
MPI: A Message-Passing Interface Standard

Version 3.1

Message Passing Interface Forum

September 21, 2012

This document describes the Message-Passing Interface (MPI) standard, version 3.0.
The MPI standard includes point-to-point message-passing, collective communications, group
and communicator concepts, process topologies, environmental management, process cre-
ation and management, one-sided communications, extended collective operations, external
interfaces, I/O, some miscellaneous topics, and a profiling interface. Language bindings for
C and Fortran are defined.

Historically, the evolution of the standards is from MPI-1.0 (June 1994) to MPI-1.1
(June 12, 1995) to MPI-1.2 (July 18, 1997), with several clarifications and additions and
published as part of the MPI-2 document, to MPI-2.0 (July 18, 1997), with new functionality,
to MPI-1.3 (May 30, 2008), combining for historical reasons the documents 1.1 and 1.2
and some errata documents to one combined document, and to MPI-2.1 (June 23, 2008),
combining the previous documents. Version MPI-2.2 (September 2009) added additional
clarifications and seven new routines. This version, MPI-3.0, is an extension of MPI-2.2.

Comments. Please send comments on MPI to the MPI Forum as follows:

1. Subscribe to http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments

2. Send your comment to: mpi-comments@mpi-forum.org, together with the URL of
the version of the MPI standard and the page and line numbers on which you are
commenting. Only use the official versions.

Your comment will be forwarded to MPI Forum committee members for consideration.
Messages sent from an unsubscribed e-mail address will not be considered.

c©1993, 1994, 1995, 1996, 1997, 2008, 2009, 2012 University of Tennessee, Knoxville,
Tennessee. Permission to copy without fee all or part of this material is granted, provided
the University of Tennessee copyright notice and the title of this document appear, and
notice is given that copying is by permission of the University of Tennessee.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

ii

http://lists.mpi-forum.org/mailman/listinfo.cgi/mpi-comments
mailto:mpi-comments@mpi-forum.org

Version 3.0: September 21, 2012. Coincident with the development of MPI-2.2, the MPI
Forum began discussions of a major extension to MPI. This document contains the MPI-3
Standard. This draft version of the MPI-3 standard contains significant extensions to MPI
functionality, including nonblocking collectives, new one-sided communication operations,
and Fortran 2008 bindings. Unlike MPI-2.2, this standard is considered a major update to
the MPI standard. As with previous versions, new features have been adopted only when
there were compelling needs for the users. Some features, however, may have more than a
minor impact on existing MPI implementations.

Version 2.2: September 4, 2009. This document contains mostly corrections and clarifi-
cations to the MPI-2.1 document. A few extensions have been added; however all correct
MPI-2.1 programs are correct MPI-2.2 programs. New features were adopted only when
there were compelling needs for users, open source implementations, and minor impact on
existing MPI implementations.

Version 2.1: June 23, 2008. This document combines the previous documents MPI-1.3 (May
30, 2008) and MPI-2.0 (July 18, 1997). Certain parts of MPI-2.0, such as some sections of
Chapter 4, Miscellany, and Chapter 7, Extended Collective Operations, have been merged
into the Chapters of MPI-1.3. Additional errata and clarifications collected by the MPI
Forum are also included in this document.

Version 1.3: May 30, 2008. This document combines the previous documents MPI-1.1 (June
12, 1995) and the MPI-1.2 Chapter in MPI-2 ¡(July 18, 1997). Additional errata collected
by the MPI Forum referring to MPI-1.1 and MPI-1.2 are also included in this document.

Version 2.0: July 18, 1997. Beginning after the release of MPI-1.1, the MPI Forum began
meeting to consider corrections and extensions. MPI-2 has been focused on process creation
and management, one-sided communications, extended collective communications, external
interfaces and parallel I/O. A miscellany chapter discusses items that do not fit elsewhere,
in particular language interoperability.

Version 1.2: July 18, 1997. The MPI-2 Forum introduced MPI-1.2 as Chapter 3 in the
standard “MPI-2: Extensions to the Message-Passing Interface”, July 18, 1997. This section
contains clarifications and minor corrections to Version 1.1 of the MPI Standard. The only
new function in MPI-1.2 is one for identifying to which version of the MPI Standard the
implementation conforms. There are small differences between MPI-1 and MPI-1.1. There
are very few differences between MPI-1.1 and MPI-1.2, but large differences between MPI-1.2
and MPI-2.

Version 1.1: June, 1995. Beginning in March, 1995, the Message-Passing Interface Forum
reconvened to correct errors and make clarifications in the MPI document of May 5, 1994,
referred to below as Version 1.0. These discussions resulted in Version 1.1. The changes
from Version 1.0 are minor. A version of this document with all changes marked is available.

Version 1.0: May, 1994. The Message-Passing Interface Forum (MPIF), with participation
from over 40 organizations, has been meeting since January 1993 to discuss and define a set

iii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

of library interface standards for message passing. MPIF is not sanctioned or supported by
any official standards organization.

The goal of the Message-Passing Interface, simply stated, is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message-passing.

This is the final report, Version 1.0, of the Message-Passing Interface Forum. This
document contains all the technical features proposed for the interface. This copy of the
draft was processed by LATEX on May 5, 1994.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

iv

Contents

Acknowledgments ix

1 Introduction to MPI 1
1.1 Overview and Goals . 1
1.2 Background of MPI-1.0 . 2
1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0 2
1.4 Background of MPI-1.3 and MPI-2.1 . 3
1.5 Background of MPI-2.2 . 4
1.6 Background of MPI-3.0 . 4
1.7 Who Should Use This Standard? . 4
1.8 What Platforms Are Targets For Implementation? 5
1.9 What Is Included In The Standard? . 5
1.10 What Is Not Included In The Standard? . 6
1.11 Organization of this Document . 6

2 MPI Terms and Conventions 9
2.1 Document Notation . 9
2.2 Naming Conventions . 9
2.3 Procedure Specification . 10
2.4 Semantic Terms . 11
2.5 Data Types . 12

2.5.1 Opaque Objects . 12
2.5.2 Array Arguments . 14
2.5.3 State . 14
2.5.4 Named Constants . 15
2.5.5 Choice . 16
2.5.6 Addresses . 16
2.5.7 File Offsets . 16
2.5.8 Counts . 16

2.6 Language Binding . 17
2.6.1 Deprecated and Removed Names and Functions 17
2.6.2 Fortran Binding Issues . 18
2.6.3 C Binding Issues . 19
2.6.4 Functions and Macros . 19

2.7 Processes . 20
2.8 Error Handling . 20
2.9 Implementation Issues . 21

v

2.9.1 Independence of Basic Runtime Routines 21
2.9.2 Interaction with Signals . 22

2.10 Examples . 22

3 Point-to-Point Communication 23
3.1 Introduction . 23
3.2 Blocking Send and Receive Operations . 24

3.2.1 Blocking Send . 24
3.2.2 Message Data . 25
3.2.3 Message Envelope . 27
3.2.4 Blocking Receive . 28
3.2.5 Return Status . 30
3.2.6 Passing MPI_STATUS_IGNORE for Status 32

3.3 Data Type Matching and Data Conversion 33
3.3.1 Type Matching Rules . 33

Type MPI_CHARACTER . 34
3.3.2 Data Conversion . 35

3.4 Communication Modes . 37
3.5 Semantics of Point-to-Point Communication 40
3.6 Buffer Allocation and Usage . 44

3.6.1 Model Implementation of Buffered Mode 46
3.7 Nonblocking Communication . 47

3.7.1 Communication Request Objects . 48
3.7.2 Communication Initiation . 48
3.7.3 Communication Completion . 52
3.7.4 Semantics of Nonblocking Communications 56
3.7.5 Multiple Completions . 57
3.7.6 Non-destructive Test of status . 63

3.8 Probe and Cancel . 64
3.8.1 Probe . 64
3.8.2 Matching Probe . 67
3.8.3 Matched Receives . 69
3.8.4 Cancel . 71

3.9 Persistent Communication Requests . 73
3.10 Send-Receive . 78
3.11 Null Processes . 80

4 Datatypes 83
4.1 Derived Datatypes . 83

4.1.1 Type Constructors with Explicit Addresses 85
4.1.2 Datatype Constructors . 85
4.1.3 Subarray Datatype Constructor . 94
4.1.4 Distributed Array Datatype Constructor 96
4.1.5 Address and Size Functions . 101
4.1.6 Lower-Bound and Upper-Bound Markers 103
4.1.7 Extent and Bounds of Datatypes . 105
4.1.8 True Extent of Datatypes . 107
4.1.9 Commit and Free . 108

vi

4.1.10 Duplicating a Datatype . 110
4.1.11 Use of General Datatypes in Communication 110
4.1.12 Correct Use of Addresses . 114
4.1.13 Decoding a Datatype . 115
4.1.14 Examples . 121

4.2 Pack and Unpack . 130
4.3 Canonical MPI_PACK and MPI_UNPACK 137

5 Collective Communication 141
5.1 Introduction and Overview . 141
5.2 Communicator Argument . 144

5.2.1 Specifics for Intracommunicator Collective Operations 144
5.2.2 Applying Collective Operations to Intercommunicators 145
5.2.3 Specifics for Intercommunicator Collective Operations 146

5.3 Barrier Synchronization . 147
5.4 Broadcast . 148

5.4.1 Example using MPI_BCAST . 149
5.5 Gather . 149

5.5.1 Examples using MPI_GATHER, MPI_GATHERV 152
5.6 Scatter . 159

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV 162
5.7 Gather-to-all . 165

5.7.1 Example using MPI_ALLGATHER . 167
5.8 All-to-All Scatter/Gather . 168
5.9 Global Reduction Operations . 173

5.9.1 Reduce . 174
5.9.2 Predefined Reduction Operations . 176
5.9.3 Signed Characters and Reductions 178
5.9.4 MINLOC and MAXLOC . 179
5.9.5 User-Defined Reduction Operations 183

Example of User-defined Reduce . 186
5.9.6 All-Reduce . 187
5.9.7 Process-Local Reduction . 189

5.10 Reduce-Scatter . 190
5.10.1 MPI_REDUCE_SCATTER_BLOCK 190
5.10.2 MPI_REDUCE_SCATTER . 191

5.11 Scan . 193
5.11.1 Inclusive Scan . 193
5.11.2 Exclusive Scan . 194
5.11.3 Example using MPI_SCAN . 195

5.12 Nonblocking Collective Operations . 196
5.12.1 Nonblocking Barrier Synchronization 198
5.12.2 Nonblocking Broadcast . 199

Example using MPI_IBCAST . 199
5.12.3 Nonblocking Gather . 200
5.12.4 Nonblocking Scatter . 202
5.12.5 Nonblocking Gather-to-all . 204
5.12.6 Nonblocking All-to-All Scatter/Gather 206

vii

5.12.7 Nonblocking Reduce . 209
5.12.8 Nonblocking All-Reduce . 210
5.12.9 Nonblocking Reduce-Scatter with Equal Blocks 211
5.12.10 Nonblocking Reduce-Scatter . 212
5.12.11 Nonblocking Inclusive Scan . 213
5.12.12 Nonblocking Exclusive Scan . 214

5.13 Correctness . 214

6 Groups, Contexts, Communicators, and Caching 223
6.1 Introduction . 223

6.1.1 Features Needed to Support Libraries 223
6.1.2 MPI’s Support for Libraries . 224

6.2 Basic Concepts . 226
6.2.1 Groups . 226
6.2.2 Contexts . 226
6.2.3 Intra-Communicators . 227
6.2.4 Predefined Intra-Communicators . 227

6.3 Group Management . 228
6.3.1 Group Accessors . 228
6.3.2 Group Constructors . 230
6.3.3 Group Destructors . 235

6.4 Communicator Management . 235
6.4.1 Communicator Accessors . 235
6.4.2 Communicator Constructors . 237
6.4.3 Communicator Destructors . 248
6.4.4 Communicator Info . 248

6.5 Motivating Examples . 250
6.5.1 Current Practice #1 . 250
6.5.2 Current Practice #2 . 251
6.5.3 (Approximate) Current Practice #3 251
6.5.4 Example #4 . 252
6.5.5 Library Example #1 . 253
6.5.6 Library Example #2 . 255

6.6 Inter-Communication . 257
6.6.1 Inter-communicator Accessors . 259
6.6.2 Inter-communicator Operations . 260
6.6.3 Inter-Communication Examples . 263

Example 1: Three-Group “Pipeline” 263
Example 2: Three-Group “Ring” . 264

6.7 Caching . 265
6.7.1 Functionality . 266
6.7.2 Communicators . 267
6.7.3 Windows . 272
6.7.4 Datatypes . 275
6.7.5 Error Class for Invalid Keyval . 279
6.7.6 Attributes Example . 279

6.8 Naming Objects . 281
6.9 Formalizing the Loosely Synchronous Model 285

viii

6.9.1 Basic Statements . 285
6.9.2 Models of Execution . 286

Static Communicator Allocation . 286
Dynamic Communicator Allocation 286
The General Case . 287

7 Process Topologies 289
7.1 Introduction . 289
7.2 Virtual Topologies . 290
7.3 Embedding in MPI . 290
7.4 Overview of the Functions . 290
7.5 Topology Constructors . 292

7.5.1 Cartesian Constructor . 292
7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE 293
7.5.3 Graph Constructor . 294
7.5.4 Distributed Graph Constructor . 296
7.5.5 Topology Inquiry Functions . 302
7.5.6 Cartesian Shift Coordinates . 310
7.5.7 Partitioning of Cartesian Structures 311
7.5.8 Low-Level Topology Functions . 312

7.6 Neighborhood Collective Communication 314
7.6.1 Neighborhood Gather . 315
7.6.2 Neighbor Alltoall . 318

7.7 Nonblocking Neighborhood Communication 323
7.7.1 Nonblocking Neighborhood Gather 324
7.7.2 Nonblocking Neighborhood Alltoall 326

7.8 An Application Example . 329

8 MPI Environmental Management 333
8.1 Implementation Information . 333

8.1.1 Version Inquiries . 333
8.1.2 Environmental Inquiries . 334

Tag Values . 335
Host Rank . 335
IO Rank . 335
Clock Synchronization . 336
Inquire Processor Name . 336

8.2 Memory Allocation . 337
8.3 Error Handling . 340

8.3.1 Error Handlers for Communicators 341
8.3.2 Error Handlers for Windows . 343
8.3.3 Error Handlers for Files . 345
8.3.4 Freeing Errorhandlers and Retrieving Error Strings 346

8.4 Error Codes and Classes . 347
8.5 Error Classes, Error Codes, and Error Handlers 350
8.6 Timers and Synchronization . 354
8.7 Startup . 355

8.7.1 Allowing User Functions at Process Termination 361

ix

8.7.2 Determining Whether MPI Has Finished 361
8.8 Portable MPI Process Startup . 362

9 The Info Object 365

10 Process Creation and Management 371
10.1 Introduction . 371
10.2 The Dynamic Process Model . 372

10.2.1 Starting Processes . 372
10.2.2 The Runtime Environment . 372

10.3 Process Manager Interface . 374
10.3.1 Processes in MPI . 374
10.3.2 Starting Processes and Establishing Communication 374
10.3.3 Starting Multiple Executables and Establishing Communication . . 379
10.3.4 Reserved Keys . 382
10.3.5 Spawn Example . 383

Manager-worker Example Using MPI_COMM_SPAWN 383
10.4 Establishing Communication . 385

10.4.1 Names, Addresses, Ports, and All That 385
10.4.2 Server Routines . 386
10.4.3 Client Routines . 388
10.4.4 Name Publishing . 390
10.4.5 Reserved Key Values . 392
10.4.6 Client/Server Examples . 392

Simplest Example — Completely Portable. 392
Ocean/Atmosphere — Relies on Name Publishing 393
Simple Client-Server Example . 393

10.5 Other Functionality . 395
10.5.1 Universe Size . 395
10.5.2 Singleton MPI_INIT . 396
10.5.3 MPI_APPNUM . 396
10.5.4 Releasing Connections . 397
10.5.5 Another Way to Establish MPI Communication 399

11 One-Sided Communications 401
11.1 Introduction . 401
11.2 Initialization . 402

11.2.1 Window Creation . 403
11.2.2 Window That Allocates Memory . 405
11.2.3 Window That Allocates Shared Memory 407
11.2.4 Window of Dynamically Attached Memory 410
11.2.5 Window Destruction . 413
11.2.6 Window Attributes . 414
11.2.7 Window Info . 415

11.3 Communication Calls . 417
11.3.1 Put . 418
11.3.2 Get . 420
11.3.3 Examples for Communication Calls 421

x

11.3.4 Accumulate Functions . 423
Accumulate Function . 424
Get Accumulate Function . 426
Fetch and Op Function . 427
Compare and Swap Function . 429

11.3.5 Request-based RMA Communication Operations 430
11.4 Memory Model . 435
11.5 Synchronization Calls . 436

11.5.1 Fence . 440
11.5.2 General Active Target Synchronization 441
11.5.3 Lock . 445
11.5.4 Flush and Sync . 448
11.5.5 Assertions . 450
11.5.6 Miscellaneous Clarifications . 451

11.6 Error Handling . 452
11.6.1 Error Handlers . 452
11.6.2 Error Classes . 452

11.7 Semantics and Correctness . 452
11.7.1 Atomicity . 460
11.7.2 Ordering . 460
11.7.3 Progress . 461
11.7.4 Registers and Compiler Optimizations 463

11.8 Examples . 464

12 External Interfaces 473
12.1 Introduction . 473
12.2 Generalized Requests . 473

12.2.1 Examples . 477
12.3 Associating Information with Status . 480
12.4 MPI and Threads . 482

12.4.1 General . 482
12.4.2 Clarifications . 483
12.4.3 Initialization . 485

13 I/O 489
13.1 Introduction . 489

13.1.1 Definitions . 489
13.2 File Manipulation . 491

13.2.1 Opening a File . 491
13.2.2 Closing a File . 493
13.2.3 Deleting a File . 494
13.2.4 Resizing a File . 495
13.2.5 Preallocating Space for a File . 496
13.2.6 Querying the Size of a File . 496
13.2.7 Querying File Parameters . 497
13.2.8 File Info . 498

Reserved File Hints . 500
13.3 File Views . 501

xi

13.4 Data Access . 504
13.4.1 Data Access Routines . 504

Positioning . 505
13.5 . 505

Synchronism . 506
Coordination . 506
Data Access Conventions . 506

13.5.1 Data Access with Explicit Offsets . 507
13.5.2 Data Access with Individual File Pointers 511
13.5.3 Data Access with Shared File Pointers 517

Noncollective Operations . 518
Collective Operations . 520
Seek . 522

13.5.4 Split Collective Data Access Routines 523
13.6 File Interoperability . 530
13.7 . 532

13.7.1 Datatypes for File Interoperability 532
13.7.2 External Data Representation: “external32” 534
13.7.3 User-Defined Data Representations 536

Extent Callback . 537
Datarep Conversion Functions . 537

13.7.4 Matching Data Representations . 539
13.8 Consistency and Semantics . 540

13.8.1 File Consistency . 540
13.8.2 Random Access vs. Sequential Files 543
13.8.3 Progress . 543
13.8.4 Collective File Operations . 544
13.8.5 Type Matching . 544
13.8.6 Miscellaneous Clarifications . 544
13.8.7 MPI_Offset Type . 544
13.8.8 Logical vs. Physical File Layout . 545
13.8.9 File Size . 545
13.8.10 Examples . 545

Asynchronous I/O . 548
13.9 I/O Error Handling . 549
13.10I/O Error Classes . 550
13.11Examples . 550

13.11.1 Double Buffering with Split Collective I/O 550
13.11.2 Subarray Filetype Constructor . 553

13.12 . 554

14 Tool Support 555
14.1 Introduction . 555
14.2 Profiling Interface . 555

14.2.1 Requirements . 555
14.2.2 Discussion . 556
14.2.3 Logic of the Design . 556
14.2.4 Miscellaneous Control of Profiling 557

xii

14.2.5 Profiler Implementation Example . 558
14.2.6 MPI Library Implementation Example 558

Systems with Weak Symbols . 558
Systems Without Weak Symbols . 559

14.2.7 Complications . 559
Multiple Counting . 559
Linker Oddities . 560
Fortran Support Methods . 560

14.2.8 Multiple Levels of Interception . 560
14.3 The MPI Tool Information Interface . 561

14.3.1 Verbosity Levels . 562
14.3.2 Binding MPI Tool Information Interface Variables to MPI Objects . 562
14.3.3 Convention for Returning Strings . 563
14.3.4 Initialization and Finalization . 564
14.3.5 Datatype System . 565
14.3.6 Control Variables . 567

Control Variable Query Functions 567
Example: Printing All Control Variables 570
Handle Allocation and Deallocation 571
Control Variable Access Functions 572
Example: Reading the Value of a Control Variable 573

14.3.7 Performance Variables . 574
Performance Variable Classes . 574
Performance Variable Query Functions 576
Performance Experiment Sessions . 579
Handle Allocation and Deallocation 579
Starting and Stopping of Performance Variables 581
Performance Variable Access Functions 582
Example: Tool to Detect Receives with Long Unexpected Message

Queues . 584
14.3.8 Variable Categorization . 586
14.3.9 Return Codes for the MPI Tool Information Interface 590
14.3.10 Profiling Interface . 590

15 Deprecated Functions 593
15.1 Deprecated since MPI-2.0 . 593
15.2 Deprecated since MPI-2.2 . 596

16 Removed Interfaces 597
16.1 Removed MPI-1 Bindings . 597

16.1.1 Overview . 597
16.1.2 Removed MPI-1 Functions . 597
16.1.3 Removed MPI-1 Datatypes . 597
16.1.4 Removed MPI-1 Constants . 597
16.1.5 Removed MPI-1 Callback Prototypes 598

16.2 C++ Bindings . 598

xiii

17 Language Bindings 599
17.1 Fortran Support . 599

17.1.1 Overview . 599
17.1.2 Fortran Support Through the mpi_f08 Module 600
17.1.3 Fortran Support Through the mpi Module 603
17.1.4 Fortran Support Through the mpif.h Include File 605
17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface 606
17.1.6 MPI for Different Fortran Standard Versions 611
17.1.7 Requirements on Fortran Compilers 615
17.1.8 Additional Support for Fortran Register-Memory-Synchronization . 616
17.1.9 Additional Support for Fortran Numeric Intrinsic Types 617

Parameterized Datatypes with Specified Precision and Exponent Range618
Support for Size-specific MPI Datatypes 621
Communication With Size-specific Types 624

17.1.10 Problems With Fortran Bindings for MPI 625
17.1.11 Problems Due to Strong Typing . 626
17.1.12 Problems Due to Data Copying and Sequence Association with Sub-

script Triplets . 627
17.1.13 Problems Due to Data Copying and Sequence Association with Vector

Subscripts . 630
17.1.14 Special Constants . 630
17.1.15 Fortran Derived Types . 631
17.1.16 Optimization Problems, an Overview 632
17.1.17 Problems with Code Movement and Register Optimization 633

Nonblocking Operations . 633
One-sided Communication . 635
MPI_BOTTOM and Combining Independent Variables in Datatypes 635
Solutions . 635
The Fortran ASYNCHRONOUS Attribute 636
Calling MPI_F_SYNC_REG . 637
A User Defined Routine Instead of MPI_F_SYNC_REG 639
Module Variables and COMMON Blocks 639
The (Poorly Performing) Fortran VOLATILE Attribute 640
The Fortran TARGET Attribute . 640

17.1.18 Temporary Data Movement and Temporary Memory Modification . 640
17.1.19 Permanent Data Movement . 641
17.1.20 Comparison with C . 642

17.2 Language Interoperability . 647
17.2.1 Introduction . 647
17.2.2 Assumptions . 647
17.2.3 Initialization . 647
17.2.4 Transfer of Handles . 648
17.2.5 Status . 650
17.2.6 MPI Opaque Objects . 652

Datatypes . 653
Callback Functions . 654
Error Handlers . 654
Reduce Operations . 655

xiv

17.2.7 Attributes . 655
17.2.8 Extra-State . 659
17.2.9 Constants . 659
17.2.10 Interlanguage Communication . 660

A Language Bindings Summary 663
A.1 Defined Values and Handles . 663

A.1.1 Defined Constants . 663
A.1.2 Types . 676
A.1.3 Prototype Definitions . 678

C Bindings . 678
Fortran 2008 Bindings with the mpi_f08 Module 678
Fortran Bindings with mpif.h or the mpi Module 681

A.1.4 Deprecated Prototype Definitions . 683
A.1.5 Info Keys . 684
A.1.6 Info Values . 684

A.2 C Bindings . 686
A.2.1 Point-to-Point Communication C Bindings 686
A.2.2 Datatypes C Bindings . 688
A.2.3 Collective Communication C Bindings 690
A.2.4 Groups, Contexts, Communicators, and Caching C Bindings 692
A.2.5 Process Topologies C Bindings . 695
A.2.6 MPI Environmental Management C Bindings 697
A.2.7 The Info Object C Bindings . 698
A.2.8 Process Creation and Management C Bindings 698
A.2.9 One-Sided Communications C Bindings 699
A.2.10 External Interfaces C Bindings . 701
A.2.11 I/O C Bindings . 701
A.2.12 Language Bindings C Bindings . 704
A.2.13 Tools / Profiling Interface C Bindings 705
A.2.14 Tools / MPI Tool Information Interface C Bindings 705
A.2.15 Deprecated C Bindings . 706

A.3 Fortran 2008 Bindings with the mpi_f08 Module 708
A.3.1 Point-to-Point Communication Fortran 2008 Bindings 708
A.3.2 Datatypes Fortran 2008 Bindings . 713
A.3.3 Collective Communication Fortran 2008 Bindings 718
A.3.4 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings725
A.3.5 Process Topologies Fortran 2008 Bindings 732
A.3.6 MPI Environmental Management Fortran 2008 Bindings 736
A.3.7 The Info Object Fortran 2008 Bindings 739
A.3.8 Process Creation and Management Fortran 2008 Bindings 740
A.3.9 One-Sided Communications Fortran 2008 Bindings 742
A.3.10 External Interfaces Fortran 2008 Bindings 747
A.3.11 I/O Fortran 2008 Bindings . 748
A.3.12 Language Bindings Fortran 2008 Bindings 755
A.3.13 Tools / Profiling Interface Fortran 2008 Bindings 755

