allreduce

[===sm Fault Free [Min:Avg+Standard Dev.]
Revoked Allreduce

1st post-revoke Allreduce

1st post-revoke [Min:Avg+Standard Dev]
2nd post-revoke Allreduce
3rd post-revoke Allreduce

64 256 1K
MESSAGE SIZE (Bytes)

4K

16K

Same story at
scale on Darter:

the noise of the
agreement is
invisible for as
small as 512 msg
size.

Duration of a single agreement (s)

New Agreement

0.025

0.02

0.015

0.01

0.005

050 %0 % % 0% 0,7/,

Number of ranks

New Agreement with logarithmic complexity

Duration of a single agreement (s)

0.0014
0.0012

0.001
0.0008
0.0006
0.0004
0.0002

00% 0% % 0% 0,7,/

Number of ranks

Will resolve previously reported bad performance at scale in

MPI_Comm_shrink ©

RUTGERS

RDI?

Production

Injected system MTBF (s)

4. Recovering from high-frequency failures

3901s 1617s 1612s <«— Recovery+rollback overhead —— 4439s 1928s 6025s
< . P P N R A D A P ! (.
0 10000 20000 30000 40000 50000 60000 70000 80000 86400
ENEREN < L1t Frrrrererrrrrrrerrre et Trrerrrrrrrre e vt Trrrrrnd
Trriiti Lost CheCprlntS Lost et Tttt HEELErrrrre Rt rrrrrrrrrnntnnn FrrrtrrirrerrerHLEELErrn it rEHIEELEI NN N
187
ckpt, ¥ &7 SN ck f _
11 /pIIIIIIIIIIII /p 1l (RRNNRN II“IH ILLL INERRRRRRRNEE! RN RR RN RN 11 (NENRRRY 111 1 1l (NERY
o4 HH || |||||HH|||||| T ||||||H||g_3|”||”|| A T T T T
Proc. recovery | L
N Data recovery T e T TS IHVI-:HHHHHIH. T T TR T
Y S—Faiwes — 7 | | |
0 100 200 300 400 500 600
Execution wall time (s)
Conclusions: MTBF - Average failure injection period (s)
* Online recovery allows the usage of in-memory & 47 94 189 No failure
. . o 25
checkpointing, O(0.1s) 2 rollback =
» Efficient recovery from high frequency node $ 200 process recovery (other)
. > process recovery (shrink)
failures, as exascale compels = 150 checkpoint
* With failures injected every 189, 94 and 47 3 100 data recovery m
seconds, the total job run-time penalty is 10%, -
15% and 31%, respectively g 50 Y | 2]
» Note that current production runs’fault £ o BN e e = = S 0 me s
tolerance cost is 31%! 3 2 3 4 3 4 5 4 5 6 2 3 4
* This can dramatically improve by optimizing Application iterations between consecutive checkpoints

ULFM shrink

us

Agreement performance at scale

Agreement Cost on Darter (Cray XC30, vader,ugni) vs 'tuned' Allreduce
300

—+— ERA Agreement ' ' '
—>¢— allreduce(4Bytes)
250 | allreduce(128bytes) -
200 b -

150

100

50

1000 2000 3000 4000 5000 6000
NP

FT RMA ONGOING WORK AND
DIRECTIONS

Post failure RMA Semantic

« March 2014:

» Afailure during an RMA operation damages only
the memory specifically targeted by remote write
operations

» Considered too strong consistency, possibly hard pu
to implement with hypothetical pathological

hardware Safe Safe Safe
« September/December 2014
» Afailure during an RMA operation damages all
memory exposed by the window at all ranks
» Considered too hard to used, limited usefulness pu

« New proposition (thanks Jeff Corrupt Corrupt Corrupt

Hammond)

» Afailure during an RMA operation damages all
memory exposed by the window at a rank that has
been the target of a remote write (since the last
successful “epoch changing” operation

» The goal is that data exposed through RMA do not

become corrupt even when we do “double pu
buffering” or similar techniques where the data/

checkpoint is “read only” during the epoch.
Safe Safe Corrupt

Failed

Failed

Failed

RMA consistency, side cases

« Memory exposed by
W1: no dead process, W3: true shared memory: multiple windows

memory corrupted through no put, but true sharing b ted |
exposure in W2 with a dead => memory eCO_me corrupte _m
all windows where it

1 corru pted
IS exposed (even

l though no errors
put

may be raised in this
window)
Safe Corrupt Dead - True shared memory
\ , can become
Y corrupted at ranks
that have not failed
in the window

W2: contains a dead process, put
corrupts the target

It should remain “accessible/
addressable”, it is
implementation’s business to
make it so.

—
Tentative text

« \par When an operation on a window raises an exception related to

« -process failure, the state of all data held in memory exposed

« -by that window becomes undefined at all ranks.

« +process failure, the state of all data held in memory exposed by that
« +window becomes undefined at all ranks for which a one-sided

« +communication operation could have modified local data (an origin in

- +a remote read operation or a target in a remote write or accumulate operation),
and the

« +operation completion has not been guaranteed by a successful
« +synchronization.

« \begin{users}

. A high quality implementation may be able to limit the scope of the exposed

« - memory that becomes undefined (for example, only the memory that has been
« - targeted by a remote write, or has been an origin in a remote read).

« + memory that becomes undefined (for example, only the memory addresses that
have been

+ targeted by a remote write, or have been an origin in a remote read).

icL>or

Vengeance of the deads

e Possible issue with stalled
(buffered?) RDMA
messages

PO posts a RDMA send/put to P1

PO dies

P1 detects PO is dead, marks requests
as completed (in error), frees the
window, the target buffer, etc.

Stall RDMA message from PO gets
delivered from network buffer, writes into
the memory of P1 with no warning when
it is not expected anymore

« Scenario is possible but of
little practical relevance

Failure notification “faster” than RDMA

message, really?...

In most transports (ugni, ib, etc), it is
possible to remove the rdma key that
exposes the memory (so the stall
message is safely discarded)

K computer does not have this feature
(yet), but it is being integrated as we
speak (for security reasons, not for FT,
because letting people write everywhere
in your memory w/o checks is a bad idea
anyway)

Even if the memory registration key
cannot be removed from the hardware,
an implementation can still use timeouts
when clearing operations that are
potentially releasing memory targeted by
RDMA

Current position: the implementation must take care of it (either dropping the stall
packets, or waiting long enough before reporting a process dead so that all stall buffers

are guaranteed empty)

Want to participate?

 main forum ticket:

https://svn.mpi-forum.org/trac/ mpi-forum-
web/attachment/ticket/323/

 Demand access to the standard draft
development repo (with discussions bug
tracking and milestone tickets, etc):
https://bitbucket.org/bosilca/mpi3ft

* Open MPI implementation repo
http://fault-tolerance.org