A.4 Fortran Bindings with mpif.h or the mpi Module 756
A.4.1 Point-to-Point Communication Fortran Bindings 756

xv

A.4.2 Datatypes Fortran Bindings . 759
A.4.3 Collective Communication Fortran Bindings 761
A.4.4 Groups, Contexts, Communicators, and Caching Fortran Bindings . 765
A.4.5 Process Topologies Fortran Bindings 769
A.4.6 MPI Environmental Management Fortran Bindings 772
A.4.7 The Info Object Fortran Bindings 774
A.4.8 Process Creation and Management Fortran Bindings 775
A.4.9 One-Sided Communications Fortran Bindings 776
A.4.10 External Interfaces Fortran Bindings 779
A.4.11 I/O Fortran Bindings . 780
A.4.12 Language Bindings Fortran Bindings 784
A.4.13 Tools / Profiling Interface Fortran Bindings 785
A.4.14 Deprecated Fortran Bindings . 785

B Change-Log 787
B.1 Changes from Version 2.2 to Version 3.0 . 787

B.1.1 Fixes to Errata in Previous Versions of MPI 787
B.1.2 Changes in MPI-3.0 . 788

B.2 Changes from Version 2.1 to Version 2.2 . 793
B.3 Changes from Version 2.0 to Version 2.1 . 795

Bibliography 801

Examples Index 806

MPI Constant and Predefined Handle Index 809

MPI Declarations Index 814

MPI Callback Function Prototype Index 815

MPI Function Index 816

xvi

List of Figures

5.1 Collective communications, an overview . 143
5.2 Intercommunicator allgather . 146
5.3 Intercommunicator reduce-scatter . 147
5.4 Gather example . 153
5.5 Gatherv example with strides . 154
5.6 Gatherv example, 2-dimensional . 155
5.7 Gatherv example, 2-dimensional, subarrays with different sizes 156
5.8 Gatherv example, 2-dimensional, subarrays with different sizes and strides . 158
5.9 Scatter example . 163
5.10 Scatterv example with strides . 163
5.11 Scatterv example with different strides and counts 164
5.12 Race conditions with point-to-point and collective communications 217
5.13 Overlapping Communicators Example . 221

6.1 Intercommunicator creation using MPI_COMM_CREATE 242
6.2 Intercommunicator construction with MPI_COMM_SPLIT 246
6.3 Three-group pipeline . 263
6.4 Three-group ring . 264

7.1 FIXME: You cannot use the label command without a caption . . 316
7.2 Set-up of process structure for two-dimensional parallel Poisson solver. . . . 330
7.3 Communication routine with local data copying and sparse neighborhood

all-to-all. 331
7.4 Communication routine with sparse neighborhood all-to-all-w and without

local data copying. 332

11.1 Schematic description of the public/private window operations in the
MPI_WIN_SEPARATE memory model for two overlapping windows. 436

11.2 Active target communication . 438
11.3 Active target communication, with weak synchronization 439
11.4 Passive target communication . 440
11.5 Active target communication with several processes 444
11.6 Symmetric communication . 462
11.7 Deadlock situation . 462
11.8 No deadlock . 463

13.1 Etypes and filetypes . 490
13.2 Partitioning a file among parallel processes 490
13.3 Displacements . 503

xvii

13.4 Example array file layout . 553
13.5 Example local array filetype for process 1 554

17.1 Status conversion routines . 651

xviii

List of Tables

2.1 Deprecated and Removed constructs . 18

3.1 Predefined MPI datatypes corresponding to Fortran datatypes 25
3.2 Predefined MPI datatypes corresponding to C datatypes 26
3.3 Predefined MPI datatypes corresponding to both C and Fortran datatypes . 27
3.4 Predefined MPI datatypes corresponding to C++ datatypes 27

4.1 combiner values returned from MPI_TYPE_GET_ENVELOPE 116

6.1 MPI_COMM_* Function Behavior (in Inter-Communication Mode) 259

8.1 Error classes (Part 1) . 348
8.2 Error classes (Part 2) . 349

11.1 C types of attribute value argument to MPI_WIN_GET_ATTR and
MPI_WIN_SET_ATTR. 414

11.2 Error classes in one-sided communication routines 452

13.1 Data access routines . 505
13.2 “external32” sizes of predefined datatypes 535
13.3 I/O Error Classes . 551

14.1 MPI tool information interface verbosity levels 562
14.2 Constants to identify associations of variables 563
14.3 MPI datatypes that can be used by the MPI tool information interface . . . 565
14.4 Scopes for control variables . 569
14.5 Return codes used in functions of the MPI tool information interface 591

16.1 Removed MPI-1 functions and their replacements 597
16.2 Removed MPI-1 datatypes and their replacements 598
16.3 Removed MPI-1 constants . 598
16.4 Removed MPI-1 callback prototypes and their replacements 598

17.1 Specific Fortran procedure names and related calling conventions.
MPI_ISEND is used as an example. For routines without choice buffers, only
1A and 2A apply. 607

17.2 Occurrence of Fortran optimization problems 633

xix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Acknowledgments

This document is the product of a number of distinct efforts in three distinct phases:
one for each of MPI-1, MPI-2, and MPI-3. This section describes these in historical order,
starting with MPI-1. Some efforts, particularly parts of MPI-2, had distinct groups of
individuals associated with them, and these efforts are detailed separately.

This document represents the work of many people who have served on the MPI Forum.
The meetings have been attended by dozens of people from many parts of the world. It is
the hard and dedicated work of this group that has led to the MPI standard.

The technical development was carried out by subgroups, whose work was reviewed
by the full committee. During the period of development of the Message-Passing Interface
(MPI), many people helped with this effort.

Those who served as primary coordinators in MPI-1.0 and MPI-1.1 are:

• Jack Dongarra, David Walker, Conveners and Meeting Chairs

• Ewing Lusk, Bob Knighten, Minutes

• Marc Snir, William Gropp, Ewing Lusk, Point-to-Point Communication

• Al Geist, Marc Snir, Steve Otto, Collective Communication

• Steve Otto, Editor

• Rolf Hempel, Process Topologies

• Ewing Lusk, Language Binding

• William Gropp, Environmental Management

• James Cownie, Profiling

• Tony Skjellum, Lyndon Clarke, Marc Snir, Richard Littlefield, Mark Sears, Groups,
Contexts, and Communicators

• Steven Huss-Lederman, Initial Implementation Subset

The following list includes some of the active participants in the MPI-1.0 and MPI-1.1
process not mentioned above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xx

Ed Anderson Robert Babb Joe Baron Eric Barszcz
Scott Berryman Rob Bjornson Nathan Doss Anne Elster
Jim Feeney Vince Fernando Sam Fineberg Jon Flower
Daniel Frye Ian Glendinning Adam Greenberg Robert Harrison
Leslie Hart Tom Haupt Don Heller Tom Henderson
Alex Ho C.T. Howard Ho Gary Howell John Kapenga
James Kohl Susan Krauss Bob Leary Arthur Maccabe
Peter Madams Alan Mainwaring Oliver McBryan Phil McKinley
Charles Mosher Dan Nessett Peter Pacheco Howard Palmer
Paul Pierce Sanjay Ranka Peter Rigsbee Arch Robison
Erich Schikuta Ambuj Singh Alan Sussman Robert Tomlinson
Robert G. Voigt Dennis Weeks Stephen Wheat Steve Zenith

The University of Tennessee and Oak Ridge National Laboratory made the draft avail-
able by anonymous FTP mail servers and were instrumental in distributing the document.

The work on the MPI-1 standard was supported in part by ARPA and NSF under grant
ASC-9310330, the National Science Foundation Science and Technology Center Cooperative
Agreement No. CCR-8809615, and by the Commission of the European Community through
Esprit project P6643 (PPPE).

MPI-1.2 and MPI-2.0:

Those who served as primary coordinators in MPI-1.2 and MPI-2.0 are:

• Ewing Lusk, Convener and Meeting Chair

• Steve Huss-Lederman, Editor

• Ewing Lusk, Miscellany

• Bill Saphir, Process Creation and Management

• Marc Snir, One-Sided Communications

• Bill Gropp and Anthony Skjellum, Extended Collective Operations

• Steve Huss-Lederman, External Interfaces

• Bill Nitzberg, I/O

• Andrew Lumsdaine, Bill Saphir, and Jeff Squyres, Language Bindings

• Anthony Skjellum and Arkady Kanevsky, Real-Time

The following list includes some of the active participants who attended MPI-2 Forum
meetings and are not mentioned above.

xxi

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Greg Astfalk Robert Babb Ed Benson Rajesh Bordawekar
Pete Bradley Peter Brennan Ron Brightwell Maciej Brodowicz
Eric Brunner Greg Burns Margaret Cahir Pang Chen
Ying Chen Albert Cheng Yong Cho Joel Clark
Lyndon Clarke Laurie Costello Dennis Cottel Jim Cownie
Zhenqian Cui Suresh Damodaran-Kamal Raja Daoud
Judith Devaney David DiNucci Doug Doefler Jack Dongarra
Terry Dontje Nathan Doss Anne Elster Mark Fallon
Karl Feind Sam Fineberg Craig Fischberg Stephen Fleischman
Ian Foster Hubertus Franke Richard Frost Al Geist
Robert George David Greenberg John Hagedorn Kei Harada
Leslie Hart Shane Hebert Rolf Hempel Tom Henderson
Alex Ho Hans-Christian Hoppe Joefon Jann Terry Jones
Karl Kesselman Koichi Konishi Susan Kraus Steve Kubica
Steve Landherr Mario Lauria Mark Law Juan Leon
Lloyd Lewins Ziyang Lu Bob Madahar Peter Madams
John May Oliver McBryan Brian McCandless Tyce McLarty
Thom McMahon Harish Nag Nick Nevin Jarek Nieplocha
Ron Oldfield Peter Ossadnik Steve Otto Peter Pacheco
Yoonho Park Perry Partow Pratap Pattnaik Elsie Pierce
Paul Pierce Heidi Poxon Jean-Pierre Prost Boris Protopopov
James Pruyve Rolf Rabenseifner Joe Rieken Peter Rigsbee
Tom Robey Anna Rounbehler Nobutoshi Sagawa Arindam Saha
Eric Salo Darren Sanders Eric Sharakan Andrew Sherman
Fred Shirley Lance Shuler A. Gordon Smith Ian Stockdale
David Taylor Stephen Taylor Greg Tensa Rajeev Thakur
Marydell Tholburn Dick Treumann Simon Tsang Manuel Ujaldon
David Walker Jerrell Watts Klaus Wolf Parkson Wong
Dave Wright

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Bolt, Beranek, and Newman
California Institute of Technology
Center for Computing Sciences
Convex Computer Corporation
Cray Research
Digital Equipment Corporation
Dolphin Interconnect Solutions, Inc.
Edinburgh Parallel Computing Centre
General Electric Company
German National Research Center for Information Technology
Hewlett-Packard
Hitachi
Hughes Aircraft Company
Intel Corporation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xxii

International Business Machines
Khoral Research
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
MPI Software Techology, Inc.
Mississippi State University
NEC Corporation
National Aeronautics and Space Administration
National Energy Research Scientific Computing Center
National Institute of Standards and Technology
National Oceanic and Atmospheric Adminstration
Oak Ridge National Laboratory
Ohio State University
PALLAS GmbH
Pacific Northwest National Laboratory
Pratt & Whitney
San Diego Supercomputer Center
Sanders, A Lockheed-Martin Company
Sandia National Laboratories
Schlumberger
Scientific Computing Associates, Inc.
Silicon Graphics Incorporated
Sky Computers
Sun Microsystems Computer Corporation
Syracuse University
The MITRE Corporation
Thinking Machines Corporation
United States Navy
University of Colorado
University of Denver
University of Houston
University of Illinois
University of Maryland
University of Notre Dame
University of San Fransisco
University of Stuttgart Computing Center
University of Wisconsin
MPI-2 operated on a very tight budget (in reality, it had no budget when the first

meeting was announced). Many institutions helped the MPI-2 effort by supporting the
efforts and travel of the members of the MPI Forum. Direct support was given by NSF and
DARPA under NSF contract CDA-9115428 for travel by U.S. academic participants and
Esprit under project HPC Standards (21111) for European participants.

MPI-1.3 and MPI-2.1:

The editors and organizers of the combined documents have been:

• Richard Graham, Convener and Meeting Chair

xxiii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

• Jack Dongarra, Steering Committee

• Al Geist, Steering Committee

• Bill Gropp, Steering Committee

• Rainer Keller, Merge of MPI-1.3

• Andrew Lumsdaine, Steering Committee

• Ewing Lusk, Steering Committee, MPI-1.1-Errata (Oct. 12, 1998) MPI-2.1-Errata
Ballots 1, 2 (May 15, 2002)

• Rolf Rabenseifner, Steering Committee, Merge of MPI-2.1 and MPI-2.1-Errata Ballots
3, 4 (2008)

All chapters have been revisited to achieve a consistent MPI-2.1 text. Those who served
as authors for the necessary modifications are:

• Bill Gropp, Front matter, Introduction, and Bibliography

• Richard Graham, Point-to-Point Communication

• Adam Moody, Collective Communication

• Richard Treumann, Groups, Contexts, and Communicators

• Jesper Larsson Träff, Process Topologies, Info-Object, and One-Sided Communica-
tions

• George Bosilca, Environmental Management

• David Solt, Process Creation and Management

• Bronis R. de Supinski, External Interfaces, and Profiling

• Rajeev Thakur, I/O

• Jeffrey M. Squyres, Language Bindings and MPI-2.1 Secretary

• Rolf Rabenseifner, Deprecated Functions and Annex Change-Log

• Alexander Supalov and Denis Nagorny, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum
meetings and in the e-mail discussions of the errata items and are not mentioned above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xxiv

Pavan Balaji Purushotham V. Bangalore Brian Barrett
Richard Barrett Christian Bell Robert Blackmore
Gil Bloch Ron Brightwell Jeffrey Brown
Darius Buntinas Jonathan Carter Nathan DeBardeleben
Terry Dontje Gabor Dozsa Edric Ellis
Karl Feind Edgar Gabriel Patrick Geoffray
David Gingold Dave Goodell Erez Haba
Robert Harrison Thomas Herault Steve Hodson
Torsten Hoefler Joshua Hursey Yann Kalemkarian
Matthew Koop Quincey Koziol Sameer Kumar
Miron Livny Kannan Narasimhan Mark Pagel
Avneesh Pant Steve Poole Howard Pritchard
Craig Rasmussen Hubert Ritzdorf Rob Ross
Tony Skjellum Brian Smith Vinod Tipparaju
Jesper Larsson Träff Keith Underwood

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.

The following institutions supported the MPI-2 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.
Cray Inc.
The HDF Group
Hewlett-Packard
IBM T.J. Watson Research
Indiana University
Institut National de Recherche en Informatique et Automatique (INRIA)
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks
Mellanox Technologies
Microsoft
Myricom
NEC Laboratories Europe, NEC Europe Ltd.
Oak Ridge National Laboratory
Ohio State University
Pacific Northwest National Laboratory
QLogic Corporation
Sandia National Laboratories
SiCortex
Silicon Graphics Incorporated
Sun Microsystems, Inc.
University of Alabama at Birmingham
University of Houston
University of Illinois at Urbana-Champaign

xxv

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Wisconsin
Funding for the MPI Forum meetings was partially supported by award #CCF-0816909

from the National Science Foundation. In addition, the HDF Group provided travel support
for one U.S. academic.

MPI-2.2:

All chapters have been revisited to achieve a consistent MPI-2.2 text. Those who served as
authors for the necessary modifications are:

• William Gropp, Front matter, Introduction, and Bibliography; MPI-2.2 chair.

• Richard Graham, Point-to-Point Communication and Datatypes

• Adam Moody, Collective Communication

• Torsten Hoefler, Collective Communication and Process Topologies

• Richard Treumann, Groups, Contexts, and Communicators

• Jesper Larsson Träff, Process Topologies, Info-Object and One-Sided Communications

• George Bosilca, Datatypes and Environmental Management

• David Solt, Process Creation and Management

• Bronis R. de Supinski, External Interfaces, and Profiling

• Rajeev Thakur, I/O

• Jeffrey M. Squyres, Language Bindings and MPI-2.2 Secretary

• Rolf Rabenseifner, Deprecated Functions, Annex Change-Log, and Annex Language
Bindings

• Alexander Supalov, Annex Language Bindings

The following list includes some of the active participants who attended MPI-2 Forum
meetings and in the e-mail discussions of the errata items and are not mentioned above.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xxvi

Pavan Balaji Purushotham V. Bangalore Brian Barrett
Richard Barrett Christian Bell Robert Blackmore
Gil Bloch Ron Brightwell Greg Bronevetsky
Jeff Brown Darius Buntinas Jonathan Carter
Nathan DeBardeleben Terry Dontje Gabor Dozsa
Edric Ellis Karl Feind Edgar Gabriel
Patrick Geoffray Johann George David Gingold
David Goodell Erez Haba Robert Harrison
Thomas Herault Marc-André Hermanns Steve Hodson
Joshua Hursey Yutaka Ishikawa Bin Jia
Hideyuki Jitsumoto Terry Jones Yann Kalemkarian
Ranier Keller Matthew Koop Quincey Koziol
Manojkumar Krishnan Sameer Kumar Miron Livny
Andrew Lumsdaine Miao Luo Ewing Lusk
Timothy I. Mattox Kannan Narasimhan Mark Pagel
Avneesh Pant Steve Poole Howard Pritchard
Craig Rasmussen Hubert Ritzdorf Rob Ross
Martin Schulz Pavel Shamis Galen Shipman
Christian Siebert Anthony Skjellum Brian Smith
Naoki Sueyasu Vinod Tipparaju Keith Underwood
Rolf Vandevaart Abhinav Vishnu Weikuan Yu

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.

The following institutions supported the MPI-2.2 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Auburn University
Bull
Cisco Systems, Inc.
Cray Inc.
Forschungszentrum Jülich
Fujitsu
The HDF Group
Hewlett-Packard
International Business Machines
Indiana University
Institut National de Recherche en Informatique et Automatique (INRIA)
Institute for Advanced Science & Engineering Corporation
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mathworks
Mellanox Technologies
Microsoft
Myricom
NEC Corporation
Oak Ridge National Laboratory

xxvii

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Ohio State University
Pacific Northwest National Laboratory
QLogic Corporation
RunTime Computing Solutions, LLC
Sandia National Laboratories
SiCortex, Inc.
Silicon Graphics Inc.
Sun Microsystems, Inc.
Tokyo Institute of Technology
University of Alabama at Birmingham
University of Houston
University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo
University of Wisconsin
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909

and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
provided travel support for one U.S. academic.

MPI-3:

MPI-3 is a signficant effort to extend and modernize the MPI Standard.
The editors and organizers of the MPI-3 have been:

• William Gropp, Steering committee, Front matter, Introduction, Groups, Contexts,
and Communicators, One-Sided Communications, and Bibliography

• Richard Graham, Steering committee, Point-to-Point Communication, Meeting Con-
vener, and MPI-3 chair

• Torsten Hoefler, Collective Communication, One-Sided Communications, and Process
Topologies

• George Bosilca, Datatypes and Environmental Management

• David Solt, Process Creation and Management

• Bronis R. de Supinski, External Interfaces and Tool Support

• Rajeev Thakur, I/O and One-Sided Communications

• Darius Buntinas, Info Object

• Jeffrey M. Squyres, Language Bindings and MPI-3 Secretary

• Rolf Rabenseifner, Steering committee, Terms and Definitions, and Fortran Bindings,
Deprecated Functions, Annex Change-Log, and Annex Language Bindings

• Craig Rasmussen, Fortran Bindings

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xxviii

The following list includes some of the active participants who attended MPI-3 Forum
meetings or participated in the e-mail discussions and who are not mentioned above.
Tatsuya Abe Tomoya Adachi Sadaf Alam
Reinhold Bader Pavan Balaji Purushotham V. Bangalore
Brian Barrett Richard Barrett Robert Blackmore
Aurelien Bouteiller Ron Brightwell Greg Bronevetsky
Jed Brown Darius Buntinas Devendar Bureddy
Arno Candel George Carr Mohamad Chaarawi
Raghunath Raja Chandrasekar James Dinan Terry Dontje
Edgar Gabriel Balazs Gerofi Brice Goglin
David Goodell Manjunath Gorentla Erez Haba
Jeff Hammond Thomas Herault Marc-André Hermanns
Jennifer Herrett-Skjellum Nathan Hjelm Atsushi Hori
Joshua Hursey Marty Itzkowitz Yutaka Ishikawa
Nysal Jan Bin Jia Hideyuki Jitsumoto
Yann Kalemkarian Krishna Kandalla Takahiro Kawashima
Chulho Kim Dries Kimpe Christof Klausecker
Alice Koniges Quincey Koziol Dieter Kranzlmueller
Manojkumar Krishnan Sameer Kumar Eric Lantz
Jay Lofstead Bill Long Andrew Lumsdaine
Miao Luo Ewing Lusk Adam Moody
Nick M. Maclaren Amith Mamidala Guillaume Mercier
Scott McMillan Douglas Miller Kathryn Mohror
Tim Murray Tomotake Nakamura Takeshi Nanri
Steve Oyanagi Mark Pagel Swann Perarnau
Sreeram Potluri Howard Pritchard Rolf Riesen
Hubert Ritzdorf Kuninobu Sasaki Timo Schneider
Martin Schulz Gilad Shainer Christian Siebert
Anthony Skjellum Brian Smith Marc Snir
Raffaele Giuseppe Solca Shinji Sumimoto Alexander Supalov
Sayantan Sur Masamichi Takagi Fabian Tillier
Vinod Tipparaju Jesper Larsson Träff Richard Treumann
Keith Underwood Rolf Vandevaart Anh Vo
Abhinav Vishnu Min Xie Enqiang Zhou

The MPI Forum also acknowledges and appreciates the valuable input from people via
e-mail and in person.

The MPI Forum also thanks those that provided feedback during the public comment
period. In particular, the Forum would like to thank Jeremiah Wilcock for providing detailed
comments on the entire draft standard.

The following institutions supported the MPI-3 effort through time and travel support
for the people listed above.

Argonne National Laboratory
Bull
Cisco Systems, Inc.
Cray Inc.
CSCS
ETH Zurich
Fujitsu Ltd.

xxix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

German Research School for Simulation Sciences
The HDF Group
Hewlett-Packard
International Business Machines
IBM India Private Ltd
Indiana University
Institut National de Recherche en Informatique et Automatique (INRIA)
Institute for Advanced Science & Engineering Corporation
Intel Corporation
Lawrence Berkeley National Laboratory
Lawrence Livermore National Laboratory
Los Alamos National Laboratory
Mellanox Technologies, Inc.
Microsoft Corporation
NEC Corporation
National Oceanic and Atmospheric Administration, Global Systems Division
NVIDIA Corporation
Oak Ridge National Laboratory
The Ohio State University
Oracle America
Platform Computing
RIKEN AICS
RunTime Computing Solutions, LLC
Sandia National Laboratories
Technical University of Chemnitz
Tokyo Institute of Technology
University of Alabama at Birmingham
University of Chicago
University of Houston
University of Illinois at Urbana-Champaign
University of Stuttgart, High Performance Computing Center Stuttgart (HLRS)
University of Tennessee, Knoxville
University of Tokyo
Funding for the MPI Forum meetings was partially supported by awards #CCF-0816909

and #CCF-1144042 from the National Science Foundation. In addition, the HDF Group
and Sandia National Laboratories provided travel support for one U.S. academic each.

MPI-3.1:

This is the initial stub for the MPI-3.1 credits. We use this to collect information on the
participants and their institutions.

Marc-Andre Hermanns Forschungszentrum Jülich
German Research School for Simulation Sciences
and
Jülich Aachen Research Alliance, High-Performance Computing (JARA-HPC)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

xxx

Chapter 1

Introduction to MPI

1.1 Overview and Goals

MPI (Message-Passing Interface) is a message-passing library interface specification. All
parts of this definition are significant. MPI addresses primarily the message-passing parallel
programming model, in which data is moved from the address space of one process to
that of another process through cooperative operations on each process. Extensions to the
“classical” message-passing model are provided in collective operations, remote-memory
access operations, dynamic process creation, and parallel I/O. MPI is a specification, not
an implementation; there are multiple implementations of MPI. This specification is for a
library interface; MPI is not a language, and all MPI operations are expressed as functions,
subroutines, or methods, according to the appropriate language bindings which, for C and
Fortran, are part of the MPI standard. The standard has been defined through an open
process by a community of parallel computing vendors, computer scientists, and application
developers. The next few sections provide an overview of the history of MPI’s development.

The main advantages of establishing a message-passing standard are portability and
ease of use. In a distributed memory communication environment in which the higher level
routines and/or abstractions are built upon lower level message-passing routines the benefits
of standardization are particularly apparent. Furthermore, the definition of a message-
passing standard, such as that proposed here, provides vendors with a clearly defined base
set of routines that they can implement efficiently, or in some cases for which they can
provide hardware support, thereby enhancing scalability.

The goal of the Message-Passing Interface simply stated is to develop a widely used
standard for writing message-passing programs. As such the interface should establish a
practical, portable, efficient, and flexible standard for message passing.

A complete list of goals follows.

• Design an application programming interface (not necessarily for compilers or a system
implementation library).

• Allow efficient communication: Avoid memory-to-memory copying, allow overlap of
computation and communication, and offload to communication co-processors, where
available.

• Allow for implementations that can be used in a heterogeneous environment.

• Allow convenient C and Fortran bindings for the interface.

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 1. INTRODUCTION TO MPI

• Assume a reliable communication interface: the user need not cope with communica-
tion failures. Such failures are dealt with by the underlying communication subsystem.

• Define an interface that can be implemented on many vendor’s platforms, with no
significant changes in the underlying communication and system software.

• Semantics of the interface should be language independent.

• The interface should be designed to allow for thread safety.

1.2 Background of MPI-1.0

MPI sought to make use of the most attractive features of a number of existing message-
passing systems, rather than selecting one of them and adopting it as the standard. Thus,
MPI was strongly influenced by work at the IBM T. J. Watson Research Center [1, 2],
Intel’s NX/2 [50], Express [13], nCUBE’s Vertex [46], p4 [8, 9], and PARMACS [5, 10].
Other important contributions have come from Zipcode [53, 54], Chimp [19, 20], PVM
[4, 17], Chameleon [27], and PICL [25].

The MPI standardization effort involved about 60 people from 40 organizations mainly
from the United States and Europe. Most of the major vendors of concurrent computers
were involved in MPI, along with researchers from universities, government laboratories, and
industry. The standardization process began with the Workshop on Standards for Message-
Passing in a Distributed Memory Environment, sponsored by the Center for Research on
Parallel Computing, held April 29-30, 1992, in Williamsburg, Virginia [60]. At this workshop
the basic features essential to a standard message-passing interface were discussed, and a
working group established to continue the standardization process.

A preliminary draft proposal, known as MPI-1, was put forward by Dongarra, Hempel,
Hey, and Walker in November 1992, and a revised version was completed in February
1993 [18]. MPI-1 embodied the main features that were identified at the Williamsburg
workshop as being necessary in a message passing standard. Since MPI-1 was primarily
intended to promote discussion and “get the ball rolling,” it focused mainly on point-to-point
communications. MPI-1 brought to the forefront a number of important standardization
issues, but did not include any collective communication routines and was not thread-safe.

In November 1992, a meeting of the MPI working group was held in Minneapolis, at
which it was decided to place the standardization process on a more formal footing, and to
generally adopt the procedures and organization of the High Performance Fortran Forum.
Subcommittees were formed for the major component areas of the standard, and an email
discussion service established for each. In addition, the goal of producing a draft MPI
standard by the Fall of 1993 was set. To achieve this goal the MPI working group met every
6 weeks for two days throughout the first 9 months of 1993, and presented the draft MPI
standard at the Supercomputing 93 conference in November 1993. These meetings and the
email discussion together constituted the MPI Forum, membership of which has been open
to all members of the high performance computing community.

1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0

Beginning in March 1995, the MPI Forum began meeting to consider corrections and exten-
sions to the original MPI Standard document [22]. The first product of these deliberations

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.4. BACKGROUND OF MPI-1.3 AND MPI-2.1 3

was Version 1.1 of the MPI specification, released in June of 1995 [23] (see
http://www.mpi-forum.org for official MPI document releases). At that time, effort fo-
cused in five areas.

1. Further corrections and clarifications for the MPI-1.1 document.

2. Additions to MPI-1.1 that do not significantly change its types of functionality (new
datatype constructors, language interoperability, etc.).

3. Completely new types of functionality (dynamic processes, one-sided communication,
parallel I/O, etc.) that are what everyone thinks of as “MPI-2 functionality.”

4. Bindings for Fortran 90 and C++. MPI-2 specifies C++ bindings for both MPI-1 and
MPI-2 functions, and extensions to the Fortran 77 binding of MPI-1 and MPI-2 to
handle Fortran 90 issues.

5. Discussions of areas in which the MPI process and framework seem likely to be useful,
but where more discussion and experience are needed before standardization (e.g.,
zero-copy semantics on shared-memory machines, real-time specifications).

Corrections and clarifications (items of type 1 in the above list) were collected in Chap-
ter 3 of the MPI-2 document: “Version 1.2 of MPI.” That chapter also contains the function
for identifying the version number. Additions to MPI-1.1 (items of types 2, 3, and 4 in the
above list) are in the remaining chapters of the MPI-2 document, and constitute the specifi-
cation for MPI-2. Items of type 5 in the above list have been moved to a separate document,
the “MPI Journal of Development” (JOD), and are not part of the MPI-2 Standard.

This structure makes it easy for users and implementors to understand what level of
MPI compliance a given implementation has:

• MPI-1 compliance will mean compliance with MPI-1.3. This is a useful level of com-
pliance. It means that the implementation conforms to the clarifications of MPI-1.1
function behavior given in Chapter 3 of the MPI-2 document. Some implementations
may require changes to be MPI-1 compliant.

• MPI-2 compliance will mean compliance with all of MPI-2.1.

• The MPI Journal of Development is not part of the MPI Standard.

It is to be emphasized that forward compatibility is preserved. That is, a valid MPI-1.1
program is both a valid MPI-1.3 program and a valid MPI-2.1 program, and a valid MPI-1.3
program is a valid MPI-2.1 program.

1.4 Background of MPI-1.3 and MPI-2.1

After the release of MPI-2.0, the MPI Forum kept working on errata and clarifications for
both standard documents (MPI-1.1 and MPI-2.0). The short document “Errata for MPI-1.1”
was released October 12, 1998. On July 5, 2001, a first ballot of errata and clarifications for
MPI-2.0 was released, and a second ballot was voted on May 22, 2002. Both votes were done
electronically. Both ballots were combined into one document: “Errata for MPI-2,” May
15, 2002. This errata process was then interrupted, but the Forum and its e-mail reflectors
kept working on new requests for clarification.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

http://www.mpi-forum.org

4 CHAPTER 1. INTRODUCTION TO MPI

Restarting regular work of the MPI Forum was initiated in three meetings, at Eu-
roPVM/MPI’06 in Bonn, at EuroPVM/MPI’07 in Paris, and at SC’07 in Reno. In De-
cember 2007, a steering committee started the organization of new MPI Forum meetings at
regular 8-weeks intervals. At the January 14–16, 2008 meeting in Chicago, the MPI Forum
decided to combine the existing and future MPI documents to one document for each ver-
sion of the MPI standard. For technical and historical reasons, this series was started with
MPI-1.3. Additional Ballots 3 and 4 solved old questions from the errata list started in 1995
up to new questions from the last years. After all documents (MPI-1.1, MPI-2, Errata for
MPI-1.1 (Oct. 12, 1998), and MPI-2.1 Ballots 1-4) were combined into one draft document,
for each chapter, a chapter author and review team were defined. They cleaned up the
document to achieve a consistent MPI-2.1 document. The final MPI-2.1 standard document
was finished in June 2008, and finally released with a second vote in September 2008 in
the meeting at Dublin, just before EuroPVM/MPI’08. The major work of the current MPI
Forum is the preparation of MPI-3.

1.5 Background of MPI-2.2

MPI-2.2 is a minor update to the MPI-2.1 standard. This version addresses additional errors
and ambiguities that were not corrected in the MPI-2.1 standard as well as a small number
of extensions to MPI-2.1 that met the following criteria:

• Any correct MPI-2.1 program is a correct MPI-2.2 program.

• Any extension must have significant benefit for users.

• Any extension must not require significant implementation effort. To that end, all
such changes are accompanied by an open source implementation.

The discussions of MPI-2.2 proceeded concurrently with the MPI-3 discussions; in some
cases, extensions were proposed for MPI-2.2 but were later moved to MPI-3.

1.6 Background of MPI-3.0

MPI-3.0 is a major update to the MPI standard. The updates include the extension of
collective operations to include nonblocking versions, extensions to the one-sided operations,
and a new Fortran 2008 binding. In addition, the deprecated C++ bindings have been
removed, as well as many of the deprecated routines and MPI objects (such as the MPI_UB

datatype).

1.7 Who Should Use This Standard?

This standard is intended for use by all those who want to write portable message-passing
programs in Fortran and C (and access the C bindings from C++). This includes individual
application programmers, developers of software designed to run on parallel machines, and
creators of environments and tools. In order to be attractive to this wide audience, the
standard must provide a simple, easy-to-use interface for the basic user while not seman-
tically precluding the high-performance message-passing operations available on advanced
machines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.8. WHAT PLATFORMS ARE TARGETS FOR IMPLEMENTATION? 5

1.8 What Platforms Are Targets For Implementation?

The attractiveness of the message-passing paradigm at least partially stems from its wide
portability. Programs expressed this way may run on distributed-memory multiprocessors,
networks of workstations, and combinations of all of these. In addition, shared-memory
implementations, including those for multi-core processors and hybrid architectures, are
possible. The paradigm will not be made obsolete by architectures combining the shared-
and distributed-memory views, or by increases in network speeds. It thus should be both
possible and useful to implement this standard on a great variety of machines, including
those “machines” consisting of collections of other machines, parallel or not, connected by
a communication network.

The interface is suitable for use by fully general MIMD programs, as well as those writ-
ten in the more restricted style of SPMD. MPI provides many features intended to improve
performance on scalable parallel computers with specialized interprocessor communication
hardware. Thus, we expect that native, high-performance implementations of MPI will be
provided on such machines. At the same time, implementations of MPI on top of stan-
dard Unix interprocessor communication protocols will provide portability to workstation
clusters and heterogenous networks of workstations.

1.9 What Is Included In The Standard?

The standard includes:

• Point-to-point communication,

• Datatypes,

• Collective operations,

• Process groups,

• Communication contexts,

• Process topologies,

• Environmental management and inquiry,

• The Info object,

• Process creation and management,

• One-sided communication,

• External interfaces,

• Parallel file I/O,

• Language bindings for Fortran and C,

• Tool support.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 1. INTRODUCTION TO MPI

1.10 What Is Not Included In The Standard?

The standard does not specify:

• Operations that require more operating system support than is currently standard;
for example, interrupt-driven receives, remote execution, or active messages,

• Program construction tools,

• Debugging facilities.

There are many features that have been considered and not included in this standard.
This happened for a number of reasons, one of which is the time constraint that was self-
imposed in finishing the standard. Features that are not included can always be offered as
extensions by specific implementations. Perhaps future versions of MPI will address some
of these issues.

1.11 Organization of this Document

The following is a list of the remaining chapters in this document, along with a brief
description of each.

• Chapter 2, MPI Terms and Conventions, explains notational terms and conventions
used throughout the MPI document.

• Chapter 3, Point-to-Point Communication, defines the basic, pairwise communication
subset of MPI. Send and receive are found here, along with many associated functions
designed to make basic communication powerful and efficient.

• Chapter 4, Datatypes, defines a method to describe any data layout, e.g., an array of
structures in the memory, which can be used as message send or receive buffer.

• Chapter 5, Collective Communication, defines process-group collective communication
operations. Well known examples of this are barrier and broadcast over a group of
processes (not necessarily all the processes). With MPI-2, the semantics of collective
communication was extended to include intercommunicators. It also adds two new
collective operations. MPI-3 adds nonblocking collective operations.

• Chapter 6, Groups, Contexts, Communicators, and Caching, shows how groups of pro-
cesses are formed and manipulated, how unique communication contexts are obtained,
and how the two are bound together into a communicator.

• Chapter 7, Process Topologies, explains a set of utility functions meant to assist in
the mapping of process groups (a linearly ordered set) to richer topological structures
such as multi-dimensional grids.

• Chapter 8, MPI Environmental Management, explains how the programmer can man-
age and make inquiries of the current MPI environment. These functions are needed
for the writing of correct, robust programs, and are especially important for the con-
struction of highly-portable message-passing programs.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

1.11. ORGANIZATION OF THIS DOCUMENT 7

• Chapter 9, The Info Object, defines an opaque object, that is used as input in several
MPI routines.

• Chapter 10, Process Creation and Management, defines routines that allow for cre-
ation of processes.

• Chapter 11, One-Sided Communications, defines communication routines that can be
completed by a single process. These include shared-memory operations (put/get)
and remote accumulate operations.

• Chapter 12, External Interfaces, defines routines designed to allow developers to layer
on top of MPI. This includes generalized requests, routines that decode MPI opaque
objects, and threads.

• Chapter 13, I/O, defines MPI support for parallel I/O.

• Chapter 14, Tool Support, covers interfaces that allow debuggers, performance ana-
lyzers, and other tools to obtain data about the operation of MPI processes. This
chapter includes Section 14.2 (Profiling Interface), which was a chapter in previous
versions of MPI.

• Chapter 15, Deprecated Functions, describes routines that are kept for reference.
However usage of these functions is discouraged, as they may be deleted in future
versions of the standard.

• Chapter 16, Removed Interfaces, describes routines and constructs that have been
removed from MPI. These were deprecated in MPI-2, and the MPI Forum decided to
remove these from the MPI-3 standard.

• Chapter 17, Language Bindings, discusses Fortran issues, and describes language in-
teroperability aspects between C and Fortran.

The Appendices are:

• Annex A, Language Bindings Summary, gives specific syntax in C and Fortran, for
all MPI functions, constants, and types.

• Annex B, Change-Log, summarizes some changes since the previous version of the
standard.

• Several Index pages show the locations of examples, constants and predefined handles,
callback routine prototypes, and all MPI functions.

MPI provides various interfaces to facilitate interoperability of distinct MPI imple-
mentations. Among these are the canonical data representation for MPI I/O and for
MPI_PACK_EXTERNAL and MPI_UNPACK_EXTERNAL. The definition of an actual bind-
ing of these interfaces that will enable interoperability is outside the scope of this document.

A separate document consists of ideas that were discussed in the MPI Forum during the
MPI-2 development and deemed to have value, but are not included in the MPI Standard.
They are part of the “Journal of Development” (JOD), lest good ideas be lost and in order
to provide a starting point for further work. The chapters in the JOD are

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 1. INTRODUCTION TO MPI

• Chapter 2, Spawning Independent Processes, includes some elements of dynamic pro-
cess management, in particular management of processes with which the spawning
processes do not intend to communicate, that the Forum discussed at length but
ultimately decided not to include in the MPI Standard.

• Chapter 3, Threads and MPI, describes some of the expected interaction between an
MPI implementation and a thread library in a multi-threaded environment.

• Chapter 4, Communicator ID, describes an approach to providing identifiers for com-
municators.

• Chapter 5, Miscellany, discusses Miscellaneous topics in the MPI JOD, in particu-
lar single-copy routines for use in shared-memory environments and new datatype
constructors.

• Chapter 6, Toward a Full Fortran 90 Interface, describes an approach to providing a
more elaborate Fortran 90 interface.

• Chapter 7, Split Collective Communication, describes a specification for certain non-
blocking collective operations.

• Chapter 8, Real-Time MPI, discusses MPI support for real time processing.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 2

MPI Terms and Conventions

This chapter explains notational terms and conventions used throughout the MPI document,
some of the choices that have been made, and the rationale behind those choices.

2.1 Document Notation

Rationale. Throughout this document, the rationale for the design choices made in
the interface specification is set off in this format. Some readers may wish to skip
these sections, while readers interested in interface design may want to read them
carefully. (End of rationale.)

Advice to users. Throughout this document, material aimed at users and that
illustrates usage is set off in this format. Some readers may wish to skip these sections,
while readers interested in programming in MPI may want to read them carefully. (End
of advice to users.)

Advice to implementors. Throughout this document, material that is primarily
commentary to implementors is set off in this format. Some readers may wish to skip
these sections, while readers interested in MPI implementations may want to read
them carefully. (End of advice to implementors.)

2.2 Naming Conventions

In many cases MPI names for C functions are of the form MPI_Class_action_subset. This
convention originated with MPI-1. Since MPI-2 an attempt has been made to standardize
the names of MPI functions according to the following rules.

1. In C, all routines associated with a particular type of MPI object should be of the
form MPI_Class_action_subset or, if no subset exists, of the form MPI_Class_action.
In Fortran, all routines associated with a particular type of MPI object should be of
the form MPI_CLASS_ACTION_SUBSET or, if no subset exists, of the form
MPI_CLASS_ACTION.

2. If the routine is not associated with a class, the name should be of the form
MPI_Action_subset in C and MPI_ACTION_SUBSET in Fortran.

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 2. MPI TERMS AND CONVENTIONS

3. The names of certain actions have been standardized. In particular, Create creates
a new object, Get retrieves information about an object, Set sets this information,
Delete deletes information, Is asks whether or not an object has a certain property.

C and Fortran names for some MPI functions (that were defined during the MPI-1
process) violate these rules in several cases. The most common exceptions are the omission
of the Class name from the routine and the omission of the Action where one can be inferred.

MPI identifiers are limited to 30 characters (31 with the profiling interface). This is
done to avoid exceeding the limit on some compilation systems.

2.3 Procedure Specification

MPI procedures are specified using a language-independent notation. The arguments of
procedure calls are marked as IN, OUT, or INOUT. The meanings of these are:

• IN: the call may use the input value but does not update the argument from the
perspective of the caller at any time during the call’s execution,

• OUT: the call may update the argument but does not use its input value,

• INOUT: the call may both use and update the argument.

There is one special case — if an argument is a handle to an opaque object (these
terms are defined in Section 2.5.1), and the object is updated by the procedure call, then
the argument is marked INOUT or OUT. It is marked this way even though the handle itself
is not modified — we use the INOUT or OUT attribute to denote that what the handle
references is updated.

Rationale. The definition of MPI tries to avoid, to the largest possible extent, the use
of INOUT arguments, because such use is error-prone, especially for scalar arguments.
(End of rationale.)

MPI’s use of IN, OUT, and INOUT is intended to indicate to the user how an argument
is to be used, but does not provide a rigorous classification that can be translated directly
into all language bindings (e.g., INTENT in Fortran 90 bindings or const in C bindings).
For instance, the “constant” MPI_BOTTOM can usually be passed to OUT buffer arguments.
Similarly, MPI_STATUS_IGNORE can be passed as the OUT status argument.

A common occurrence for MPI functions is an argument that is used as IN by some pro-
cesses and OUT by other processes. Such an argument is, syntactically, an INOUT argument
and is marked as such, although, semantically, it is not used in one call both for input and
for output on a single process.

Another frequent situation arises when an argument value is needed only by a subset
of the processes. When an argument is not significant at a process then an arbitrary value
can be passed as an argument.

Unless specified otherwise, an argument of type OUT or type INOUT cannot be aliased
with any other argument passed to an MPI procedure. An example of argument aliasing in
C appears below. If we define a C procedure like this,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.4. SEMANTIC TERMS 11

void copyIntBuffer(int *pin, int *pout, int len)

{ int i;

for (i=0; i<len; ++i) *pout++ = *pin++;

}

then a call to it in the following code fragment has aliased arguments.

int a[10];

copyIntBuffer(a, a+3, 7);

Although the C language allows this, such usage of MPI procedures is forbidden unless
otherwise specified. Note that Fortran prohibits aliasing of arguments.

All MPI functions are first specified in the language-independent notation. Immediately
below this, language dependent bindings follow:

• The ISO C version of the function.

• The Fortran version used with USE mpi_f08.

• The Fortran version of the same function used with USE mpi or INCLUDE ’mpif.h’.

“Fortran” in this document refers to Fortran 90 and higher; see Section 2.6.

2.4 Semantic Terms

When discussing MPI procedures the following semantic terms are used.

nonblocking A procedure is nonblocking if the procedure may return before the operation
completes, and before the user is allowed to reuse resources (such as buffers) specified
in the call. A nonblocking request is started by the call that initiates it, e.g.,
MPI_ISEND. The word complete is used with respect to operations, requests, and
communications. An operation completes when the user is allowed to reuse resources,
and any output buffers have been updated; i.e., a call to MPI_TEST will return flag =
true. A request is completed by a call to wait, which returns, or a test or get status call
which returns flag = true. This completing call has two effects: the status is extracted
from the request; in the case of test and wait, if the request was nonpersistent, it is
freed , and becomes inactive if it was persistent. A communication completes when all
participating operations complete.

blocking A procedure is blocking if return from the procedure indicates the user is allowed
to reuse resources specified in the call.

local A procedure is local if completion of the procedure depends only on the local executing
process.

non-local A procedure is non-local if completion of the operation may require the exe-
cution of some MPI procedure on another process. Such an operation may require
communication occurring with another user process.

collective A procedure is collective if all processes in a process group need to invoke the
procedure. A collective call may or may not be synchronizing. Collective calls over
the same communicator must be executed in the same order by all members of the
process group.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 2. MPI TERMS AND CONVENTIONS

predefined A predefined datatype is a datatype with a predefined (constant) name (such
as MPI_INT, MPI_FLOAT_INT, or MPI_PACKED) or a datatype constructed with
MPI_TYPE_CREATE_F90_INTEGER, MPI_TYPE_CREATE_F90_REAL, or
MPI_TYPE_CREATE_F90_COMPLEX. The former are named whereas the latter are
unnamed .

derived A derived datatype is any datatype that is not predefined.

portable A datatype is portable if it is a predefined datatype, or it is derived from
a portable datatype using only the type constructors MPI_TYPE_CONTIGUOUS,
MPI_TYPE_VECTOR, MPI_TYPE_INDEXED,
MPI_TYPE_CREATE_INDEXED_BLOCK, MPI_TYPE_CREATE_SUBARRAY,
MPI_TYPE_DUP, and MPI_TYPE_CREATE_DARRAY. Such a datatype is portable
because all displacements in the datatype are in terms of extents of one predefined
datatype. Therefore, if such a datatype fits a data layout in one memory, it will
fit the corresponding data layout in another memory, if the same declarations were
used, even if the two systems have different architectures. On the other hand, if a
datatype was constructed using MPI_TYPE_CREATE_HINDEXED,
MPI_TYPE_CREATE_HINDEXED_BLOCK, MPI_TYPE_CREATE_HVECTOR or
MPI_TYPE_CREATE_STRUCT, then the datatype contains explicit byte displace-
ments (e.g., providing padding to meet alignment restrictions). These displacements
are unlikely to be chosen correctly if they fit data layout on one memory, but are
used for data layouts on another process, running on a processor with a different
architecture.

equivalent Two datatypes are equivalent if they appear to have been created with the same
sequence of calls (and arguments) and thus have the same typemap. Two equivalent
datatypes do not necessarily have the same cached attributes or the same names.

2.5 Data Types

2.5.1 Opaque Objects

MPI manages system memory that is used for buffering messages and for storing internal
representations of various MPI objects such as groups, communicators, datatypes, etc. This
memory is not directly accessible to the user, and objects stored there are opaque: their size
and shape is not visible to the user. Opaque objects are accessed via handles, which exist
in user space. MPI procedures that operate on opaque objects are passed handle arguments
to access these objects. In addition to their use by MPI calls for object access, handles can
participate in assignments and comparisons.

In Fortran with USE mpi or INCLUDE ’mpif.h’, all handles have type INTEGER. In
Fortran with USE mpi_f08, and in C, a different handle type is defined for each category of
objects. With Fortran USE mpi_f08, the handles are defined as Fortran BIND(C) derived
types that consist of only one element INTEGER :: MPI_VAL. The internal handle value is
identical to the Fortran INTEGER value used in the mpi module and mpif.h. The operators
.EQ., .NE., == and /= are overloaded to allow the comparison of these handles. The type
names are identical to the names in C, except that they are not case sensitive. For example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. DATA TYPES 13

TYPE, :: MPI_Comm

INTEGER :: MPI_VAL

END TYPE MPI_Comm

The C types must support the use of the assignment and equality operators.

Advice to implementors. In Fortran, the handle can be an index into a table of
opaque objects in a system table; in C it can be such an index or a pointer to the
object. (End of advice to implementors.)

Rationale. Since the Fortran integer values are equivalent, applications can easily
convert MPI handles between all three supported Fortran methods. For example, an
integer communicator handle COMM can be converted directly into an exactly equivalent
mpi_f08 communicator handle named comm_f08 by comm_f08%MPI_VAL=COMM, and
vice versa. The use of the INTEGER defined handles and the BIND(C) derived type
handles is different: Fortran 2003 (and later) define that BIND(C) derived types can
be used within user defined common blocks, but it is up to the rules of the companion
C compiler how many numerical storage units are used for these BIND(C) derived type
handles. Most compilers use one unit for both, the INTEGER handles and the handles
defined as BIND(C) derived types. (End of rationale.)

Advice to users. If a user wants to substitute mpif.h or the mpi module by the
mpi_f08 module and the application program stores a handle in a Fortran common
block then it is necessary to change the Fortran support method in all application
routines that use this common block, because the number of numerical storage units
of such a handle can be different in the two modules. (End of advice to users.)

Opaque objects are allocated and deallocated by calls that are specific to each object
type. These are listed in the sections where the objects are described. The calls accept a
handle argument of matching type. In an allocate call this is an OUT argument that returns
a valid reference to the object. In a call to deallocate this is an INOUT argument which
returns with an “invalid handle” value. MPI provides an “invalid handle” constant for each
object type. Comparisons to this constant are used to test for validity of the handle.

A call to a deallocate routine invalidates the handle and marks the object for deal-
location. The object is not accessible to the user after the call. However, MPI need not
deallocate the object immediately. Any operation pending (at the time of the deallocate)
that involves this object will complete normally; the object will be deallocated afterwards.

An opaque object and its handle are significant only at the process where the object
was created and cannot be transferred to another process.

MPI provides certain predefined opaque objects and predefined, static handles to these
objects. The user must not free such objects.

Rationale. This design hides the internal representation used for MPI data structures,
thus allowing similar calls in C and Fortran. It also avoids conflicts with the typing
rules in these languages, and easily allows future extensions of functionality. The
mechanism for opaque objects used here loosely follows the POSIX Fortran binding
standard.

The explicit separation of handles in user space and objects in system space allows
space-reclaiming and deallocation calls to be made at appropriate points in the user

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 2. MPI TERMS AND CONVENTIONS

program. If the opaque objects were in user space, one would have to be very careful
not to go out of scope before any pending operation requiring that object completed.
The specified design allows an object to be marked for deallocation, the user program
can then go out of scope, and the object itself still persists until any pending operations
are complete.

The requirement that handles support assignment/comparison is made since such
operations are common. This restricts the domain of possible implementations. The
alternative would have been to allow handles to have been an arbitrary, opaque type.
This would force the introduction of routines to do assignment and comparison, adding
complexity, and was therefore ruled out. (End of rationale.)

Advice to users. A user may accidentally create a dangling reference by assigning to a
handle the value of another handle, and then deallocating the object associated with
these handles. Conversely, if a handle variable is deallocated before the associated
object is freed, then the object becomes inaccessible (this may occur, for example, if
the handle is a local variable within a subroutine, and the subroutine is exited before
the associated object is deallocated). It is the user’s responsibility to avoid adding or
deleting references to opaque objects, except as a result of MPI calls that allocate or
deallocate such objects. (End of advice to users.)

Advice to implementors. The intended semantics of opaque objects is that opaque
objects are separate from one another; each call to allocate such an object copies
all the information required for the object. Implementations may avoid excessive
copying by substituting referencing for copying. For example, a derived datatype
may contain references to its components, rather then copies of its components; a
call to MPI_COMM_GROUP may return a reference to the group associated with the
communicator, rather than a copy of this group. In such cases, the implementation
must maintain reference counts, and allocate and deallocate objects in such a way that
the visible effect is as if the objects were copied. (End of advice to implementors.)

2.5.2 Array Arguments

An MPI call may need an argument that is an array of opaque objects, or an array of
handles. The array-of-handles is a regular array with entries that are handles to objects
of the same type in consecutive locations in the array. Whenever such an array is used,
an additional len argument is required to indicate the number of valid entries (unless this
number can be derived otherwise). The valid entries are at the beginning of the array;
len indicates how many of them there are, and need not be the size of the entire array.
The same approach is followed for other array arguments. In some cases NULL handles are
considered valid entries. When a NULL argument is desired for an array of statuses, one
uses MPI_STATUSES_IGNORE.

2.5.3 State

MPI procedures use at various places arguments with state types. The values of such a data
type are all identified by names, and no operation is defined on them. For example, the
MPI_TYPE_CREATE_SUBARRAY routine has a state argument order with values
MPI_ORDER_C and MPI_ORDER_FORTRAN.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.5. DATA TYPES 15

2.5.4 Named Constants

MPI procedures sometimes assign a special meaning to a special value of a basic type argu-
ment; e.g., tag is an integer-valued argument of point-to-point communication operations,
with a special wild-card value, MPI_ANY_TAG. Such arguments will have a range of regular
values, which is a proper subrange of the range of values of the corresponding basic type;
special values (such as MPI_ANY_TAG) will be outside the regular range. The range of regu-
lar values, such as tag, can be queried using environmental inquiry functions (Chapter 7 of
the MPI-1 document). The range of other values, such as source, depends on values given
by other MPI routines (in the case of source it is the communicator size).

MPI also provides predefined named constant handles, such as MPI_COMM_WORLD.
All named constants, with the exceptions noted below for Fortran, can be used in

initialization expressions or assignments, but not necessarily in array declarations or as
labels in C switch or Fortran select/case statements. This implies named constants
to be link-time but not necessarily compile-time constants. The named constants listed
below are required to be compile-time constants in both C and Fortran. These constants
do not change values during execution. Opaque objects accessed by constant handles are
defined and do not change value between MPI initialization (MPI_INIT) and MPI completion
(MPI_FINALIZE). The handles themselves are constants and can be also used in initialization
expressions or assignments.

The constants that are required to be compile-time constants (and can thus be used
for array length declarations and labels in C switch and Fortran case/select statements)
are:

MPI_MAX_PROCESSOR_NAME

MPI_MAX_LIBRARY_VERSION_STRING

MPI_MAX_ERROR_STRING

MPI_MAX_DATAREP_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_OBJECT_NAME

MPI_MAX_PORT_NAME

MPI_VERSION

MPI_SUBVERSION

MPI_STATUS_SIZE (Fortran only)
MPI_ADDRESS_KIND (Fortran only)
MPI_COUNT_KIND (Fortran only)
MPI_INTEGER_KIND (Fortran only)
MPI_OFFSET_KIND (Fortran only)
MPI_SUBARRAYS_SUPPORTED (Fortran only)
MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)
The constants that cannot be used in initialization expressions or assignments in For-

tran are: MPI_BOTTOM
MPI_STATUS_IGNORE

MPI_STATUSES_IGNORE

MPI_ERRCODES_IGNORE

MPI_IN_PLACE

MPI_ARGV_NULL

MPI_ARGVS_NULL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 2. MPI TERMS AND CONVENTIONS

MPI_UNWEIGHTED

MPI_WEIGHTS_EMPTY

Advice to implementors. In Fortran the implementation of these special constants
may require the use of language constructs that are outside the Fortran standard.
Using special values for the constants (e.g., by defining them through PARAMETER

statements) is not possible because an implementation cannot distinguish these val-
ues from valid data. Typically, these constants are implemented as predefined static
variables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that
the target compiler passes data by address. Inside the subroutine, this address can
be extracted by some mechanism outside the Fortran standard (e.g., by Fortran ex-
tensions or by implementing the function in C). (End of advice to implementors.)

2.5.5 Choice

MPI functions sometimes use arguments with a choice (or union) data type. Distinct calls to
the same routine may pass by reference actual arguments of different types. The mechanism
for providing such arguments will differ from language to language. For Fortran with the
include file mpif.h or the mpi module, the document uses <type> to represent a choice
variable; with the Fortran mpi_f08 module, such arguments are declared with the Fortran
2008 + TR 29113 syntax TYPE(*), DIMENSION(..); for C, we use void *.

Advice to implementors. Implementors can freely choose how to implement choice
arguments in the mpi module, e.g., with a non-standard compiler-dependent method
that has the quality of the call mechanism in the implicit Fortran interfaces, or with
the method defined for the mpi_f08 module. See details in Section 17.1.1. (End of
advice to implementors.)

2.5.6 Addresses

Some MPI procedures use address arguments that represent an absolute address in the
calling program. The datatype of such an argument is MPI_Aint in C and
INTEGER (KIND=MPI_ADDRESS_KIND) in Fortran. These types must have the same width
and encode address values in the same manner such that address values in one language
may be passed directly to another language without conversion. There is the MPI constant
MPI_BOTTOM to indicate the start of the address range.

2.5.7 File Offsets

For I/O there is a need to give the size, displacement, and offset into a file. These quantities
can easily be larger than 32 bits which can be the default size of a Fortran integer. To
overcome this, these quantities are declared to be INTEGER (KIND=MPI_OFFSET_KIND) in
Fortran. In C one uses MPI_Offset. These types must have the same width and encode
address values in the same manner such that offset values in one language may be passed
directly to another language without conversion.

2.5.8 Counts

As described above, MPI defines types (e.g., MPI_Aint) to address locations within memory
and other types (e.g., MPI_Offset) to address locations within files. In addition, some MPI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 17

procedures use count arguments that represent a number of MPI datatypes on which to
operate. At times, one needs a single type that can be used to address locations within
either memory or files as well as express count values, and that type is MPI_Count in C
and INTEGER (KIND=MPI_COUNT_KIND) in Fortran. These types must have the same width
and encode values in the same manner such that count values in one language may be
passed directly to another language without conversion. The size of the MPI_Count type
is determined by the MPI implementation with the restriction that it must be minimally
capable of encoding any value that may be stored in a variable of type int, MPI_Aint, or
MPI_Offset in C and of type INTEGER, INTEGER (KIND=MPI_ADDRESS_KIND), or
INTEGER (KIND=MPI_OFFSET_KIND) in Fortran.

Rationale. Count values logically need to be large enough to encode any value used
for expressing element counts, type maps in memory, type maps in file views, etc. For
backward compatibility reasons, many MPI routines still use int in C and INTEGER

in Fortran as the type of count arguments. (End of rationale.)

2.6 Language Binding

This section defines the rules for MPI language binding in general and for Fortran, and ISO
C, in particular. (Note that ANSI C has been replaced by ISO C.) Defined here are various
object representations, as well as the naming conventions used for expressing this standard.
The actual calling sequences are defined elsewhere.

MPI bindings are for Fortran 90 or later, though they were originally designed to be
usable in Fortran 77 environments. With the mpi_f08 module, two new Fortran features,
assumed type and assumed rank, are also required, see Section 2.5.5.

Since the word PARAMETER is a keyword in the Fortran language, we use the word
“argument” to denote the arguments to a subroutine. These are normally referred to
as parameters in C, however, we expect that C programmers will understand the word
“argument” (which has no specific meaning in C), thus allowing us to avoid unnecessary
confusion for Fortran programmers.

Since Fortran is case insensitive, linkers may use either lower case or upper case when
resolving Fortran names. Users of case sensitive languages should avoid the “mpi_” and
“pmpi_” prefixes.

2.6.1 Deprecated and Removed Names and Functions

A number of chapters refer to deprecated or replaced MPI constructs. These are constructs
that continue to be part of the MPI standard, as documented in Chapter 15, but that users
are recommended not to continue using, since better solutions were provided with newer
versions of MPI. For example, the Fortran binding for MPI-1 functions that have address
arguments uses INTEGER. This is not consistent with the C binding, and causes problems on
machines with 32 bit INTEGERs and 64 bit addresses. In MPI-2, these functions were given
new names with new bindings for the address arguments. The use of the old functions
is deprecated. For consistency, here and in a few other cases, new C functions are also
provided, even though the new functions are equivalent to the old functions. The old names
are deprecated.

Some of the deprecated constructs are now removed, as documented in Chapter 16.
They may still be provided by an implementation for backwards compatibility, but are not

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 2. MPI TERMS AND CONVENTIONS

required.
Table 2.1 shows a list of all of the deprecated and removed constructs. Note that some

C typedefs and Fortran subroutine names are included in this list; they are the types of
callback functions.

Deprecated or removed deprecated removed Replacement
construct since since

MPI_ADDRESS MPI-2.0 MPI-3.0 MPI_GET_ADDRESS
MPI_TYPE_HINDEXED MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_STRUCT MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_STRUCT

MPI_TYPE_EXTENT MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_UB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_TYPE_LB MPI-2.0 MPI-3.0 MPI_TYPE_GET_EXTENT
MPI_LB1 MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED
MPI_UB1 MPI-2.0 MPI-3.0 MPI_TYPE_CREATE_RESIZED

MPI_ERRHANDLER_CREATE MPI-2.0 MPI-3.0 MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI-2.0 MPI-3.0 MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI-2.0 MPI-3.0 MPI_COMM_SET_ERRHANDLER
MPI_Handler_function2 MPI-2.0 MPI-3.0 MPI_Comm_errhandler_function2

MPI_KEYVAL_CREATE MPI-2.0 MPI_COMM_CREATE_KEYVAL
MPI_KEYVAL_FREE MPI-2.0 MPI_COMM_FREE_KEYVAL
MPI_DUP_FN3 MPI-2.0 MPI_COMM_DUP_FN3

MPI_NULL_COPY_FN3 MPI-2.0 MPI_COMM_NULL_COPY_FN3

MPI_NULL_DELETE_FN3 MPI-2.0 MPI_COMM_NULL_DELETE_FN3

MPI_Copy_function2 MPI-2.0 MPI_Comm_copy_attr_function2

COPY_FUNCTION3 MPI-2.0 COMM_COPY_ATTR_FUNCTION3

MPI_Delete_function2 MPI-2.0 MPI_Comm_delete_attr_function2

DELETE_FUNCTION3 MPI-2.0 COMM_DELETE_ATTR_FUNCTION3

MPI_ATTR_DELETE MPI-2.0 MPI_COMM_DELETE_ATTR
MPI_ATTR_GET MPI-2.0 MPI_COMM_GET_ATTR
MPI_ATTR_PUT MPI-2.0 MPI_COMM_SET_ATTR

MPI_COMBINER_HVECTOR_INTEGER4 - MPI-3.0 MPI_COMBINER_HVECTOR4

MPI_COMBINER_HINDEXED_INTEGER4 - MPI-3.0 MPI_COMBINER_HINDEXED4

MPI_COMBINER_STRUCT_INTEGER4 - MPI-3.0 MPI_COMBINER_STRUCT4

MPI::. . . MPI-2.2 MPI-3.0 C language binding
1 Predefined datatype.
2 Callback prototype definition.
3 Predefined callback routine.
4 Constant.
Other entries are regular MPI routines.

Table 2.1: Deprecated and Removed constructs

2.6.2 Fortran Binding Issues

Originally, MPI-1.1 provided bindings for Fortran 77. These bindings are retained, but they
are now interpreted in the context of the Fortran 90 standard. MPI can still be used with
most Fortran 77 compilers, as noted below. When the term “Fortran” is used it means
Fortran 90 or later; it means Fortran 2008 + TR 29113 and later if the mpi_f08 module is
used.

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must
not declare names, e.g., for variables, subroutines, functions, parameters, derived types,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.6. LANGUAGE BINDING 19

abstract interfaces, or modules, beginning with the prefix MPI_. To avoid conflicting with
the profiling interface, programs must also avoid subroutines and functions with the prefix
PMPI_. This is mandated to avoid possible name collisions.

All MPI Fortran subroutines have a return code in the last argument. With USE

mpi_f08, this last argument is declared as OPTIONAL, except for user-defined callback func-
tions (e.g., COMM_COPY_ATTR_FUNCTION) and their predefined callbacks (e.g.,
MPI_NULL_COPY_FN). A few MPI operations which are functions do not have the return
code argument. The return code value for successful completion is MPI_SUCCESS. Other
error codes are implementation dependent; see the error codes in Chapter 8 and Annex A.

Constants representing the maximum length of a string are one smaller in Fortran than
in C as discussed in Section 17.2.9.

Handles are represented in Fortran as INTEGERs, or as a BIND(C) derived type with the
mpi_f08 module; see Section 2.5.1. Binary-valued variables are of type LOGICAL.

Array arguments are indexed from one.
The older MPI Fortran bindings (mpif.h and use mpi) are inconsistent with the For-

tran standard in several respects. These inconsistencies, such as register optimization prob-
lems, have implications for user codes that are discussed in detail in Section 17.1.16.

2.6.3 C Binding Issues

We use the ISO C declaration format. All MPI names have an MPI_ prefix, defined constants
are in all capital letters, and defined types and functions have one capital letter after
the prefix. Programs must not declare names (identifiers), e.g., for variables, functions,
constants, types, or macros, beginning with the prefix MPI_. To support the profiling
interface, programs must not declare functions with names beginning with the prefix PMPI_.

The definition of named constants, function prototypes, and type definitions must be
supplied in an include file mpi.h.

Almost all C functions return an error code. The successful return code will be
MPI_SUCCESS, but failure return codes are implementation dependent.

Type declarations are provided for handles to each category of opaque objects.
Array arguments are indexed from zero.
Logical flags are integers with value 0 meaning “false” and a non-zero value meaning

“true.”
Choice arguments are pointers of type void *.
Address arguments are of MPI defined type MPI_Aint. File displacements are of type

MPI_Offset. MPI_Aint is defined to be an integer of the size needed to hold any valid address
on the target architecture. MPI_Offset is defined to be an integer of the size needed to hold
any valid file size on the target architecture.

2.6.4 Functions and Macros

An implementation is allowed to implement MPI_WTIME, MPI_WTICK, PMPI_WTIME,
PMPI_WTICK, and the handle-conversion functions (MPI_Group_f2c, etc.) in Section 17.2.4,
and no others, as macros in C.

Advice to implementors. Implementors should document which routines are imple-
mented as macros. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 2. MPI TERMS AND CONVENTIONS

Advice to users. If these routines are implemented as macros, they will not work
with the MPI profiling interface. (End of advice to users.)

2.7 Processes

An MPI program consists of autonomous processes, executing their own code, in an MIMD
style. The codes executed by each process need not be identical. The processes communicate
via calls to MPI communication primitives. Typically, each process executes in its own
address space, although shared-memory implementations of MPI are possible.

This document specifies the behavior of a parallel program assuming that only MPI
calls are used. The interaction of an MPI program with other possible means of commu-
nication, I/O, and process management is not specified. Unless otherwise stated in the
specification of the standard, MPI places no requirements on the result of its interaction
with external mechanisms that provide similar or equivalent functionality. This includes,
but is not limited to, interactions with external mechanisms for process control, shared and
remote memory access, file system access and control, interprocess communication, process
signaling, and terminal I/O. High quality implementations should strive to make the results
of such interactions intuitive to users, and attempt to document restrictions where deemed
necessary.

Advice to implementors. Implementations that support such additional mechanisms
for functionality supported within MPI are expected to document how these interact
with MPI. (End of advice to implementors.)

The interaction of MPI and threads is defined in Section 12.4.

2.8 Error Handling

MPI provides the user with reliable message transmission. A message sent is always received
correctly, and the user does not need to check for transmission errors, time-outs, or other
error conditions. In other words, MPI does not provide mechanisms for dealing with failures
in the communication system. If the MPI implementation is built on an unreliable underly-
ing mechanism, then it is the job of the implementor of the MPI subsystem to insulate the
user from this unreliability, or to reflect unrecoverable errors as failures. Whenever possible,
such failures will be reflected as errors in the relevant communication call. Similarly, MPI
itself provides no mechanisms for handling processor failures.

Of course, MPI programs may still be erroneous. A program error can occur when
an MPI call is made with an incorrect argument (non-existing destination in a send op-
eration, buffer too small in a receive operation, etc.). This type of error would occur in
any implementation. In addition, a resource error may occur when a program exceeds the
amount of available system resources (number of pending messages, system buffers, etc.).
The occurrence of this type of error depends on the amount of available resources in the
system and the resource allocation mechanism used; this may differ from system to system.
A high-quality implementation will provide generous limits on the important resources so
as to alleviate the portability problem this represents.

In C and Fortran, almost all MPI calls return a code that indicates successful completion
of the operation. Whenever possible, MPI calls return an error code if an error occurred

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2.9. IMPLEMENTATION ISSUES 21

during the call. By default, an error detected during the execution of the MPI library
causes the parallel computation to abort, except for file operations. However, MPI provides
mechanisms for users to change this default and to handle recoverable errors. The user may
specify that no error is fatal, and handle error codes returned by MPI calls by himself or
herself. Also, the user may provide his or her own error-handling routines, which will be
invoked whenever an MPI call returns abnormally. The MPI error handling facilities are
described in Section 8.3.

Several factors limit the ability of MPI calls to return with meaningful error codes
when an error occurs. MPI may not be able to detect some errors; other errors may be too
expensive to detect in normal execution mode; finally some errors may be “catastrophic”
and may prevent MPI from returning control to the caller in a consistent state.

Another subtle issue arises because of the nature of asynchronous communications: MPI
calls may initiate operations that continue asynchronously after the call returned. Thus, the
operation may return with a code indicating successful completion, yet later cause an error
exception to be raised. If there is a subsequent call that relates to the same operation (e.g.,
a call that verifies that an asynchronous operation has completed) then the error argument
associated with this call will be used to indicate the nature of the error. In a few cases, the
error may occur after all calls that relate to the operation have completed, so that no error
value can be used to indicate the nature of the error (e.g., an error on the receiver in a send
with the ready mode). Such an error must be treated as fatal, since information cannot be
returned for the user to recover from it.

This document does not specify the state of a computation after an erroneous MPI call
has occurred. The desired behavior is that a relevant error code be returned, and the effect
of the error be localized to the greatest possible extent. E.g., it is highly desirable that an
erroneous receive call will not cause any part of the receiver’s memory to be overwritten,
beyond the area specified for receiving the message.

Implementations may go beyond this document in supporting in a meaningful manner
MPI calls that are defined here to be erroneous. For example, MPI specifies strict type
matching rules between matching send and receive operations: it is erroneous to send a
floating point variable and receive an integer. Implementations may go beyond these type
matching rules, and provide automatic type conversion in such situations. It will be helpful
to generate warnings for such non-conforming behavior.

MPI defines a way for users to create new error codes as defined in Section 8.5.

2.9 Implementation Issues

There are a number of areas where an MPI implementation may interact with the operating
environment and system. While MPI does not mandate that any services (such as signal
handling) be provided, it does strongly suggest the behavior to be provided if those services
are available. This is an important point in achieving portability across platforms that
provide the same set of services.

2.9.1 Independence of Basic Runtime Routines

MPI programs require that library routines that are part of the basic language environment
(such as write in Fortran and printf and malloc in ISO C) and are executed after
MPI_INIT and before MPI_FINALIZE operate independently and that their completion is
independent of the action of other processes in an MPI program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 2. MPI TERMS AND CONVENTIONS

Note that this in no way prevents the creation of library routines that provide parallel
services whose operation is collective. However, the following program is expected to com-
plete in an ISO C environment regardless of the size of MPI_COMM_WORLD (assuming that
printf is available at the executing nodes).

int rank;

MPI_Init((void *)0, (void *)0);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

if (rank == 0) printf("Starting program\n");

MPI_Finalize();

The corresponding Fortran programs are also expected to complete.
An example of what is not required is any particular ordering of the action of these

routines when called by several tasks. For example, MPI makes neither requirements nor
recommendations for the output from the following program (again assuming that I/O is
available at the executing nodes).

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

printf("Output from task rank %d\n", rank);

In addition, calls that fail because of resource exhaustion or other error are not con-
sidered a violation of the requirements here (however, they are required to complete, just
not to complete successfully).

2.9.2 Interaction with Signals

MPI does not specify the interaction of processes with signals and does not require that MPI
be signal safe. The implementation may reserve some signals for its own use. It is required
that the implementation document which signals it uses, and it is strongly recommended
that it not use SIGALRM, SIGFPE, or SIGIO. Implementations may also prohibit the use of
MPI calls from within signal handlers.

In multithreaded environments, users can avoid conflicts between signals and the MPI
library by catching signals only on threads that do not execute MPI calls. High quality
single-threaded implementations will be signal safe: an MPI call suspended by a signal will
resume and complete normally after the signal is handled.

2.10 Examples

The examples in this document are for illustration purposes only. They are not intended
to specify the standard. Furthermore, the examples have not been carefully checked or
verified.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 3

Point-to-Point Communication

3.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"

int main(int argc, char *argv[])

{

char message[20];

int myrank;

MPI_Status status;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0) /* code for process zero */

{

strcpy(message,"Hello, there");

MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}

else if (myrank == 1) /* code for process one */

{

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);

printf("received :%s:\n", message);

}

MPI_Finalize();

return 0;

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the

23

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 3. POINT-TO-POINT COMMUNICATION

message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer . In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by probing and canceling a message, channel-like
constructs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

3.2 Blocking Send and Receive Operations

3.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Section 3.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 25

3.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 3.1.

MPI datatype Fortran datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE
MPI_PACKED

Table 3.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 3.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REAL8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 3.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype

MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_LONG_LONG_INT signed long long int

MPI_LONG_LONG (as a synonym) signed long long int

MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short int

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_UNSIGNED_LONG_LONG unsigned long long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_C_COMPLEX float _Complex

MPI_C_FLOAT_COMPLEX (as a synonym) float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE
MPI_PACKED

Table 3.2: Predefined MPI datatypes corresponding to C datatypes

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and INTEGER

(KIND=MPI_COUNT_KIND). This is described in Table 3.3. All predefined datatype handles
are available in all language bindings. See Sections 17.2.6 and 17.2.10 on page 652 and 660
for information on interlanguage communication with these types.

If there is an accompanying C++ compiler then the datatypes in Table 3.4 are also
supported in C and Fortran.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 27

MPI datatype C datatype Fortran datatype

MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_OFFSET_KIND)

MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 3.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI datatype C++ datatype

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

Table 3.4: Predefined MPI datatypes corresponding to C++ datatypes

3.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish different types of messages. The range of valid tag
values is 0, . . . ,UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within this
group. Thus, the range of valid values for dest is 0, . . . , n − 1 ∪ {MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

3.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-

teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),

IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 29

The blocking semantics of this call are described in Section 3.4.
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 3.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG

value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argu-
ment source, if different from MPI_ANY_SOURCE, is specified as a rank within the process
group associated with that same communicator (remote process group, for intercommu-
nicators). Thus, the range of valid values for the source argument is {0, . . . , n − 1} ∪
{MPI_ANY_SOURCE},∪{MPI_PROC_NULL}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 3.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 3. POINT-TO-POINT COMMUNICATION

this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

The use of dest or source=MPI_PROC_NULL to define a “dummy” destination or source
in any send or receive call is described in Section 3.11.

3.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 3.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran with USE mpi or INCLUDE ’mpif.h’, status is an array of INTEGERs of size
MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices
of the entries that store the source, tag and error fields. Thus, status(MPI_SOURCE),
status(MPI_TAG) and status(MPI_ERROR) contain, respectively, the source, tag and error
code of the received message.

With Fortran USE mpi_f08, status is defined as the Fortran BIND(C) derived type
TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields.
Thus, status%MPI_SOURCE, status%MPI_TAG and status%MPI_ERROR contain the source,
tag, and error code of a received message respectively. Additionally, within both the mpi

and the mpi_f08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG,
MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both status
representations. Conversion routines are provided in Section 17.2.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so
that it can be used at any location where the status integer array representation can
be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a
constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 3.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.2. BLOCKING SEND AND RECEIVE OPERATIONS 31

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype of each receive buffer entry (handle)

OUT count number of received entries (integer)

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,

int *count)

MPI_Get_count(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. If the number of entries received exceeds the limits of the count
parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. There are
other situations where the value of count can be set to MPI_UNDEFINED; see Section 4.1.11.

Rationale. Some message-passing libraries use INOUT count, tag and
source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transferred is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important
case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 3. POINT-TO-POINT COMMUNICATION

will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm,
and status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

3.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_Status is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function,
inform the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value
for the argument. In C one would expect it to be NULL, not the address of a special
MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE

cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_PROBE, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When
an array is passed, as in the MPI_{TEST|WAIT}{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

has been passed to that function.
MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same

values in C and Fortran.
It is not allowed to have some of the statuses in an array of statuses for

MPI_{TEST|WAIT}{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3. DATA TYPE MATCHING AND DATA CONVERSION 33

3.3 Data Type Matching and Data Conversion

3.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.

1. Data is pulled out of the send buffer and a message is assembled.

2. A message is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2: the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 3.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

• Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

• Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

• Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 3.1 Sender and receiver specify matching types.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 3. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)

END IF

This code is correct if both a and b are real arrays of size ≥ 10. (In Fortran, it might be
correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 3.2 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)

END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 3.3 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)

END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bounds memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather than the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.3. DATA TYPE MATCHING AND DATA CONVERSION 35

Example 3.4
Transfer of Fortran CHARACTERs.

CHARACTER*10 a

CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0, tag, comm, status, ierr)

END IF

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPI communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

3.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 3. POINT-TO-POINT COMMUNICATION

typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical and character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 3.1–3.3. The first program is correct, assuming that a and
b are REAL arrays of size ≥ 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.
The third program is correct. The exact same sequence of forty bytes that were loaded

from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined
in Section 17.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. COMMUNICATION MODES 37

3.4 Communication Modes

The send call described in Section 3.2.1 is blocking : it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 3.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local : successful completion of the send operation may depend on the occurrence of
a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 3.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.
A buffered mode send operation can be started whether or not a matching receive

has been posted. It may complete before a matching receive is posted. However, unlike the
standard send, this operation is local , and its completion does not depend on the occurrence
of a matching receive. Thus, if a send is executed and no matching receive is posted, then
MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled
by the user — see Section 3.6. Buffer allocation by the user may be required for the buffered
mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 3. POINT-TO-POINT COMMUNICATION

execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local .

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.4. COMMUNICATION MODES 39

MPI_SSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Ssend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in synchronous mode.

MPI_RSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Rsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 3. POINT-TO-POINT COMMUNICATION

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in ready mode.
There is only one receive operation, but it matches any of the send modes. The receive

operation described in the last section is blocking : it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multithreaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Advice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send : The message is sent as soon as possible.

synchronous send : The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send : First protocol may be used for short messages, and second protocol
for long messages.

buffered send : The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multithreaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

3.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 41

Order Messages are non-overtaking : If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multithreaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 3.5 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 3.6 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)

CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)

CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multithreaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 3.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signaled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 3.7 An exchange of messages.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 43

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 3.8 An errant attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 3.9 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
error.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 3. POINT-TO-POINT COMMUNICATION

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or on the communication protocol used.

Many programmers prefer to have more leeway and opt to use the “unsafe” program-
ming style shown in Example 3.9. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 3.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

3.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.

MPI_BUFFER_ATTACH(buffer, size)

IN buffer initial buffer address (choice)

IN size buffer size, in bytes (non-negative integer)

int MPI_Buffer_attach(void* buffer, int size)

MPI_Buffer_attach(buffer, size, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

INTEGER, INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

<type> BUFFER(*)

INTEGER SIZE, IERROR

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time. In C, buffer is the starting address of a memory region. In
Fortran, one can pass the first element of a memory region or a whole array, which must be
‘simply contiguous’ (for ‘simply contiguous,’ see also Section 17.1.12.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.6. BUFFER ALLOCATION AND USAGE 45

MPI_BUFFER_DETACH(buffer_addr, size)

OUT buffer_addr initial buffer address (choice)

OUT size buffer size, in bytes (non-negative integer)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_Buffer_detach(buffer_addr, size, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), INTENT(OUT) :: buffer_addr

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

<type> BUFFER_ADDR(*)

INTEGER SIZE, IERROR

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 3.10 Calls to attach and detach buffers.

#define BUFFSIZE 10000

int size;

char *buff;

MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);

/* a buffer of 10000 bytes can now be used by MPI_Bsend */

MPI_Buffer_detach(&buff, &size);

/* Buffer size reduced to zero */

MPI_Buffer_attach(buff, size);

/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are used
differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address of the
pointer is passed to MPI_Buffer_detach, so that this call can return the pointer value.
In Fortran with the mpi module or mpif.h, the type of the buffer_addr argument is
wrongly defined and the argument is therefore unused. In Fortran with the mpi_f08

module, the address of the buffer is returned as TYPE(C_PTR), see also Example 8.1
about the use of C_PTR pointers. (End of advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than
void* and void**, respectively), so as to avoid complex type casts. E.g., in the last
example, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach without type casting. If the formal parameter had type void**
then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is
associated with the process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be
dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

3.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 4.2 and the nonblocking communication functions described in Section 3.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

• Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

• Compute the number, n, of bytes needed to store an entry for the new message. An
upper bound on n can be computed as follows: A call to the function
MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 4.2). The MPI constant
MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

• Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

• Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 47

• Post nonblocking send (standard mode) for packed data.

• Return

3.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call initiates
the send operation, but does not complete it. The send start call can return before the
message was copied out of the send buffer. A separate send complete call is needed to
complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before
it completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify that
the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard ,
buffered , synchronous and ready . These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start
call is local: it returns immediately, irrespective of the status of other processes. If the call
causes some system resource to be exhausted, then it will fail and return an error code.
Quality implementations of MPI should ensure that this happens only in “pathological”
cases. That is, an MPI implementation should be able to support a large number of pending
nonblocking operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.
(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the receive-complete may
not complete until a matching receive is posted, and the message was copied into the receive
buffer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 3. POINT-TO-POINT COMMUNICATION

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g.,
the blocking version of buffered send is capable of completing regardless of when a
matching receive call is made. However, separating the start from the completion
of these sends still gives some opportunity for optimization within the MPI library.
For example, starting a buffered send gives an implementation more flexibility in
determining if and how the message is buffered. There are also advantages for both
nonblocking buffered and ready modes when data copying can be done concurrently
with computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

3.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

3.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or R
is used for buffered , synchronous or ready mode. In addition a prefix of I (for immediate)
indicates that the call is nonblocking.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 49

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a standard mode, nonblocking send.

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a buffered mode, nonblocking send.

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Issend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode, nonblocking send.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 51

MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-

teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Start a nonblocking receive.
These calls allocate a communication request object and associate it with the request

handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–
17.1.20. (End of advice to users.)

3.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 3.9). A handle is active if
it is neither null nor inactive. An empty status is a status which is set to return tag =
MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally
configured so that calls to MPI_GET_COUNT, MPI_GET_ELEMENTS, and
MPI_GET_ELEMENTS_X return count = 0 and MPI_TEST_CANCELLED returns false. We
set a status variable to empty when the value returned by it is not significant. Status is set
in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 53

contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only by
the MPI completion functions that take arrays of MPI_Status. For the functions MPI_TEST,
MPI_TESTANY, MPI_WAIT, and MPI_WAITANY, which return a single MPI_Status value,
the normal MPI error return process should be used (not the MPI_ERROR field in the
MPI_Status argument).

MPI_WAIT(request, status)

INOUT request request (handle)

OUT status status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_Wait(request, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAIT(REQUEST, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_WAIT returns when the operation identified by request is complete. If
the request is an active persistent request, it is marked inactive. Any other type of request
is and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 3.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 3.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that
the user send buffer can be reused — i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no
longer cancel the send (see Section 3.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors. In a multithreaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_TEST(request, flag, status)

INOUT request communication request (handle)

OUT flag true if operation completed (logical)

OUT status status object (Status)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

MPI_Test(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_TEST returns flag = true if the operation identified by request is complete.
In such a case, the status object is set to contain information on the completed operation.
If the request is an active persistent request, it is marked as inactive. Any other type of
request is deallocated and the request handle is set to MPI_REQUEST_NULL. The call returns
flag = false if the operation identified by request is not complete. In this case, the value of
the status object is undefined. MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed
as described in Section 3.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 3.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and
receives.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Example 3.11 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)

**** do some computation to mask latency ****

CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)

**** do some computation to mask latency ****

CALL MPI_WAIT(request, status, ierr)

END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 55

A request object can be deallocated without waiting for the associated communication
to complete, by using the following operation.

MPI_REQUEST_FREE(request)

INOUT request communication request (handle)

int MPI_Request_free(MPI_Request *request)

MPI_Request_free(request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_FREE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

Mark the request object for deallocation and set request to MPI_REQUEST_NULL. An
ongoing communication that is associated with the request will be allowed to complete. The
request will be deallocated only after its completion.

Rationale. The MPI_REQUEST_FREE mechanism is provided for reasons of perfor-
mance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not
possible to check for the successful completion of the associated communication with
calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the
communication, an error code cannot be returned to the user — such an error must
be treated as fatal. An active receive request should never be freed as the receiver
will have no way to verify that the receive has completed and the receive buffer can
be reused. (End of advice to users.)

Example 3.12 An example using MPI_REQUEST_FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

IF (rank.EQ.0) THEN

DO i=1, n

CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_REQUEST_FREE(req, ierr)

CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_WAIT(req, status, ierr)

END DO

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_WAIT(req, status, ierr)

DO I=1, n-1

CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_REQUEST_FREE(req, ierr)

CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_WAIT(req, status, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 3. POINT-TO-POINT COMMUNICATION

END DO

CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)

CALL MPI_WAIT(req, status, ierr)

END IF

3.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 3.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 3.5
is extended to nonblocking communication, with this definition of order being used.

Example 3.13 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.0) THEN

CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)

CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)

CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)

END IF

CALL MPI_WAIT(r1, status, ierr)

CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 3.14 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (RANK.EQ.0) THEN

CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)

CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)

CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)

CALL MPI_WAIT(r, status, ierr)

END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 57

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

3.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
operations in a list.

MPI_WAITANY (count, array_of_requests, index, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of handle for operation that completed (integer)

OUT status status object (Status)

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,

MPI_Status *status)

MPI_Waitany(count, array_of_requests, index, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, INTENT(OUT) :: index

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

Blocks until one of the operations associated with the active requests in the array has
completed. If more than one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing operation. (The array is indexed from zero in C, and from one in
Fortran.) If the request is an active persistent request, it is marked inactive. Any other
type of request is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of_requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 3. POINT-TO-POINT COMMUNICATION

immediately with index = MPI_UNDEFINED, and an empty status.
The execution of MPI_WAITANY(count, array_of_requests, index, status) has the same

effect as the execution of MPI_WAIT(&array_of_requests[i], status), where i is the value
returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an
array containing one active entry is equivalent to MPI_WAIT.

MPI_TESTANY(count, array_of_requests, index, flag, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of operation that completed, or

MPI_UNDEFINED if none completed (integer)

OUT flag true if one of the operations is complete (logical)

OUT status status object (Status)

int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,

int *flag, MPI_Status *status)

MPI_Testany(count, array_of_requests, index, flag, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, INTENT(OUT) :: index

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation. If the request is an active
persistent request, it is marked as inactive. Any other type of request is deallocated and
the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from
one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns
a value of MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of
MPI_TESTANY(count, array_of_requests, index, status) has the same effect as the execution
of MPI_TEST(&array_of_requests[i], flag, status), for i=0, 1 ,. . ., count-1, in some arbitrary
order, until one call returns flag = true, or all fail. In the former case, index is set to the
last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an
array containing one active entry is equivalent to MPI_TEST.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 59

MPI_WAITALL(count, array_of_requests, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status array_of_statuses[])

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*)

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The
i-th entry in array_of_statuses is set to the return status of the i-th operation. Active
persistent requests are marked inactive. Requests of any other type are deallocated and the
corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain
null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL(count, array_of_requests, array_of_statuses)
has the same effect as the execution of
MPI_WAIT(&array_of_request[i], &array_of_statuses[i]), for i=0 ,. . ., count-1, in some arbi-
trary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desirable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the
error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

60 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT flag (logical)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,

MPI_Status array_of_statuses[])

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case, each
status entry that corresponds to an active request is set to the status of the corresponding
operation. Active persistent requests are marked inactive. Requests of any other type are
deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL.
Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled in the same
manner as errors in MPI_WAITALL.

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of

integers)

OUT array_of_statuses array of status objects for operations that completed

(array of Status)

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 61

MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,

array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)

INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of_requests that
have completed. Returns in the first outcount locations of the array array_of_indices the
indices of these operations (index within the array array_of_requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the
array array_of_status the status for these completed operations. Completed active persistent
requests are marked as inactive. Any other type or request that completed is deallocated,
and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then
it is desirable to return specific information on each communication. The arguments
outcount, array_of_indices and array_of_statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS

if no request resulted in an error, and will return another error code if it failed for other
reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses.

MPI_TESTSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of

integers)

OUT array_of_statuses array of status objects for operations that completed

(array of Status)

int MPI_Testsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

62 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,

array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)

INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local operation, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request
for a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,
with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

Example 3.15 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)

CALL MPI_COMM_RANK(comm, rank, ierr)

IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)

CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)

CALL MPI_WAIT(request, status, ierr)

END DO

ELSE ! rank=0 -- server code

DO i=1, size-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.7. NONBLOCKING COMMUNICATION 63

CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, request_list(i), ierr)

END DO

DO WHILE(.TRUE.)

CALL MPI_WAITANY(size-1, request_list, index, status, ierr)

CALL DO_SERVICE(a(1,index)) ! handle one message

CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag,

comm, request_list(index), ierr)

END DO

END IF

Example 3.16 Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)

CALL MPI_COMM_RANK(comm, rank, ierr)

IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)

CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)

CALL MPI_WAIT(request, status, ierr)

END DO

ELSE ! rank=0 -- server code

DO i=1, size-1

CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, request_list(i), ierr)

END DO

DO WHILE(.TRUE.)

CALL MPI_WAITSOME(size, request_list, numdone,

indices, statuses, ierr)

DO i=1, numdone

CALL DO_SERVICE(a(1, indices(i)))

CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,

comm, request_list(indices(i)), ierr)

END DO

END DO

END IF

3.7.6 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_REQUEST_GET_STATUS(request, flag, status)

IN request request (handle)

OUT flag boolean flag, same as from MPI_TEST (logical)

OUT status status object if flag is true (Status)

int MPI_Request_get_status(MPI_Request request, int *flag,

MPI_Status *status)

MPI_Request_get_status(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_GET_STATUS(REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

Sets flag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag=false
if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request
argument. In such a case the operation returns with flag=true and empty status.

3.8 Probe and Cancel

The MPI_PROBE, MPI_IPROBE, MPI_MPROBE, and MPI_IMPROBE operations allow in-
coming messages to be checked for, without actually receiving them. The user can then
decide how to receive them, based on the information returned by the probe (basically, the
information returned by status). In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

The MPI_CANCEL operation allows pending communications to be cancelled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

3.8.1 Probe

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT flag (logical)

OUT status status object (Status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 65

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Status *status)

MPI_Iprobe(source, tag, comm, flag, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI_RECV(. . ., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 3.2.5 to find the source, tag and length of the
probed message.

A subsequent receive executed with the same communicator, and the source and tag re-
turned in status by MPI_IPROBE will receive the message that was matched by the probe, if
no other intervening receive occurs after the probe, and the send is not successfully cancelled
before the receive. If the receiving process is multithreaded, it is the user’s responsibility
to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

A probe with MPI_PROC_NULL as source returns flag = true, and the status object
returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 3.11.

MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(source, tag, comm, status, ierror)

INTEGER, INTENT(IN) :: source, tag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

66 CHAPTER 3. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:
if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and a
matching message has been issued, then the call to MPI_IPROBE will eventually return flag
= true unless the message is received by another concurrent receive operation or matched
by a concurrent matched probe.

Example 3.17
Use blocking probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)

ELSE IF (rank.EQ.2) THEN

DO i=1, 2

CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)

IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)

END IF

END DO

END IF

Each message is received with the right type.

Example 3.18 A similar program to the previous example, but now it has a problem.

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)

ELSE IF (rank.EQ.2) THEN

DO i=1, 2

CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 67

comm, status, ierr)

IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,

0, comm, status, ierr)

ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, comm, status, ierr)

END IF

END DO

END IF

In Example 3.18, the two receive calls in statements labeled 100 and 200 in Example 3.17
slightly modified, using MPI_ANY_SOURCE as the source argument. The program is now
incorrect: the receive operation may receive a message that is distinct from the message
probed by the preceding call to MPI_PROBE.

Advice to users. In a multithreaded MPI program, MPI_PROBE and
MPI_IPROBE might need special care. If a thread probes for a message and then
immediately posts a matching receive, the receive may match a message other than
that found by the probe since another thread could concurrently receive that original
message [29]. MPI_MPROBE and MPI_IMPROBE solve this problem by matching the
incoming message so that it may only be received with MPI_MRECV or MPI_IMRECV
on the corresponding message handle. (End of advice to users.)

Advice to implementors. A call to MPI_PROBE(source, tag, comm, status) will match
the message that would have been received by a call to MPI_RECV(. . ., source, tag,
comm, status) executed at the same point. Suppose that this message has source s,
tag t and communicator c. If the tag argument in the probe call has value
MPI_ANY_TAG then the message probed will be the earliest pending message from
source s with communicator c and any tag; in any case, the message probed will be
the earliest pending message from source s with tag t and communicator c (this is the
message that would have been received, so as to preserve message order). This message
continues as the earliest pending message from source s with tag t and communicator
c, until it is received. A receive operation subsequent to the probe that uses the
same communicator as the probe and uses the tag and source values returned by
the probe, must receive this message, unless it has already been received by another
receive operation. (End of advice to implementors.)

3.8.2 Matching Probe

The function MPI_PROBE checks for incoming messages without receiving them. Since the
list of incoming messages is global among the threads of each MPI process, it can be hard
to use this functionality in threaded environments [29, 26].

Like MPI_PROBE and MPI_IPROBE, the MPI_MPROBE and MPI_IMPROBE opera-
tions allow incoming messages to be queried without actually receiving them, except that
MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the specific message
that was matched regardless of other intervening probe or receive operations. This gives
the application an opportunity to decide how to receive the message, based on the infor-
mation returned by the probe. In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

68 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_IMPROBE(source, tag, comm, flag, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT flag flag (logical)

OUT message returned message (handle)

OUT status status object (Status)

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Message *message, MPI_Status *status)

MPI_Improbe(source, tag, comm, flag, message, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Message), INTENT(OUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_IMPROBE(source, tag, comm, flag, message, status) returns flag = true if there is
a message that can be received and that matches the pattern specified by the arguments
source, tag, and comm. The call matches the same message that would have been received
by a call to MPI_RECV(. . ., source, tag, comm, status) executed at the same point in the
program and returns in status the same value that would have been returned by MPI_RECV.
In addition, it returns in message a handle to the matched message. Otherwise, the call
returns flag = false, and leaves status and message undefined.

A matched receive (MPI_MRECV or MPI_IMRECV) executed with the message han-
dle will receive the message that was matched by the probe. Unlike MPI_IPROBE, no
other probe or receive operation may match the message returned by MPI_IMPROBE.
Each message returned by MPI_IMPROBE must be received with either MPI_MRECV or
MPI_IMRECV.

The source argument of MPI_IMPROBE can be MPI_ANY_SOURCE, and the tag argu-
ment can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source
and/or with an arbitrary tag. However, a specific communication context must be provided
with the comm argument.

A synchronous send operation that is matched with MPI_IMPROBE or MPI_MPROBE
will complete successfully only if both a matching receive is posted with MPI_MRECV or
MPI_IMRECV, and the receive operation has started to receive the message sent by the
synchronous send.

There is a special predefined message: MPI_MESSAGE_NO_PROC, which is a message
which has MPI_PROC_NULL as its source process. The predefined constant
MPI_MESSAGE_NULL is the value used for invalid message handles.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 69

A matching probe with MPI_PROC_NULL as source returns flag = true, message =

MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag
= MPI_ANY_TAG, and count = 0; see Section 3.11. It is not necessary to call MPI_MRECV
or MPI_IMRECV with MPI_MESSAGE_NO_PROC, but it is not erroneous to do so.

Rationale. MPI_MESSAGE_NO_PROC was chosen instead of
MPI_MESSAGE_PROC_NULL to avoid possible confusion as another null handle con-
stant. (End of rationale.)

MPI_MPROBE(source, tag, comm, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT message returned message (handle)

OUT status status object (Status)

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,

MPI_Status *status)

MPI_Mprobe(source, tag, comm, message, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Message), INTENT(OUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MPROBE behaves like MPI_IMPROBE except that it is a blocking call that returns
only after a matching message has been found.

The implementation of MPI_MPROBE and MPI_IMPROBE needs to guarantee progress
in the same way as in the case of MPI_PROBE and MPI_IPROBE.

3.8.3 Matched Receives

The functions MPI_MRECV and MPI_IMRECV receive messages that have been previously
matched by a matching probe (Section 3.8.2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

70 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_MRECV(buf, count, datatype, message, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-

teger)

IN datatype datatype of each receive buffer element (handle)

INOUT message message (handle)

OUT status status object (Status)

int MPI_Mrecv(void* buf, int count, MPI_Datatype datatype,

MPI_Message *message, MPI_Status *status)

MPI_Mrecv(buf, count, datatype, message, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Message), INTENT(INOUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

This call receives a message matched by a matching probe operation (Section 3.8.2).
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If the message is shorter than the receive buffer, then only those locations corresponding
to the (shorter) message are modified.

On return from this function, the message handle is set to MPI_MESSAGE_NULL. All
errors that occur during the execution of this operation are handled according to the error
handler set for the communicator used in the matching probe call that produced the message
handle.

If MPI_MRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with the status object set to source = MPI_PROC_NULL, tag =
MPI_ANY_TAG, and count = 0, as if a receive from MPI_PROC_NULL was issued (see Sec-
tion 3.11). A call to MPI_MRECV with MPI_MESSAGE_NULL is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.8. PROBE AND CANCEL 71

MPI_IMRECV(buf, count, datatype, message, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-

teger)

IN datatype datatype of each receive buffer element (handle)

INOUT message message (handle)

OUT request communication request (handle)

int MPI_Imrecv(void* buf, int count, MPI_Datatype datatype,

MPI_Message *message, MPI_Request *request)

MPI_Imrecv(buf, count, datatype, message, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Message), INTENT(INOUT) :: message

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IMRECV is the nonblocking variant of MPI_MRECV and starts a nonblocking
receive of a matched message. Completion semantics are similar to MPI_IRECV as described
in Section 3.7.2. On return from this function, the message handle is set to
MPI_MESSAGE_NULL.

If MPI_IMRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with a request object which, when completed, will yield a status
object set to source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0, as if a
receive from MPI_PROC_NULL was issued (see Section 3.11). A call to MPI_IMRECV with
MPI_MESSAGE_NULL is erroneous.

Advice to implementors. If reception of a matched message is started with
MPI_IMRECV, then it is possible to cancel the returned request with MPI_CANCEL. If
MPI_CANCEL succeeds, the matched message must be found by a subsequent message
probe (MPI_PROBE, MPI_IPROBE, MPI_MPROBE, or MPI_IMPROBE), received by
a subsequent receive operation or cancelled by the sender. See Section 3.8.4 for details
about MPI_CANCEL. The cancellation of operations initiated with MPI_IMRECV may
fail. (End of advice to implementors.)

3.8.4 Cancel

MPI_CANCEL(request)

IN request communication request (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

72 CHAPTER 3. POINT-TO-POINT COMMUNICATION

int MPI_Cancel(MPI_Request *request)

MPI_Cancel(request, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CANCEL(REQUEST, IERROR)

INTEGER REQUEST, IERROR

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communication
operation (send or receive). The cancel call is local. It returns immediately, possibly before
the communication is actually cancelled. It is still necessary to call MPI_REQUEST_FREE,
MPI_WAIT or MPI_TEST (or any of the derived operations) with the cancelled request as
argument after the call to MPI_CANCEL. If a communication is marked for cancellation,
then a MPI_WAIT call for that communication is guaranteed to return, irrespective of
the activities of other processes (i.e., MPI_WAIT behaves as a local function); similarly if
MPI_TEST is repeatedly called in a busy wait loop for a cancelled communication, then
MPI_TEST will eventually be successful.

MPI_CANCEL can be used to cancel a communication that uses a persistent request (see
Section 3.9), in the same way it is used for nonpersistent requests. A successful cancellation
cancels the active communication, but not the request itself. After the call to MPI_CANCEL
and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can
be activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the
pending message.

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, then it must be the case that either the send completes
normally, in which case the message sent was received at the destination process, or that
the send is successfully cancelled, in which case no part of the message was received at the
destination. Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then it must be the case that either the receive completes normally,
or that the receive is successfully cancelled, in which case no part of the receive buffer is
altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed
by reference, the C binding has listed the argument type as MPI_Request* since MPI-
1.0. This function signature therefore cannot be changed without breaking existing
MPI applications. (End of rationale.)

MPI_TEST_CANCELLED(status, flag)

IN status status object (Status)

OUT flag (logical)

int MPI_Test_cancelled(const MPI_Status *status, int *flag)

MPI_Test_cancelled(status, flag, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.9. PERSISTENT COMMUNICATION REQUESTS 73

TYPE(MPI_Status), INTENT(IN) :: status

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)

LOGICAL FLAG

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

Returns flag = true if the communication associated with the status object was cancelled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.
Returns flag = false, otherwise. If a receive operation might be cancelled then one should
call MPI_TEST_CANCELLED first, to check whether the operation was cancelled, before
checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is
transferred to the receiver before a matching receive is posted), then the cancellation
of this send may require communication with the intended receiver in order to free
allocated buffers. On some systems this may require an interrupt to the intended
receiver. Note that, while communication may be needed to implement
MPI_CANCEL, this is still a local operation, since its completion does not depend on
the code executed by other processes. If processing is required on another process,
this should be transparent to the application (hence the need for an interrupt and an
interrupt handler). (End of advice to implementors.)

3.9 Persistent Communication Requests

Often a communication with the same argument list is repeatedly executed within the inner
loop of a parallel computation. In such a situation, it may be possible to optimize the com-
munication by binding the list of communication arguments to a persistent communication
request once and, then, repeatedly using the request to initiate and complete messages.
The persistent request thus created can be thought of as a communication port or a “half-
channel.” It does not provide the full functionality of a conventional channel, since there
is no binding of the send port to the receive port. This construct allows reduction of the
overhead for communication between the process and communication controller, but not of
the overhead for communication between one communication controller and another. It is
not necessary that messages sent with a persistent request be received by a receive operation
using a persistent request, or vice versa.

A persistent communication request is created using one of the five following calls.
These calls involve no communication.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

74 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_SEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Send_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a standard mode send operation, and
binds to it all the arguments of a send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Bsend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.9. PERSISTENT COMMUNICATION REQUESTS 75

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a buffered mode send.

MPI_SSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ssend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a synchronous mode send operation.

MPI_RSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

76 CHAPTER 3. POINT-TO-POINT COMMUNICATION

int MPI_Rsend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a ready mode send operation.

MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements received (non-negative integer)

IN datatype type of each element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it was created — no active com-
munication is attached to the request.

A communication (send or receive) that uses a persistent request is initiated by the
function MPI_START.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.9. PERSISTENT COMMUNICATION REQUESTS 77

MPI_START(request)

INOUT request communication request (handle)

int MPI_Start(MPI_Request *request)

MPI_Start(request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

The argument, request, is a handle returned by one of the previous five calls. The
associated request should be inactive. The request becomes active once the call is made.

If the request is for a send with ready mode, then a matching receive should be posted
before the call is made. The communication buffer should not be modified after the call,
and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations
described in Section 3.7. That is, a call to MPI_START with a request created by
MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a
call to MPI_START with a request created by MPI_BSEND_INIT starts a communication
in the same manner as a call to MPI_IBSEND; and so on.

MPI_STARTALL(count, array_of_requests)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handle)

int MPI_Startall(int count, MPI_Request array_of_requests[])

MPI_Startall(count, array_of_requests, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

Start all communications associated with requests in array_of_requests. A call to
MPI_STARTALL(count, array_of_requests) has the same effect as calls to
MPI_START (&array_of_requests[i]), executed for i=0 ,. . ., count-1, in some arbitrary order.

A communication started with a call to MPI_START or MPI_STARTALL is completed
by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Sec-
tion 3.7.5. The request becomes inactive after successful completion of such call. The re-
quest is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL
call.

A persistent request is deallocated by a call to MPI_REQUEST_FREE (Section 3.7.3).
The call to MPI_REQUEST_FREE can occur at any point in the program after the per-

sistent request was created. However, the request will be deallocated only after it becomes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

78 CHAPTER 3. POINT-TO-POINT COMMUNICATION

inactive. Active receive requests should not be freed. Otherwise, it will not be possible
to check that the receive has completed. It is preferable, in general, to free requests when
they are inactive. If this rule is followed, then the functions described in this section will be
invoked in a sequence of the form, Create (Start Complete)∗ Free where ∗ indicates
zero or more repetitions. If the same communication object is used in several concurrent
threads, it is the user’s responsibility to coordinate calls so that the correct sequence is
obeyed.

A send operation initiated with MPI_START can be matched with any receive operation
and, likewise, a receive operation initiated with MPI_START can receive messages generated
by any send operation.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–
17.1.20. (End of advice to users.)

3.10 Send-Receive

The send-receive operations combine in one call the sending of a message to one destination
and the receiving of another message, from another process. The two (source and destina-
tion) are possibly the same. A send-receive operation is very useful for executing a shift
operation across a chain of processes. If blocking sends and receives are used for such a shift,
then one needs to order the sends and receives correctly (for example, even processes send,
then receive, odd processes receive first, then send) so as to prevent cyclic dependencies that
may lead to deadlock. When a send-receive operation is used, the communication subsys-
tem takes care of these issues. The send-receive operation can be used in conjunction with
the functions described in Chapter 7 in order to perform shifts on various logical topologies.
Also, a send-receive operation is useful for implementing remote procedure calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.10. SEND-RECEIVE 79

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

OUT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-

teger)

IN recvtype type of elements in receive buffer (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,

recvcount, recvtype, source, recvtag, comm, status, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,

recvtag

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,

RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,

SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive operation. Both send and receive use the same
communicator, but possibly different tags. The send buffer and receive buffers must be
disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

80 CHAPTER 3. POINT-TO-POINT COMMUNICATION

MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, sta-
tus)

INOUT buf initial address of send and receive buffer (choice)

IN count number of elements in send and receive buffer (non-

negative integer)

IN datatype type of elements in send and receive buffer (handle)

IN dest rank of destination (integer)

IN sendtag send message tag (integer)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,

int dest, int sendtag, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,

comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,

COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

3.11 Null Processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a non-circular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI_PROC_NULL

has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

3.11. NULL PROCESSES 81

from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to
the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the
status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A
probe or matching probe with source = MPI_PROC_NULL succeeds and returns as soon as
possible, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and
count = 0. A matching probe (cf. Section 3.8.2) with MPI_PROC_NULL as source returns
flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source =
MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

82 CHAPTER 3. POINT-TO-POINT COMMUNICATION

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 4

Datatypes

Basic datatypes were introduced in Section 3.2.2 and in Section 3.3. In this chapter, this
model is extended to describe any data layout. We consider general datatypes that allow
one to transfer efficiently heterogeneous and noncontiguous data. We conclude with the
description of calls for explicit packing and unpacking of messages.

4.1 Derived Datatypes

Up to here, all point to point communications have involved only buffers containing a
sequence of identical basic datatypes. This is too constraining on two accounts. One
often wants to pass messages that contain values with different datatypes (e.g., an integer
count, followed by a sequence of real numbers); and one often wants to send noncontiguous
data (e.g., a sub-block of a matrix). One solution is to pack noncontiguous data into
a contiguous buffer at the sender site and unpack it at the receiver site. This has the
disadvantage of requiring additional memory-to-memory copy operations at both sites, even
when the communication subsystem has scatter-gather capabilities. Instead, MPI provides
mechanisms to specify more general, mixed, and noncontiguous communication buffers. It
is up to the implementation to decide whether data should be first packed in a contiguous
buffer before being transmitted, or whether it can be collected directly from where it resides.

The general mechanisms provided here allow one to transfer directly, without copying,
objects of various shapes and sizes. It is not assumed that the MPI library is cognizant of
the objects declared in the host language. Thus, if one wants to transfer a structure, or an
array section, it will be necessary to provide in MPI a definition of a communication buffer
that mimics the definition of the structure or array section in question. These facilities can
be used by library designers to define communication functions that can transfer objects
defined in the host language — by decoding their definitions as available in a symbol table
or a dope vector. Such higher-level communication functions are not part of MPI.

More general communication buffers are specified by replacing the basic datatypes that
have been used so far with derived datatypes that are constructed from basic datatypes using
the constructors described in this section. These methods of constructing derived datatypes
can be applied recursively.

A general datatype is an opaque object that specifies two things:

• A sequence of basic datatypes

• A sequence of integer (byte) displacements

83

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

84 CHAPTER 4. DATATYPES

The displacements are not required to be positive, distinct, or in increasing order.
Therefore, the order of items need not coincide with their order in store, and an item may
appear more than once. We call such a pair of sequences (or sequence of pairs) a type
map. The sequence of basic datatypes (displacements ignored) is the type signature of the
datatype.

Let

Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)},

be such a type map, where typei are basic types, and dispi are displacements. Let

Typesig = {type0, . . . , typen−1}

be the associated type signature. This type map, together with a base address buf, specifies
a communication buffer: the communication buffer that consists of n entries, where the
i-th entry is at address buf + dispi and has type typei. A message assembled from such a
communication buffer will consist of n values, of the types defined by Typesig.

Most datatype constructors have replication count or block length arguments. Allowed
values are non-negative integers. If the value is zero, no elements are generated in the type
map and there is no effect on datatype bounds or extent.

We can use a handle to a general datatype as an argument in a send or receive operation,
instead of a basic datatype argument. The operation MPI_SEND(buf, 1, datatype,. . .) will
use the send buffer defined by the base address buf and the general datatype associated
with datatype; it will generate a message with the type signature determined by the datatype
argument. MPI_RECV(buf, 1, datatype,. . .) will use the receive buffer defined by the base
address buf and the general datatype associated with datatype.

General datatypes can be used in all send and receive operations. We discuss, in
Section 4.1.11, the case where the second argument count has value > 1.

The basic datatypes presented in Section 3.2.2 are particular cases of a general datatype,
and are predefined. Thus, MPI_INT is a predefined handle to a datatype with type map
{(int, 0)}, with one entry of type int and displacement zero. The other basic datatypes
are similar.

The extent of a datatype is defined to be the span from the first byte to the last byte
occupied by entries in this datatype, rounded up to satisfy alignment requirements. That
is, if

Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)},

then

lb(Typemap) = min
j
dispj ,

ub(Typemap) = max
j

(dispj + sizeof(typej)) + ε, and

extent(Typemap) = ub(Typemap)− lb(Typemap). (4.1)

If typej requires alignment to a byte address that is a multiple of kj , then ε is the least
non-negative increment needed to round extent(Typemap) to the next multiple of maxj kj .
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments kj according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND(C) derived types, or derived types that are neither SEQUENCE
nor BIND(C). The complete definition of extent is given in Section 4.1.6.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 85

Example 4.1 Assume that Type = {(double, 0), (char, 8)} (a double at displacement
zero, followed by a char at displacement eight). Assume, furthermore, that doubles have
to be strictly aligned at addresses that are multiples of eight. Then, the extent of this
datatype is 16 (9 rounded to the next multiple of 8). A datatype that consists of a character
immediately followed by a double will also have an extent of 16.

Rationale. The definition of extent is motivated by the assumption that the amount
of padding added at the end of each structure in an array of structures is the least
needed to fulfill alignment constraints. More explicit control of the extent is provided
in Section 4.1.6. Such explicit control is needed in cases where the assumption does not
hold, for example, where union types are used. In Fortran, structures can be expressed
with several language features, e.g., common blocks, SEQUENCE derived types, or
BIND(C) derived types. The compiler may use different alignments, and therefore,
it is recommended to use MPI_TYPE_CREATE_RESIZED for arrays of structures if
an alignment may cause an alignment-gap at the end of a structure as described in
Section 4.1.6 and in Section 17.1.15. (End of rationale.)

4.1.1 Type Constructors with Explicit Addresses

In Fortran, the functions MPI_TYPE_CREATE_HVECTOR,
MPI_TYPE_CREATE_HINDEXED, MPI_TYPE_CREATE_HINDEXED_BLOCK,
MPI_TYPE_CREATE_STRUCT, and MPI_GET_ADDRESS accept arguments of type
INTEGER(KIND=MPI_ADDRESS_KIND), wherever arguments of type MPI_Aint are used in C.
On Fortran 77 systems that do not support the Fortran 90 KIND notation, and where
addresses are 64 bits whereas default INTEGERs are 32 bits, these arguments will be of type
INTEGER*8.

4.1.2 Datatype Constructors

Contiguous The simplest datatype constructor is MPI_TYPE_CONTIGUOUS which allows
replication of a datatype into contiguous locations.

MPI_TYPE_CONTIGUOUS(count, oldtype, newtype)

IN count replication count (non-negative integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_Type_contiguous(count, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

86 CHAPTER 4. DATATYPES

newtype is the datatype obtained by concatenating count copies of
oldtype. Concatenation is defined using extent as the size of the concatenated copies.

Example 4.2 Let oldtype have type map {(double, 0), (char, 8)}, with extent 16, and let
count = 3. The type map of the datatype returned by newtype is

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40)};

i.e., alternating double and char elements, with displacements 0, 8, 16, 24, 32, 40.
In general, assume that the type map of oldtype is

{(type0, disp0), . . . , (typen−1, dispn−1)},

with extent ex. Then newtype has a type map with count · n entries defined by:

{(type0, disp0), . . . , (typen−1, dispn−1), (type0, disp0 + ex), . . . , (typen−1, dispn−1 + ex),

. . . , (type0, disp0 + ex · (count− 1)), . . . , (typen−1, dispn−1 + ex · (count− 1))}.

Vector The function MPI_TYPE_VECTOR is a more general constructor that allows repli-
cation of a datatype into locations that consist of equally spaced blocks. Each block is
obtained by concatenating the same number of copies of the old datatype. The spacing
between blocks is a multiple of the extent of the old datatype.

MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-

ger)

IN stride number of elements between start of each block (inte-

ger)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength, stride

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

Example 4.3 Assume, again, that oldtype has type map {(double, 0), (char, 8)}, with
extent 16. A call to MPI_TYPE_VECTOR(2, 3, 4, oldtype, newtype) will create the datatype
with type map,

{(double, 0), (char, 8), (double, 16), (char, 24), (double, 32), (char, 40),

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 87

(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104)}.

That is, two blocks with three copies each of the old type, with a stride of 4 elements (4 · 16
bytes) between the the start of each block.

Example 4.4 A call to MPI_TYPE_VECTOR(3, 1, -2, oldtype, newtype) will create the
datatype,

{(double, 0), (char, 8), (double,−32), (char,−24), (double,−64), (char,−56)}.

In general, assume that oldtype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), . . . , (typen−1, dispn−1),

(type0, disp0 + ex), . . . , (typen−1, dispn−1 + ex), . . . ,

(type0, disp0 + (bl− 1) · ex), . . . , (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride · ex), . . . , (typen−1, dispn−1 + stride · ex), . . . ,

(type0, disp0 + (stride + bl− 1) · ex), . . . , (typen−1, dispn−1 + (stride + bl− 1) · ex), . . . ,

(type0, disp0 + stride · (count− 1) · ex), . . . ,

(typen−1, dispn−1 + stride · (count− 1) · ex), . . . ,

(type0, disp0 + (stride · (count− 1) + bl− 1) · ex), . . . ,

(typen−1, dispn−1 + (stride · (count− 1) + bl− 1) · ex)}.

A call to MPI_TYPE_CONTIGUOUS(count, oldtype, newtype) is equivalent to a call to
MPI_TYPE_VECTOR(count, 1, 1, oldtype, newtype), or to a call to MPI_TYPE_VECTOR(1,
count, n, oldtype, newtype), n arbitrary.

Hvector The function MPI_TYPE_CREATE_HVECTOR is identical to
MPI_TYPE_VECTOR, except that stride is given in bytes, rather than in elements. The
use for both types of vector constructors is illustrated in Section 4.1.14. (H stands for
“heterogeneous”).

MPI_TYPE_CREATE_HVECTOR(count, blocklength, stride, oldtype, newtype)

IN count number of blocks (non-negative integer)

IN blocklength number of elements in each block (non-negative inte-

ger)

IN stride number of bytes between start of each block (integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

88 CHAPTER 4. DATATYPES

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype,

ierror)

INTEGER, INTENT(IN) :: count, blocklength

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: stride

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,

IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

Assume that oldtype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},

with extent ex. Let bl be the blocklength. The newly created datatype has a type map with
count · bl · n entries:

{(type0, disp0), . . . , (typen−1, dispn−1),

(type0, disp0 + ex), . . . , (typen−1, dispn−1 + ex), . . . ,

(type0, disp0 + (bl− 1) · ex), . . . , (typen−1, dispn−1 + (bl− 1) · ex),

(type0, disp0 + stride), . . . , (typen−1, dispn−1 + stride), . . . ,

(type0, disp0 + stride + (bl− 1) · ex), . . . ,

(typen−1, dispn−1 + stride + (bl− 1) · ex), . . . ,

(type0, disp0 + stride · (count− 1)), . . . , (typen−1, dispn−1 + stride · (count− 1)), . . . ,

(type0, disp0 + stride · (count− 1) + (bl− 1) · ex), . . . ,

(typen−1, dispn−1 + stride · (count− 1) + (bl− 1) · ex)}.

Indexed The function MPI_TYPE_INDEXED allows replication of an old datatype into a
sequence of blocks (each block is a concatenation of the old datatype), where each block
can contain a different number of copies and have a different displacement. All block
displacements are multiples of the old type extent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 89

MPI_TYPE_INDEXED(count, array_of_blocklengths, array_of_displacements, oldtype,
newtype)

IN count number of blocks — also number of entries in

array_of_displacements and array_of_blocklengths (non-

negative integer)

IN array_of_blocklengths number of elements per block (array of non-negative

integers)

IN array_of_displacements displacement for each block, in multiples of oldtype

extent (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_indexed(int count, const int array_of_blocklengths[], const

int array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

Example 4.5
Let oldtype have type map {(double, 0), (char, 8)}, with extent 16. Let B = (3, 1)

and let D = (4, 0). A call to MPI_TYPE_INDEXED(2, B, D, oldtype, newtype) returns a
datatype with type map,

{(double, 64), (char, 72), (double, 80), (char, 88), (double, 96), (char, 104),

(double, 0), (char, 8)}.

That is, three copies of the old type starting at displacement 64, and one copy starting at
displacement 0.

In general, assume that oldtype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},

with extent ex. Let B be the array_of_blocklengths argument and D be the
array_of_displacements argument. The newly created datatype has n ·

∑count−1
i=0 B[i] entries:

{(type0, disp0 + D[0] · ex), . . . , (typen−1, dispn−1 + D[0] · ex), . . . ,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

90 CHAPTER 4. DATATYPES

(type0, disp0 + (D[0] + B[0]− 1) · ex), . . . , (typen−1, dispn−1 + (D[0] + B[0]− 1) · ex), . . . ,

(type0, disp0 + D[count-1] · ex), . . . , (typen−1, dispn−1 + D[count-1] · ex), . . . ,

(type0, disp0 + (D[count-1] + B[count-1]− 1) · ex), . . . ,

(typen−1, dispn−1 + (D[count-1] + B[count-1]− 1) · ex)}.

A call to MPI_TYPE_VECTOR(count, blocklength, stride, oldtype, newtype) is equivalent
to a call to MPI_TYPE_INDEXED(count, B, D, oldtype, newtype) where

D[j] = j · stride, j = 0, . . . , count− 1,

and

B[j] = blocklength, j = 0, . . . , count− 1.

Hindexed The function MPI_TYPE_CREATE_HINDEXED is identical to
MPI_TYPE_INDEXED, except that block displacements in array_of_displacements are spec-
ified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED(count, array_of_blocklengths, array_of_displacements,
oldtype, newtype)

IN count number of blocks — also number of entries in

array_of_displacements and array_of_blocklengths (non-

negative integer)

IN array_of_blocklengths number of elements in each block (array of non-negative

integers)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_Type_create_hindexed(count, array_of_blocklengths,

array_of_displacements, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 91

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Assume that oldtype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},
with extent ex. Let B be the array_of_blocklengths argument and D be the
array_of_displacements argument. The newly created datatype has a type map with n ·∑count−1

i=0 B[i] entries:

{(type0, disp0 + D[0]), . . . , (typen−1, dispn−1 + D[0]), . . . ,

(type0, disp0 + D[0] + (B[0]− 1) · ex), . . . ,

(typen−1, dispn−1 + D[0] + (B[0]− 1) · ex), . . . ,

(type0, disp0 + D[count-1]), . . . , (typen−1, dispn−1 + D[count-1]), . . . ,

(type0, disp0 + D[count-1] + (B[count-1]− 1) · ex), . . . ,

(typen−1, dispn−1 + D[count-1] + (B[count-1]− 1) · ex)}.

Indexed_block This function is the same as MPI_TYPE_INDEXED except that the block-
length is the same for all blocks. There are many codes using indirect addressing arising
from unstructured grids where the blocksize is always 1 (gather/scatter). The following
convenience function allows for constant blocksize and arbitrary displacements.

MPI_TYPE_CREATE_INDEXED_BLOCK(count, blocklength, array_of_displacements, oldtype,
newtype)

IN count length of array of displacements (non-negative integer)

IN blocklength size of block (non-negative integer)

IN array_of_displacements array of displacements (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_indexed_block(int count, int blocklength, const

int array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength,

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

92 CHAPTER 4. DATATYPES

Hindexed_block The function MPI_TYPE_CREATE_HINDEXED_BLOCK is identical to
MPI_TYPE_CREATE_INDEXED_BLOCK, except that block displacements in
array_of_displacements are specified in bytes, rather than in multiples of the oldtype extent.

MPI_TYPE_CREATE_HINDEXED_BLOCK(count, blocklength, array_of_displacements,
oldtype, newtype)

IN count length of array of displacements (non-negative integer)

IN blocklength size of block (non-negative integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_hindexed_block(int count, int blocklength, const

MPI_Aint array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Struct MPI_TYPE_CREATE_STRUCT is the most general type constructor. It further
generalizes MPI_TYPE_CREATE_HINDEXED in that it allows each block to consist of repli-
cations of different datatypes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 93

MPI_TYPE_CREATE_STRUCT(count, array_of_blocklengths, array_of_displacements,
array_of_types, newtype)

IN count number of blocks (non-negative integer) — also num-

ber of entries in arrays array_of_types,

array_of_displacements and array_of_blocklengths

IN array_of_blocklength number of elements in each block (array of non-negative

integer)

IN array_of_displacements byte displacement of each block (array of integer)

IN array_of_types type of elements in each block (array of handles to

datatype objects)

OUT newtype new datatype (handle)

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], const

MPI_Datatype array_of_types[], MPI_Datatype *newtype)

MPI_Type_create_struct(count, array_of_blocklengths,

array_of_displacements, array_of_types, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,

IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

Example 4.6 Let type1 have type map,

{(double, 0), (char, 8)},

with extent 16. Let B = (2, 1, 3), D = (0, 16, 26), and T = (MPI_FLOAT, type1, MPI_CHAR).
Then a call to MPI_TYPE_CREATE_STRUCT(3, B, D, T, newtype) returns a datatype with
type map,

{(float, 0), (float, 4), (double, 16), (char, 24), (char, 26), (char, 27), (char, 28)}.

That is, two copies of MPI_FLOAT starting at 0, followed by one copy of type1 starting at
16, followed by three copies of MPI_CHAR, starting at 26. (We assume that a float occupies
four bytes.)

In general, let T be the array_of_types argument, where T[i] is a handle to,

typemapi = {(typei0, dispi0), . . . , (typeini−1, disp
i
ni−1)},

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

94 CHAPTER 4. DATATYPES

with extent exi. Let B be the array_of_blocklength argument and D be the
array_of_displacements argument. Let c be the count argument. Then the newly created
datatype has a type map with

∑c−1
i=0 B[i] · ni entries:

{(type00, disp00 + D[0]), . . . , (type0n0
, disp0n0

+ D[0]), . . . ,

(type00, disp
0
0 + D[0] + (B[0]− 1) · ex0), . . . , (type0n0

, disp0n0
+ D[0] + (B[0]-1) · ex0), . . . ,

(typec−1
0 , dispc−1

0 + D[c-1]), . . . , (typec−1
nc−1−1, disp

c−1
nc−1−1 + D[c-1]), . . . ,

(typec−1
0 , dispc−1

0 + D[c-1] + (B[c-1]− 1) · exc−1), . . . ,

(typec−1
nc−1−1, disp

c−1
nc−1−1 + D[c-1] + (B[c-1]-1) · exc−1)}.

A call to MPI_TYPE_CREATE_HINDEXED(count, B, D, oldtype, newtype) is equivalent
to a call to MPI_TYPE_CREATE_STRUCT(count, B, D, T, newtype), where each entry of T
is equal to oldtype.

4.1.3 Subarray Datatype Constructor

MPI_TYPE_CREATE_SUBARRAY(ndims, array_of_sizes, array_of_subsizes, array_of_starts,
order, oldtype, newtype)

IN ndims number of array dimensions (positive integer)

IN array_of_sizes number of elements of type oldtype in each dimension

of the full array (array of positive integers)

IN array_of_subsizes number of elements of type oldtype in each dimension

of the subarray (array of positive integers)

IN array_of_starts starting coordinates of the subarray in each dimension

(array of non-negative integers)

IN order array storage order flag (state)

IN oldtype array element datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_subarray(int ndims, const int array_of_sizes[], const

int array_of_subsizes[], const int array_of_starts[], int

order, MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,

array_of_starts, order, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),

array_of_subsizes(ndims), array_of_starts(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 95

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

The subarray type constructor creates an MPI datatype describing an n-dimensional
subarray of an n-dimensional array. The subarray may be situated anywhere within the
full array, and may be of any nonzero size up to the size of the larger array as long as it
is confined within this array. This type constructor facilitates creating filetypes to access
arrays distributed in blocks among processes to a single file that contains the global array,
see MPI I/O, especially Section 13.1.1.

This type constructor can handle arrays with an arbitrary number of dimensions and
works for both C and Fortran ordered matrices (i.e., row-major or column-major). Note
that a C program may use Fortran order and a Fortran program may use C order.

The ndims parameter specifies the number of dimensions in the full data array and
gives the number of elements in array_of_sizes, array_of_subsizes, and array_of_starts.

The number of elements of type oldtype in each dimension of the n-dimensional ar-
ray and the requested subarray are specified by array_of_sizes and array_of_subsizes, re-
spectively. For any dimension i, it is erroneous to specify array_of_subsizes[i] < 1 or
array_of_subsizes[i] > array_of_sizes[i].

The array_of_starts contains the starting coordinates of each dimension of the subarray.
Arrays are assumed to be indexed starting from zero. For any dimension i, it is erroneous to
specify array_of_starts[i] < 0 or array_of_starts[i] > (array_of_sizes[i] − array_of_subsizes[i]).

Advice to users. In a Fortran program with arrays indexed starting from 1, if the
starting coordinate of a particular dimension of the subarray is n, then the entry in
array_of_starts for that dimension is n-1. (End of advice to users.)

The order argument specifies the storage order for the subarray as well as the full array.
It must be set to one of the following:

MPI_ORDER_C The ordering used by C arrays, (i.e., row-major order)

MPI_ORDER_FORTRAN The ordering used by Fortran arrays, (i.e., column-major order)

A ndims-dimensional subarray (newtype) with no extra padding can be defined by the
function Subarray() as follows:

newtype = Subarray(ndims, {size0, size1, . . . , sizendims−1},
{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

Let the typemap of oldtype have the form:

{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)}

where typei is a predefined MPI datatype, and let ex be the extent of oldtype. Then we define
the Subarray() function recursively using the following three equations. Equation 4.2 defines
the base step. Equation 4.3 defines the recursion step when order = MPI_ORDER_FORTRAN,
and Equation 4.4 defines the recursion step when order = MPI_ORDER_C. These equations
use the conceptual datatypes lb_marker and ub_marker , see Section 4.1.6 for details.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

96 CHAPTER 4. DATATYPES

Subarray(1, {size0}, {subsize0}, {start0}, (4.2)

{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)})
= {(lb_marker, 0),

(type0, disp0 + start0 × ex), . . . , (typen−1, dispn−1 + start0 × ex),

(type0, disp0 + (start0 + 1)× ex), . . . , (typen−1,

dispn−1 + (start0 + 1)× ex), . . .

(type0, disp0 + (start0 + subsize0 − 1)× ex), . . . ,

(typen−1, dispn−1 + (start0 + subsize0 − 1)× ex),

(ub_marker, size0 × ex)}

Subarray(ndims, {size0, size1, . . . , sizendims−1}, (4.3)

{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

= Subarray(ndims− 1, {size1, size2, . . . , sizendims−1},
{subsize1, subsize2, . . . , subsizendims−1},
{start1, start2, . . . , startndims−1},

Subarray(1, {size0}, {subsize0}, {start0}, oldtype))

Subarray(ndims, {size0, size1, . . . , sizendims−1}, (4.4)

{subsize0, subsize1, . . . , subsizendims−1},
{start0, start1, . . . , startndims−1}, oldtype)

= Subarray(ndims− 1, {size0, size1, . . . , sizendims−2},
{subsize0, subsize1, . . . , subsizendims−2},
{start0, start1, . . . , startndims−2},

Subarray(1, {sizendims−1}, {subsizendims−1}, {startndims−1}, oldtype))

For an example use of MPI_TYPE_CREATE_SUBARRAY in the context of I/O see Sec-
tion 13.11.2.

4.1.4 Distributed Array Datatype Constructor

The distributed array type constructor supports HPF-like [42] data distributions. However,
unlike in HPF, the storage order may be specified for C arrays as well as for Fortran arrays.

Advice to users. One can create an HPF-like file view using this type constructor as
follows. Complementary filetypes are created by having every process of a group call
this constructor with identical arguments (with the exception of rank which should be
set appropriately). These filetypes (along with identical disp and etype) are then used
to define the view (via MPI_FILE_SET_VIEW), see MPI I/O, especially Section 13.1.1
and Section 13.3. Using this view, a collective data access operation (with identical
offsets) will yield an HPF-like distribution pattern. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 97

MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, array_of_distribs,
array_of_dargs, array_of_psizes, order, oldtype, newtype)

IN size size of process group (positive integer)

IN rank rank in process group (non-negative integer)

IN ndims number of array dimensions as well as process grid

dimensions (positive integer)

IN array_of_gsizes number of elements of type oldtype in each dimension

of global array (array of positive integers)

IN array_of_distribs distribution of array in each dimension (array of state)

IN array_of_dargs distribution argument in each dimension (array of pos-

itive integers)

IN array_of_psizes size of process grid in each dimension (array of positive

integers)

IN order array storage order flag (state)

IN oldtype old datatype (handle)

OUT newtype new datatype (handle)

int MPI_Type_create_darray(int size, int rank, int ndims, const

int array_of_gsizes[], const int array_of_distribs[], const

int array_of_dargs[], const int array_of_psizes[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes,

array_of_distribs, array_of_dargs, array_of_psizes, order,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims),

array_of_distribs(ndims), array_of_dargs(ndims),

array_of_psizes(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,

ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,

OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),

ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY can be used to generate the datatypes corresponding
to the distribution of an ndims-dimensional array of oldtype elements onto an
ndims-dimensional grid of logical processes. Unused dimensions of array_of_psizes should be
set to 1. (See Example 4.7.) For a call to MPI_TYPE_CREATE_DARRAY to be correct, the
equation

∏ndims−1
i=0 array_of_psizes[i] = size must be satisfied. The ordering of processes

in the process grid is assumed to be row-major, as in the case of virtual Cartesian process
topologies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

98 CHAPTER 4. DATATYPES

Advice to users. For both Fortran and C arrays, the ordering of processes in the
process grid is assumed to be row-major. This is consistent with the ordering used in
virtual Cartesian process topologies in MPI. To create such virtual process topologies,
or to find the coordinates of a process in the process grid, etc., users may use the
corresponding process topology functions, see Chapter 7. (End of advice to users.)

Each dimension of the array can be distributed in one of three ways:

• MPI_DISTRIBUTE_BLOCK - Block distribution

• MPI_DISTRIBUTE_CYCLIC - Cyclic distribution

• MPI_DISTRIBUTE_NONE - Dimension not distributed.

The constant MPI_DISTRIBUTE_DFLT_DARG specifies a default distribution argument.
The distribution argument for a dimension that is not distributed is ignored. For any
dimension i in which the distribution is MPI_DISTRIBUTE_BLOCK, it is erroneous to specify
array_of_dargs[i] ∗ array_of_psizes[i] < array_of_gsizes[i].

For example, the HPF layout ARRAY(CYCLIC(15)) corresponds to
MPI_DISTRIBUTE_CYCLIC with a distribution argument of 15, and the HPF layout AR-
RAY(BLOCK) corresponds to MPI_DISTRIBUTE_BLOCK with a distribution argument of
MPI_DISTRIBUTE_DFLT_DARG.

The order argument is used as in MPI_TYPE_CREATE_SUBARRAY to specify the stor-
age order. Therefore, arrays described by this type constructor may be stored in Fortran
(column-major) or C (row-major) order. Valid values for order are MPI_ORDER_FORTRAN

and MPI_ORDER_C.
This routine creates a new MPI datatype with a typemap defined in terms of a function

called “cyclic()” (see below).
Without loss of generality, it suffices to define the typemap for the

MPI_DISTRIBUTE_CYCLIC case where MPI_DISTRIBUTE_DFLT_DARG is not used.
MPI_DISTRIBUTE_BLOCK and MPI_DISTRIBUTE_NONE can be reduced to the

MPI_DISTRIBUTE_CYCLIC case for dimension i as follows.
MPI_DISTRIBUTE_BLOCK with array_of_dargs[i] equal to MPI_DISTRIBUTE_DFLT_DARG

is equivalent to MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] set to

(array_of_gsizes[i] + array_of_psizes[i]− 1)/array_of_psizes[i].

If array_of_dargs[i] is not MPI_DISTRIBUTE_DFLT_DARG, then MPI_DISTRIBUTE_BLOCK and
MPI_DISTRIBUTE_CYCLIC are equivalent.

MPI_DISTRIBUTE_NONE is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of_dargs[i] set to array_of_gsizes[i].

Finally, MPI_DISTRIBUTE_CYCLIC with array_of_dargs[i] equal to
MPI_DISTRIBUTE_DFLT_DARG is equivalent to MPI_DISTRIBUTE_CYCLIC with
array_of_dargs[i] set to 1.

For MPI_ORDER_FORTRAN, an ndims-dimensional distributed array (newtype) is defined
by the following code fragment:

oldtypes[0] = oldtype;

for (i = 0; i < ndims; i++) {

oldtypes[i+1] = cyclic(array_of_dargs[i],

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 99

array_of_gsizes[i],

r[i],

array_of_psizes[i],

oldtypes[i]);

}

newtype = oldtypes[ndims];

For MPI_ORDER_C, the code is:

oldtypes[0] = oldtype;

for (i = 0; i < ndims; i++) {

oldtypes[i + 1] = cyclic(array_of_dargs[ndims - i - 1],

array_of_gsizes[ndims - i - 1],

r[ndims - i - 1],

array_of_psizes[ndims - i - 1],

oldtypes[i]);

}

newtype = oldtypes[ndims];

where r[i] is the position of the process (with rank rank) in the process grid at dimension i.
The values of r[i] are given by the following code fragment:

t_rank = rank;

t_size = 1;

for (i = 0; i < ndims; i++)

t_size *= array_of_psizes[i];

for (i = 0; i < ndims; i++) {

t_size = t_size / array_of_psizes[i];

r[i] = t_rank / t_size;

t_rank = t_rank % t_size;

}

Let the typemap of oldtype have the form:

{(type0, disp0), (type1, disp1), . . . , (typen−1, dispn−1)}

where typei is a predefined MPI datatype, and let ex be the extent of oldtype. The following
function uses the conceptual datatypes lb_marker and ub_marker , see Section 4.1.6 for
details.

Given the above, the function cyclic() is defined as follows:

cyclic(darg, gsize, r, psize, oldtype)

= {(lb_marker, 0),

(type0, disp0 + r × darg × ex), . . . ,

(typen−1, dispn−1 + r × darg × ex),

(type0, disp0 + (r × darg + 1)× ex), . . . ,

(typen−1, dispn−1 + (r × darg + 1)× ex),

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

100 CHAPTER 4. DATATYPES

. . .

(type0, disp0 + ((r + 1)× darg − 1)× ex), . . . ,

(typen−1, dispn−1 + ((r + 1)× darg − 1)× ex),

(type0, disp0 + r × darg × ex+ psize× darg × ex), . . . ,

(typen−1, dispn−1 + r × darg × ex+ psize× darg × ex),

(type0, disp0 + (r × darg + 1)× ex+ psize× darg × ex), . . . ,

(typen−1, dispn−1 + (r × darg + 1)× ex+ psize× darg × ex),

. . .

(type0, disp0 + ((r + 1)× darg − 1)× ex+ psize× darg × ex), . . . ,

(typen−1, dispn−1 + ((r + 1)× darg − 1)× ex+ psize× darg × ex),

...

(type0, disp0 + r × darg × ex+ psize× darg × ex× (count− 1)), . . . ,

(typen−1, dispn−1 + r × darg × ex+ psize× darg × ex× (count− 1)),

(type0, disp0 + (r × darg + 1)× ex+ psize× darg × ex× (count− 1)), . . . ,

(typen−1, dispn−1 + (r × darg + 1)× ex
+psize× darg × ex× (count− 1)),

. . .

(type0, disp0 + (r × darg + darglast − 1)× ex
+psize× darg × ex× (count− 1)), . . . ,

(typen−1, dispn−1 + (r × darg + darglast − 1)× ex
+psize× darg × ex× (count− 1)),

(ub_marker, gsize ∗ ex)}

where count is defined by this code fragment:

nblocks = (gsize + (darg - 1)) / darg;

count = nblocks / psize;

left_over = nblocks - count * psize;

if (r < left_over)

count = count + 1;

Here, nblocks is the number of blocks that must be distributed among the processors.
Finally, darglast is defined by this code fragment:

if ((num_in_last_cyclic = gsize % (psize * darg)) == 0)

darg_last = darg;

else {

darg_last = num_in_last_cyclic - darg * r;

if (darg_last > darg)

darg_last = darg;

if (darg_last <= 0)

darg_last = darg;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 101

Example 4.7 Consider generating the filetypes corresponding to the HPF distribution:

<oldtype> FILEARRAY(100, 200, 300)

!HPF$ PROCESSORS PROCESSES(2, 3)

!HPF$ DISTRIBUTE FILEARRAY(CYCLIC(10), *, BLOCK) ONTO PROCESSES

This can be achieved by the following Fortran code, assuming there will be six processes
attached to the run:

ndims = 3

array_of_gsizes(1) = 100

array_of_distribs(1) = MPI_DISTRIBUTE_CYCLIC

array_of_dargs(1) = 10

array_of_gsizes(2) = 200

array_of_distribs(2) = MPI_DISTRIBUTE_NONE

array_of_dargs(2) = 0

array_of_gsizes(3) = 300

array_of_distribs(3) = MPI_DISTRIBUTE_BLOCK

array_of_dargs(3) = MPI_DISTRIBUTE_DFLT_DARG

array_of_psizes(1) = 2

array_of_psizes(2) = 1

array_of_psizes(3) = 3

call MPI_COMM_SIZE(MPI_COMM_WORLD, size, ierr)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)

call MPI_TYPE_CREATE_DARRAY(size, rank, ndims, array_of_gsizes, &

array_of_distribs, array_of_dargs, array_of_psizes, &

MPI_ORDER_FORTRAN, oldtype, newtype, ierr)

4.1.5 Address and Size Functions

The displacements in a general datatype are relative to some initial buffer address. Absolute
addresses can be substituted for these displacements: we treat them as displacements rela-
tive to “address zero,” the start of the address space. This initial address zero is indicated
by the constant MPI_BOTTOM. Thus, a datatype can specify the absolute address of the
entries in the communication buffer, in which case the buf argument is passed the value
MPI_BOTTOM.

The address of a location in memory can be found by invoking the function
MPI_GET_ADDRESS.

MPI_GET_ADDRESS(location, address)

IN location location in caller memory (choice)

OUT address address of location (integer)

int MPI_Get_address(const void *location, MPI_Aint *address)

MPI_Get_address(location, address, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: location

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: address

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

102 CHAPTER 4. DATATYPES

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

Returns the (byte) address of location.

Advice to users. Current Fortran MPI codes will run unmodified, and will port
to any system. However, they may fail if addresses larger than 232 − 1 are used
in the program. New codes should be written so that they use the new functions.
This provides compatibility with C/C++ and avoids errors on 64 bit architectures.
However, such newly written codes may need to be (slightly) rewritten to port to old
Fortran 77 environments that do not support KIND declarations. (End of advice to
users.)

Rationale. In the mpi_f08 module, the location argument is not defined with
INTENT(IN) because existing applications may use MPI_GET_ADDRESS as a substi-
tute for MPI_F_SYNC_REG that was not defined before MPI-3.0. (End of rationale.)

Example 4.8 Using MPI_GET_ADDRESS for an array.

REAL A(100,100)

INTEGER(KIND=MPI_ADDRESS_KIND) I1, I2, DIFF

CALL MPI_GET_ADDRESS(A(1,1), I1, IERROR)

CALL MPI_GET_ADDRESS(A(10,10), I2, IERROR)

DIFF = I2 - I1

! The value of DIFF is 909*sizeofreal; the values of I1 and I2 are

! implementation dependent.

Advice to users. C users may be tempted to avoid the usage of
MPI_GET_ADDRESS and rely on the availability of the address operator &. Note,
however, that & cast-expression is a pointer, not an address. ISO C does not require
that the value of a pointer (or the pointer cast to int) be the absolute address of the
object pointed at — although this is commonly the case. Furthermore, referencing
may not have a unique definition on machines with a segmented address space. The
use of MPI_GET_ADDRESS to “reference” C variables guarantees portability to such
machines as well. (End of advice to users.)

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–
17.1.20. (End of advice to users.)

The following auxiliary functions provide useful information on derived datatypes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 103

MPI_TYPE_SIZE(datatype, size)

IN datatype datatype (handle)

OUT size datatype size (integer)

int MPI_Type_size(MPI_Datatype datatype, int *size)

MPI_Type_size(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_SIZE_X(datatype, size)

IN datatype datatype (handle)

OUT size datatype size (integer)

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)

MPI_Type_size_x(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) SIZE

MPI_TYPE_SIZE and MPI_TYPE_SIZE_X set the value of size to the total size, in
bytes, of the entries in the type signature associated with datatype; i.e., the total size of the
data in a message that would be created with this datatype. Entries that occur multiple
times in the datatype are counted with their multiplicity. For both functions, if the OUT

parameter cannot express the value to be returned (e.g., if the parameter is too small to
hold the output value), it is set to MPI_UNDEFINED.

4.1.6 Lower-Bound and Upper-Bound Markers

It is often convenient to define explicitly the lower bound and upper bound of a type map,
and override the definition given on page 104. This allows one to define a datatype that has
“holes” at its beginning or its end, or a datatype with entries that extend above the upper
bound or below the lower bound. Examples of such usage are provided in Section 4.1.14.
Also, the user may want to overide the alignment rules that are used to compute upper
bounds and extents. E.g., a C compiler may allow the user to overide default alignment
rules for some of the structures within a program. The user has to specify explicitly the
bounds of the datatypes that match these structures.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

104 CHAPTER 4. DATATYPES

To achieve this, we add two additional conceptual datatypes, lb_marker and ub_marker ,
that represent the lower bound and upper bound of a datatype. These conceptual datatypes
occupy no space (extent(lb_marker) = extent(ub_marker) = 0) . They do not affect the
size or count of a datatype, and do not affect the content of a message created with this
datatype. However, they do affect the definition of the extent of a datatype and, therefore,
affect the outcome of a replication of this datatype by a datatype constructor.

Example 4.9 A call to MPI_TYPE_CREATE_RESIZED(MPI_INT, -3, 9, type1) creates a
new datatype that has an extent of 9 (from -3 to 5, 5 included), and contains an integer
at displacement 0. This is the datatype defined by the typemap {(lb_marker , -3), (int, 0),
(ub_marker , 6)}. If this type is replicated twice by a call to MPI_TYPE_CONTIGUOUS(2,
type1, type2) then the newly created type can be described by the typemap {(lb_marker ,
-3), (int, 0), (int,9), (ub_marker , 15)}. (An entry of type ub_marker can be deleted if there
is another entry of type ub_marker with a higher displacement; an entry of type lb_marker
can be deleted if there is another entry of type lb_marker with a lower displacement.)

In general, if

Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)},

then the lower bound of Typemap is defined to be

lb(Typemap) =

 minj dispj
if no entry has type
lb_marker

minj{dispj such that typej = lb_marker} otherwise

Similarly, the upper bound of Typemap is defined to be

ub(Typemap) =

 maxj(dispj + sizeof(typej)) + ε
if no entry has type
ub_marker

maxj{dispj such that typej = ub_marker} otherwise

Then

extent(Typemap) = ub(Typemap)− lb(Typemap)

If typei requires alignment to a byte address that is a multiple of ki, then ε is the least
non-negative increment needed to round extent(Typemap) to the next multiple of maxi ki.
In Fortran, it is implementation dependent whether the MPI implementation computes
the alignments ki according to the alignments used by the compiler in common blocks,
SEQUENCE derived types, BIND(C) derived types, or derived types that are neither SEQUENCE
nor BIND(C).

The formal definitions given for the various datatype constructors apply now, with the
amended definition of extent .

Rationale. Before Fortran 2003, MPI_TYPE_CREATE_STRUCT could be applied to
Fortran common blocks and SEQUENCE derived types. With Fortran 2003, this list
was extended by BIND(C) derived types and MPI implementors have implemented the
alignments ki differently, i.e., some based on the alignments used in SEQUENCE derived
types, and others according to BIND(C) derived types. (End of rationale.)

Advice to implementors. In Fortran, it is generally recommended to use BIND(C)

derived types instead of common blocks or SEQUENCE derived types. Therefore it is
recommended to calculate the alignments ki based on BIND(C) derived types. (End
of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 105

Advice to users. Structures combining different basic datatypes should be defined
so that there will be no gaps based on alignment rules. If such a datatype is used
to create an array of structures, users should also avoid an alignment-gap at the
end of the structure. In MPI communication, the content of such gaps would not
be communicated into the receiver’s buffer. For example, such an alignment-gap
may occur between an odd number of floats or REALs before a double or DOUBLE

PRECISION data. Such gaps may be added explicitly to both the structure and the MPI
derived datatype handle because the communication of a contiguous derived datatype
may be significantly faster than the communication of one that is non-contiguous
because of such alignment-gaps.

Example: Instead of

TYPE, :: my_data

REAL, DIMENSION(3) :: x

! there may be a gap of the size of one REAL

! if the alignment of a DOUBLE PRECISION is

! two times the size of a REAL

DOUBLE PRECISION :: p

END TYPE

one should define

TYPE, :: my_data

REAL, DIMENSION(3) :: x

REAL :: gap1

DOUBLE PRECISION :: p

END TYPE

and also include gap1 in the matching MPI derived datatype. It is required that all
processes in a communication add the same gaps, i.e., defined with the same basic
datatype. Both the original and the modified structures are portable, but may have
different performance implications for the communication and memory accesses during
computation on systems with different alignment values.

In principle, a compiler may define an additional alignment rule for structures, e.g., to
use at least 4 or 8 byte alignment, although the content may have a maxiki alignment
less than this structure alignment. To maintain portability, users should always resize
structure derived datatype handles if used in an array of structures, see the Example
in Section 17.1.15. (End of advice to users.)

4.1.7 Extent and Bounds of Datatypes

MPI_TYPE_GET_EXTENT(datatype, lb, extent)

IN datatype datatype to get information on (handle)

OUT lb lower bound of datatype (integer)

OUT extent extent of datatype (integer)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

106 CHAPTER 4. DATATYPES

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,

MPI_Aint *extent)

MPI_Type_get_extent(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: lb, extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_EXTENT_X(datatype, lb, extent)

IN datatype datatype to get information on (handle)

OUT lb lower bound of datatype (integer)

OUT extent extent of datatype (integer)

int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,

MPI_Count *extent)

MPI_Type_get_extent_x(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: lb, extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) LB, EXTENT

Returns the lower bound and the extent of datatype (as defined in Section 4.1.6).
For both functions, if either OUT parameter cannot express the value to be returned

(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.
MPI allows one to change the extent of a datatype, using lower bound and upper bound

markers. This provides control over the stride of successive datatypes that are replicated
by datatype constructors, or are replicated by the count argument in a send or receive call.

MPI_TYPE_CREATE_RESIZED(oldtype, lb, extent, newtype)

IN oldtype input datatype (handle)

IN lb new lower bound of datatype (integer)

IN extent new extent of datatype (integer)

OUT newtype output datatype (handle)

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint

extent, MPI_Datatype *newtype)

MPI_Type_create_resized(oldtype, lb, extent, newtype, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 107

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: lb, extent

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

Returns in newtype a handle to a new datatype that is identical to oldtype, except that
the lower bound of this new datatype is set to be lb, and its upper bound is set to be lb
+ extent. Any previous lb and ub markers are erased, and a new pair of lower bound and
upper bound markers are put in the positions indicated by the lb and extent arguments.
This affects the behavior of the datatype when used in communication operations, with
count > 1, and when used in the construction of new derived datatypes.

4.1.8 True Extent of Datatypes

Suppose we implement gather (see also Section 5.5) as a spanning tree implemented on
top of point-to-point routines. Since the receive buffer is only valid on the root pro-
cess, one will need to allocate some temporary space for receiving data on intermedi-
ate nodes. However, the datatype extent cannot be used as an estimate of the amount
of space that needs to be allocated, if the user has modified the extent, for example
by using MPI_TYPE_CREATE_RESIZED. The functions MPI_TYPE_GET_TRUE_EXTENT
and MPI_TYPE_GET_TRUE_EXTENT_X are provided which return the true extent of the
datatype.

MPI_TYPE_GET_TRUE_EXTENT(datatype, true_lb, true_extent)

IN datatype datatype to get information on (handle)

OUT true_lb true lower bound of datatype (integer)

OUT true_extent true size of datatype (integer)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,

MPI_Aint *true_extent)

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

108 CHAPTER 4. DATATYPES

MPI_TYPE_GET_TRUE_EXTENT_X(datatype, true_lb, true_extent)

IN datatype datatype to get information on (handle)

OUT true_lb true lower bound of datatype (integer)

OUT true_extent true size of datatype (integer)

int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,

MPI_Count *true_extent)

MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT

true_lb returns the offset of the lowest unit of store which is addressed by the datatype,
i.e., the lower bound of the corresponding typemap, ignoring explicit lower bound mark-
ers. true_extent returns the true size of the datatype, i.e., the extent of the correspond-
ing typemap, ignoring explicit lower bound and upper bound markers, and performing no
rounding for alignment. If the typemap associated with datatype is

Typemap = {(type0, disp0), . . . , (typen−1, dispn−1)}

Then

true_lb(Typemap) = minj{dispj : typej 6= lb_marker, ub_marker},

true_ub(Typemap) = maxj{dispj + sizeof(typej) : typej 6= lb_marker, ub_marker},

and

true_extent(Typemap) = true_ub(Typemap)− true_lb(typemap).

(Readers should compare this with the definitions in Section 4.1.6 and Section 4.1.7, which
describe the function MPI_TYPE_GET_EXTENT.)

The true_extent is the minimum number of bytes of memory necessary to hold a
datatype, uncompressed.

For both functions, if either OUT parameter cannot express the value to be returned
(e.g., if the parameter is too small to hold the output value), it is set to MPI_UNDEFINED.

4.1.9 Commit and Free

A datatype object has to be committed before it can be used in a communication. As
an argument in datatype constructors, uncommitted and also committed datatypes can be
used. There is no need to commit basic datatypes. They are “pre-committed.”

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 109

MPI_TYPE_COMMIT(datatype)

INOUT datatype datatype that is committed (handle)

int MPI_Type_commit(MPI_Datatype *datatype)

MPI_Type_commit(datatype, ierror)

TYPE(MPI_Datatype), INTENT(INOUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_COMMIT(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

The commit operation commits the datatype, that is, the formal description of a com-
munication buffer, not the content of that buffer. Thus, after a datatype has been commit-
ted, it can be repeatedly reused to communicate the changing content of a buffer or, indeed,
the content of different buffers, with different starting addresses.

Advice to implementors. The system may “compile” at commit time an internal
representation for the datatype that facilitates communication, e.g., change from a
compacted representation to a flat representation of the datatype, and select the most
convenient transfer mechanism. (End of advice to implementors.)

MPI_TYPE_COMMIT will accept a committed datatype; in this case, it is equivalent
to a no-op.

Example 4.10 The following code fragment gives examples of using MPI_TYPE_COMMIT.

INTEGER type1, type2

CALL MPI_TYPE_CONTIGUOUS(5, MPI_REAL, type1, ierr)

! new type object created

CALL MPI_TYPE_COMMIT(type1, ierr)

! now type1 can be used for communication

type2 = type1

! type2 can be used for communication

! (it is a handle to same object as type1)

CALL MPI_TYPE_VECTOR(3, 5, 4, MPI_REAL, type1, ierr)

! new uncommitted type object created

CALL MPI_TYPE_COMMIT(type1, ierr)

! now type1 can be used anew for communication

MPI_TYPE_FREE(datatype)

INOUT datatype datatype that is freed (handle)

int MPI_Type_free(MPI_Datatype *datatype)

MPI_Type_free(datatype, ierror)

TYPE(MPI_Datatype), INTENT(INOUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

110 CHAPTER 4. DATATYPES

MPI_TYPE_FREE(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

Marks the datatype object associated with datatype for deallocation and sets datatype
to MPI_DATATYPE_NULL. Any communication that is currently using this datatype will
complete normally. Freeing a datatype does not affect any other datatype that was built
from the freed datatype. The system behaves as if input datatype arguments to derived
datatype constructors are passed by value.

Advice to implementors. The implementation may keep a reference count of active
communications that use the datatype, in order to decide when to free it. Also, one
may implement constructors of derived datatypes so that they keep pointers to their
datatype arguments, rather then copying them. In this case, one needs to keep track
of active datatype definition references in order to know when a datatype object can
be freed. (End of advice to implementors.)

4.1.10 Duplicating a Datatype

MPI_TYPE_DUP(oldtype, newtype)

IN oldtype datatype (handle)

OUT newtype copy of oldtype (handle)

int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

MPI_Type_dup(oldtype, newtype, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP is a type constructor which duplicates the existing
oldtype with associated key values. For each key value, the respective copy callback function
determines the attribute value associated with this key in the new communicator; one
particular action that a copy callback may take is to delete the attribute from the new
datatype. Returns in newtype a new datatype with exactly the same properties as oldtype
and any copied cached information, see Section 6.7.4. The new datatype has identical upper
bound and lower bound and yields the same net result when fully decoded with the functions
in Section 4.1.13. The newtype has the same committed state as the old oldtype.

4.1.11 Use of General Datatypes in Communication

Handles to derived datatypes can be passed to a communication call wherever a datatype
argument is required. A call of the form MPI_SEND(buf, count, datatype, ...), where count >
1, is interpreted as if the call was passed a new datatype which is the concatenation of count
copies of datatype. Thus, MPI_SEND(buf, count, datatype, dest, tag, comm) is equivalent to,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 111

MPI_TYPE_CONTIGUOUS(count, datatype, newtype)

MPI_TYPE_COMMIT(newtype)

MPI_SEND(buf, 1, newtype, dest, tag, comm)

MPI_TYPE_FREE(newtype).

Similar statements apply to all other communication functions that have a count and
datatype argument.

Suppose that a send operation MPI_SEND(buf, count, datatype, dest, tag, comm) is
executed, where datatype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},
and extent extent. (Explicit lower bound and upper bound markers are not listed in the
type map, but they affect the value of extent.) The send operation sends n · count entries,
where entry i · n+ j is at location addri,j = buf + extent · i+ dispj and has type typej , for
i = 0, . . . , count−1 and j = 0, . . . , n−1. These entries need not be contiguous, nor distinct;
their order can be arbitrary.

The variable stored at address addri,j in the calling program should be of a type that
matches typej , where type matching is defined as in Section 3.3.1. The message sent contains
n · count entries, where entry i · n+ j has type typej .

Similarly, suppose that a receive operation MPI_RECV(buf, count, datatype, source, tag,
comm, status) is executed, where datatype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)},
with extent extent. (Again, explicit lower bound and upper bound markers are not listed in
the type map, but they affect the value of extent.) This receive operation receives n · count
entries, where entry i ·n+ j is at location buf + extent · i+ dispj and has type typej . If the
incoming message consists of k elements, then we must have k ≤ n · count; the i · n + j-th
element of the message should have a type that matches typej .

Type matching is defined according to the type signature of the corresponding datatypes,
that is, the sequence of basic type components. Type matching does not depend on some
aspects of the datatype definition, such as the displacements (layout in memory) or the
intermediate types used.

Example 4.11 This example shows that type matching is defined in terms of the basic
types that a derived type consists of.

...

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, type2, ...)

CALL MPI_TYPE_CONTIGUOUS(4, MPI_REAL, type4, ...)

CALL MPI_TYPE_CONTIGUOUS(2, type2, type22, ...)

...

CALL MPI_SEND(a, 4, MPI_REAL, ...)

CALL MPI_SEND(a, 2, type2, ...)

CALL MPI_SEND(a, 1, type22, ...)

CALL MPI_SEND(a, 1, type4, ...)

...

CALL MPI_RECV(a, 4, MPI_REAL, ...)

CALL MPI_RECV(a, 2, type2, ...)

CALL MPI_RECV(a, 1, type22, ...)

CALL MPI_RECV(a, 1, type4, ...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

112 CHAPTER 4. DATATYPES

Each of the sends matches any of the receives.
A datatype may specify overlapping entries. The use of such a datatype in a receive

operation is erroneous. (This is erroneous even if the actual message received is short enough
not to write any entry more than once.)

Suppose that MPI_RECV(buf, count, datatype, dest, tag, comm, status) is executed,
where datatype has type map,

{(type0, disp0), . . . , (typen−1, dispn−1)}.

The received message need not fill all the receive buffer, nor does it need to fill a number of
locations which is a multiple of n. Any number, k, of basic elements can be received, where
0 ≤ k ≤ count ·n. The number of basic elements received can be retrieved from status using
the query functions MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X.

MPI_GET_ELEMENTS(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype used by receive operation (handle)

OUT count number of received basic elements (integer)

int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype,

int *count)

MPI_Get_elements(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_GET_ELEMENTS_X(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype used by receive operation (handle)

OUT count number of received basic elements (integer)

int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,

MPI_Count *count)

MPI_Get_elements_x(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 113

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR

INTEGER(KIND=MPI_COUNT_KIND) COUNT

The datatype argument should match the argument provided by the receive call that
set the status variable. For both functions, if the OUT parameter cannot express the value
to be returned (e.g., if the parameter is too small to hold the output value), it is set to
MPI_UNDEFINED.

The previously defined function MPI_GET_COUNT (Section 3.2.5), has a different be-
havior. It returns the number of “top-level entries” received, i.e. the number of “copies” of
type datatype. In the previous example, MPI_GET_COUNT may return any integer value
k, where 0 ≤ k ≤ count. If MPI_GET_COUNT returns k, then the number of basic elements
received (and the value returned by MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X) is
n · k. If the number of basic elements received is not a multiple of n, that is, if the receive
operation has not received an integral number of datatype “copies,” then MPI_GET_COUNT
sets the value of count to MPI_UNDEFINED.

Example 4.12 Usage of MPI_GET_COUNT and MPI_GET_ELEMENTS.

...

CALL MPI_TYPE_CONTIGUOUS(2, MPI_REAL, Type2, ierr)

CALL MPI_TYPE_COMMIT(Type2, ierr)

...

CALL MPI_COMM_RANK(comm, rank, ierr)

IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 2, MPI_REAL, 1, 0, comm, ierr)

CALL MPI_SEND(a, 3, MPI_REAL, 1, 0, comm, ierr)

ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)

CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=1

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=2

CALL MPI_RECV(a, 2, Type2, 0, 0, comm, stat, ierr)

CALL MPI_GET_COUNT(stat, Type2, i, ierr) ! returns i=MPI_UNDEFINED

CALL MPI_GET_ELEMENTS(stat, Type2, i, ierr) ! returns i=3

END IF

The functions MPI_GET_ELEMENTS and MPI_GET_ELEMENTS_X can also be used
after a probe to find the number of elements in the probed message. Note that the
MPI_GET_COUNT, MPI_GET_ELEMENTS, and MPI_GET_ELEMENTS_X return the same
values when they are used with basic datatypes as long as the limits of their respective
count arguments are not exceeded.

Rationale. The extension given to the definition of MPI_GET_COUNT seems natural:
one would expect this function to return the value of the count argument, when the
receive buffer is filled. Sometimes datatype represents a basic unit of data one wants
to transfer, for example, a record in an array of records (structures). One should be
able to find out how many components were received without bothering to divide by
the number of elements in each component. However, on other occasions, datatype
is used to define a complex layout of data in the receiver memory, and does not
represent a basic unit of data for transfers. In such cases, one needs to use the
function MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

114 CHAPTER 4. DATATYPES

Advice to implementors. The definition implies that a receive cannot change the
value of storage outside the entries defined to compose the communication buffer. In
particular, the definition implies that padding space in a structure should not be mod-
ified when such a structure is copied from one process to another. This would prevent
the obvious optimization of copying the structure, together with the padding, as one
contiguous block. The implementation is free to do this optimization when it does not
impact the outcome of the computation. The user can “force” this optimization by
explicitly including padding as part of the message. (End of advice to implementors.)

4.1.12 Correct Use of Addresses

Successively declared variables in C or Fortran are not necessarily stored at contiguous
locations. Thus, care must be exercised that displacements do not cross from one variable
to another. Also, in machines with a segmented address space, addresses are not unique
and address arithmetic has some peculiar properties. Thus, the use of addresses, that is,
displacements relative to the start address MPI_BOTTOM, has to be restricted.

Variables belong to the same sequential storage if they belong to the same array, to the
same COMMON block in Fortran, or to the same structure in C. Valid addresses are defined
recursively as follows:

1. The function MPI_GET_ADDRESS returns a valid address, when passed as argument
a variable of the calling program.

2. The buf argument of a communication function evaluates to a valid address, when
passed as argument a variable of the calling program.

3. If v is a valid address, and i is an integer, then v+i is a valid address, provided v and
v+i are in the same sequential storage.

A correct program uses only valid addresses to identify the locations of entries in
communication buffers. Furthermore, if u and v are two valid addresses, then the (integer)
difference u - v can be computed only if both u and v are in the same sequential storage.
No other arithmetic operations can be meaningfully executed on addresses.

The rules above impose no constraints on the use of derived datatypes, as long as
they are used to define a communication buffer that is wholly contained within the same
sequential storage. However, the construction of a communication buffer that contains
variables that are not within the same sequential storage must obey certain restrictions.
Basically, a communication buffer with variables that are not within the same sequential
storage can be used only by specifying in the communication call buf = MPI_BOTTOM,
count = 1, and using a datatype argument where all displacements are valid (absolute)
addresses.

Advice to users. It is not expected that MPI implementations will be able to detect
erroneous, “out of bound” displacements — unless those overflow the user address
space — since the MPI call may not know the extent of the arrays and records in the
host program. (End of advice to users.)

Advice to implementors. There is no need to distinguish (absolute) addresses and
(relative) displacements on a machine with contiguous address space: MPI_BOTTOM

is zero, and both addresses and displacements are integers. On machines where the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 115

distinction is required, addresses are recognized as expressions that involve
MPI_BOTTOM. (End of advice to implementors.)

4.1.13 Decoding a Datatype

MPI datatype objects allow users to specify an arbitrary layout of data in memory. There
are several cases where accessing the layout information in opaque datatype objects would
be useful. The opaque datatype object has found a number of uses outside MPI. Further-
more, a number of tools wish to display internal information about a datatype. To achieve
this, datatype decoding functions are provided. The two functions in this section are used
together to decode datatypes to recreate the calling sequence used in their initial defini-
tion. These can be used to allow a user to determine the type map and type signature of a
datatype.

MPI_TYPE_GET_ENVELOPE(datatype, num_integers, num_addresses, num_datatypes,
combiner)

IN datatype datatype to access (handle)

OUT num_integers number of input integers used in the call constructing

combiner (non-negative integer)

OUT num_addresses number of input addresses used in the call construct-

ing combiner (non-negative integer)

OUT num_datatypes number of input datatypes used in the call construct-

ing combiner (non-negative integer)

OUT combiner combiner (state)

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,

int *num_addresses, int *num_datatypes, int *combiner)

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes,

combiner, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes,

combiner

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,

IERROR

For the given datatype, MPI_TYPE_GET_ENVELOPE returns information on the num-
ber and type of input arguments used in the call that created the datatype. The number-of-
arguments values returned can be used to provide sufficiently large arrays in the decoding
routine MPI_TYPE_GET_CONTENTS. This call and the meaning of the returned values is
described below. The combiner reflects the MPI datatype constructor call that was used in
creating datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

116 CHAPTER 4. DATATYPES

Rationale. By requiring that the combiner reflect the constructor used in the creation
of the datatype, the decoded information can be used to effectively recreate the calling
sequence used in the original creation. This is the most useful information and was felt
to be reasonable even though it constrains implementations to remember the original
constructor sequence even if the internal representation is different.

The decoded information keeps track of datatype duplications. This is important as
one needs to distinguish between a predefined datatype and a dup of a predefined
datatype. The former is a constant object that cannot be freed, while the latter is a
derived datatype that can be freed. (End of rationale.)

The list in Table 4.1 has the values that can be returned in combiner on the left and
the call associated with them on the right.

MPI_COMBINER_NAMED a named predefined datatype
MPI_COMBINER_DUP MPI_TYPE_DUP
MPI_COMBINER_CONTIGUOUS MPI_TYPE_CONTIGUOUS
MPI_COMBINER_VECTOR MPI_TYPE_VECTOR
MPI_COMBINER_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_COMBINER_INDEXED MPI_TYPE_INDEXED
MPI_COMBINER_HINDEXED MPI_TYPE_CREATE_HINDEXED
MPI_COMBINER_INDEXED_BLOCK MPI_TYPE_CREATE_INDEXED_BLOCK
MPI_COMBINER_HINDEXED_BLOCK MPI_TYPE_CREATE_HINDEXED_BLOCK
MPI_COMBINER_STRUCT MPI_TYPE_CREATE_STRUCT
MPI_COMBINER_SUBARRAY MPI_TYPE_CREATE_SUBARRAY
MPI_COMBINER_DARRAY MPI_TYPE_CREATE_DARRAY
MPI_COMBINER_F90_REAL MPI_TYPE_CREATE_F90_REAL
MPI_COMBINER_F90_COMPLEX MPI_TYPE_CREATE_F90_COMPLEX
MPI_COMBINER_F90_INTEGER MPI_TYPE_CREATE_F90_INTEGER
MPI_COMBINER_RESIZED MPI_TYPE_CREATE_RESIZED

Table 4.1: combiner values returned from MPI_TYPE_GET_ENVELOPE

If combiner is MPI_COMBINER_NAMED then datatype is a named predefined datatype.
The actual arguments used in the creation call for a datatype can be obtained using

MPI_TYPE_GET_CONTENTS.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 117

MPI_TYPE_GET_CONTENTS(datatype, max_integers, max_addresses, max_datatypes,
array_of_integers, array_of_addresses, array_of_datatypes)

IN datatype datatype to access (handle)

IN max_integers number of elements in array_of_integers (non-negative

integer)

IN max_addresses number of elements in array_of_addresses (non-negative

integer)

IN max_datatypes number of elements in array_of_datatypes (non-negative

integer)

OUT array_of_integers contains integer arguments used in constructing

datatype (array of integers)

OUT array_of_addresses contains address arguments used in constructing

datatype (array of integers)

OUT array_of_datatypes contains datatype arguments used in constructing

datatype (array of handles)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,

int max_addresses, int max_datatypes, int array_of_integers[],

MPI_Aint array_of_addresses[],

MPI_Datatype array_of_datatypes[])

MPI_Type_get_contents(datatype, max_integers, max_addresses, max_datatypes,

array_of_integers, array_of_addresses, array_of_datatypes,

ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: max_integers, max_addresses, max_datatypes

INTEGER, INTENT(OUT) :: array_of_integers(max_integers)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) ::

array_of_addresses(max_addresses)

TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,

IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

datatype must be a predefined unnamed or a derived datatype; the call is erroneous if
datatype is a predefined named datatype.

The values given for max_integers, max_addresses, and max_datatypes must be at least as
large as the value returned in num_integers, num_addresses, and num_datatypes, respectively,
in the call MPI_TYPE_GET_ENVELOPE for the same datatype argument.

Rationale. The arguments max_integers, max_addresses, and max_datatypes allow for
error checking in the call. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

118 CHAPTER 4. DATATYPES

The datatypes returned in array_of_datatypes are handles to datatype objects that
are equivalent to the datatypes used in the original construction call. If these were derived
datatypes, then the returned datatypes are new datatype objects, and the user is responsible
for freeing these datatypes with MPI_TYPE_FREE. If these were predefined datatypes, then
the returned datatype is equal to that (constant) predefined datatype and cannot be freed.

The committed state of returned derived datatypes is undefined, i.e., the datatypes may
or may not be committed. Furthermore, the content of attributes of returned datatypes is
undefined.

Note that MPI_TYPE_GET_CONTENTS can be invoked with a
datatype argument that was constructed using MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_INTEGER, or MPI_TYPE_CREATE_F90_COMPLEX (an unnamed
predefined datatype). In such a case, an empty array_of_datatypes is returned.

Rationale. The definition of datatype equivalence implies that equivalent predefined
datatypes are equal. By requiring the same handle for named predefined datatypes,
it is possible to use the == or .EQ. comparison operator to determine the datatype
involved. (End of rationale.)

Advice to implementors. The datatypes returned in array_of_datatypes must appear
to the user as if each is an equivalent copy of the datatype used in the type constructor
call. Whether this is done by creating a new datatype or via another mechanism such
as a reference count mechanism is up to the implementation as long as the semantics
are preserved. (End of advice to implementors.)

Rationale. The committed state and attributes of the returned datatype is delib-
erately left vague. The datatype used in the original construction may have been
modified since its use in the constructor call. Attributes can be added, removed, or
modified as well as having the datatype committed. The semantics given allow for
a reference count implementation without having to track these changes. (End of
rationale.)

In the deprecated datatype constructor calls, the address arguments in Fortran are
of type INTEGER. In the preferred calls, the address arguments are of type
INTEGER(KIND=MPI_ADDRESS_KIND). The call MPI_TYPE_GET_CONTENTS returns all ad-
dresses in an argument of type INTEGER(KIND=MPI_ADDRESS_KIND). This is true even if the
deprecated calls were used. Thus, the location of values returned can be thought of as being
returned by the C bindings. It can also be determined by examining the preferred calls for
datatype constructors for the deprecated calls that involve addresses.

Rationale. By having all address arguments returned in the
array_of_addresses argument, the result from a C and Fortran decoding of a datatype
gives the result in the same argument. It is assumed that an integer of type
INTEGER(KIND=MPI_ADDRESS_KIND) will be at least as large as the INTEGER argument
used in datatype construction with the old MPI-1 calls so no loss of information will
occur. (End of rationale.)

The following defines what values are placed in each entry of the returned arrays
depending on the datatype constructor used for datatype. It also specifies the size of the
arrays needed which is the values returned by MPI_TYPE_GET_ENVELOPE. In Fortran,
the following calls were made:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 119

PARAMETER (LARGE = 1000)

INTEGER TYPE, NI, NA, ND, COMBINER, I(LARGE), D(LARGE), IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) A(LARGE)

! CONSTRUCT DATATYPE TYPE (NOT SHOWN)

CALL MPI_TYPE_GET_ENVELOPE(TYPE, NI, NA, ND, COMBINER, IERROR)

IF ((NI .GT. LARGE) .OR. (NA .GT. LARGE) .OR. (ND .GT. LARGE)) THEN

WRITE (*, *) "NI, NA, OR ND = ", NI, NA, ND, &

" RETURNED BY MPI_TYPE_GET_ENVELOPE IS LARGER THAN LARGE = ", LARGE

CALL MPI_ABORT(MPI_COMM_WORLD, 99, IERROR)

ENDIF

CALL MPI_TYPE_GET_CONTENTS(TYPE, NI, NA, ND, I, A, D, IERROR)

or in C the analogous calls of:

#define LARGE 1000

int ni, na, nd, combiner, i[LARGE];

MPI_Aint a[LARGE];

MPI_Datatype type, d[LARGE];

/* construct datatype type (not shown) */

MPI_Type_get_envelope(type, &ni, &na, &nd, &combiner);

if ((ni > LARGE) || (na > LARGE) || (nd > LARGE)) {

fprintf(stderr, "ni, na, or nd = %d %d %d returned by ", ni, na, nd);

fprintf(stderr, "MPI_Type_get_envelope is larger than LARGE = %d\n",

LARGE);

MPI_Abort(MPI_COMM_WORLD, 99);

};

MPI_Type_get_contents(type, ni, na, nd, i, a, d);

In the descriptions that follow, the lower case name of arguments is used.
If combiner is MPI_COMBINER_NAMED then it is erroneous to call

MPI_TYPE_GET_CONTENTS.
If combiner is MPI_COMBINER_DUP then

Constructor argument C Fortran location

oldtype d[0] D(1)
and ni = 0, na = 0, nd = 1.

If combiner is MPI_COMBINER_CONTIGUOUS then
Constructor argument C Fortran location

count i[0] I(1)
oldtype d[0] D(1)

and ni = 1, na = 0, nd = 1.
If combiner is MPI_COMBINER_VECTOR then

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride i[2] I(3)
oldtype d[0] D(1)

and ni = 3, na = 0, nd = 1.
If combiner is MPI_COMBINER_HVECTOR then

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

120 CHAPTER 4. DATATYPES

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] I(2)
stride a[0] A(1)
oldtype d[0] D(1)

and ni = 2, na = 1, nd = 1.
If combiner is MPI_COMBINER_INDEXED then

Constructor argument C Fortran location

count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
oldtype d[0] D(1)

and ni = 2*count+1, na = 0, nd = 1.
If combiner is MPI_COMBINER_HINDEXED then

Constructor argument C Fortran location

count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

and ni = count+1, na = count, nd = 1.
If combiner is MPI_COMBINER_INDEXED_BLOCK then

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] I(2)
array_of_displacements i[2] to i[i[0]+1] I(3) to I(I(1)+2)
oldtype d[0] D(1)

and ni = count+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_HINDEXED_BLOCK then

Constructor argument C Fortran location

count i[0] I(1)
blocklength i[1] I(2)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
oldtype d[0] D(1)

and ni = 2, na = count, nd = 1.
If combiner is MPI_COMBINER_STRUCT then

Constructor argument C Fortran location

count i[0] I(1)
array_of_blocklengths i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_displacements a[0] to a[i[0]-1] A(1) to A(I(1))
array_of_types d[0] to d[i[0]-1] D(1) to D(I(1))

and ni = count+1, na = count, nd = count.
If combiner is MPI_COMBINER_SUBARRAY then

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 121

Constructor argument C Fortran location

ndims i[0] I(1)
array_of_sizes i[1] to i[i[0]] I(2) to I(I(1)+1)
array_of_subsizes i[i[0]+1] to i[2*i[0]] I(I(1)+2) to I(2*I(1)+1)
array_of_starts i[2*i[0]+1] to i[3*i[0]] I(2*I(1)+2) to I(3*I(1)+1)
order i[3*i[0]+1] I(3*I(1)+2]
oldtype d[0] D(1)

and ni = 3*ndims+2, na = 0, nd = 1.
If combiner is MPI_COMBINER_DARRAY then

Constructor argument C Fortran location

size i[0] I(1)
rank i[1] I(2)
ndims i[2] I(3)
array_of_gsizes i[3] to i[i[2]+2] I(4) to I(I(3)+3)
array_of_distribs i[i[2]+3] to i[2*i[2]+2] I(I(3)+4) to I(2*I(3)+3)
array_of_dargs i[2*i[2]+3] to i[3*i[2]+2] I(2*I(3)+4) to I(3*I(3)+3)
array_of_psizes i[3*i[2]+3] to i[4*i[2]+2] I(3*I(3)+4) to I(4*I(3)+3)
order i[4*i[2]+3] I(4*I(3)+4)
oldtype d[0] D(1)

and ni = 4*ndims+4, na = 0, nd = 1.
If combiner is MPI_COMBINER_F90_REAL then

Constructor argument C Fortran location

p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI_COMBINER_F90_COMPLEX then

Constructor argument C Fortran location

p i[0] I(1)
r i[1] I(2)

and ni = 2, na = 0, nd = 0.
If combiner is MPI_COMBINER_F90_INTEGER then

Constructor argument C Fortran location

r i[0] I(1)
and ni = 1, na = 0, nd = 0.

If combiner is MPI_COMBINER_RESIZED then
Constructor argument C Fortran location

lb a[0] A(1)
extent a[1] A(2)
oldtype d[0] D(1)

and ni = 0, na = 2, nd = 1.

4.1.14 Examples

The following examples illustrate the use of derived datatypes.

Example 4.13 Send and receive a section of a 3D array.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

122 CHAPTER 4. DATATYPES

REAL a(100,100,100), e(9,9,9)

INTEGER oneslice, twoslice, threeslice, myrank, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lb, sizeofreal

INTEGER status(MPI_STATUS_SIZE)

C extract the section a(1:17:2, 3:11, 2:10)

C and store it in e(:,:,:).

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)

C create datatype for a 1D section

CALL MPI_TYPE_VECTOR(9, 1, 2, MPI_REAL, oneslice, ierr)

C create datatype for a 2D section

CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100*sizeofreal, oneslice,

twoslice, ierr)

C create datatype for the entire section

CALL MPI_TYPE_CREATE_HVECTOR(9, 1, 100*100*sizeofreal, twoslice,

threeslice, ierr)

CALL MPI_TYPE_COMMIT(threeslice, ierr)

CALL MPI_SENDRECV(a(1,3,2), 1, threeslice, myrank, 0, e, 9*9*9,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.14 Copy the (strictly) lower triangular part of a matrix.

REAL a(100,100), b(100,100)

INTEGER disp(100), blocklen(100), ltype, myrank, ierr

INTEGER status(MPI_STATUS_SIZE)

C copy lower triangular part of array a

C onto lower triangular part of array b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C compute start and size of each column

DO i=1, 100

disp(i) = 100*(i-1) + i

blocklen(i) = 100-i

END DO

C create datatype for lower triangular part

CALL MPI_TYPE_INDEXED(100, blocklen, disp, MPI_REAL, ltype, ierr)

CALL MPI_TYPE_COMMIT(ltype, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 123

CALL MPI_SENDRECV(a, 1, ltype, myrank, 0, b, 1,

ltype, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.15 Transpose a matrix.

REAL a(100,100), b(100,100)

INTEGER row, xpose, myrank, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lb, sizeofreal

INTEGER status(MPI_STATUS_SIZE)

C transpose matrix a onto b

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)

C create datatype for one row

CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

C create datatype for matrix in row-major order

CALL MPI_TYPE_CREATE_HVECTOR(100, 1, sizeofreal, row, xpose, ierr)

CALL MPI_TYPE_COMMIT(xpose, ierr)

C send matrix in row-major order and receive in column major order

CALL MPI_SENDRECV(a, 1, xpose, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.16 Another approach to the transpose problem:

REAL a(100,100), b(100,100)

INTEGER row, row1

INTEGER (KIND=MPI_ADDRESS_KIND) disp(2), lb, sizeofreal

INTEGER myrank, ierr

INTEGER status(MPI_STATUS_SIZE)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, myrank, ierr)

C transpose matrix a onto b

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lb, sizeofreal, ierr)

C create datatype for one row

CALL MPI_TYPE_VECTOR(100, 1, 100, MPI_REAL, row, ierr)

C create datatype for one row, with the extent of one real number

lb = 0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

124 CHAPTER 4. DATATYPES

CALL MPI_TYPE_CREATE_RESIZED(row, lb, sizeofreal, row1, ierr)

CALL MPI_TYPE_COMMIT(row1, ierr)

C send 100 rows and receive in column major order

CALL MPI_SENDRECV(a, 100, row1, myrank, 0, b, 100*100,

MPI_REAL, myrank, 0, MPI_COMM_WORLD, status, ierr)

Example 4.17 We manipulate an array of structures.

struct Partstruct

{

int type; /* particle type */

double d[6]; /* particle coordinates */

char b[7]; /* some additional information */

};

struct Partstruct particle[1000];

int i, dest, tag;

MPI_Comm comm;

/* build datatype describing structure */

MPI_Datatype Particlestruct, Particletype;

MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};

int blocklen[3] = {1, 6, 7};

MPI_Aint disp[3];

MPI_Aint base, lb, sizeofentry;

/* compute displacements of structure components */

MPI_Get_address(particle, disp);

MPI_Get_address(particle[0].d, disp+1);

MPI_Get_address(particle[0].b, disp+2);

base = disp[0];

for (i=0; i < 3; i++) disp[i] -= base;

MPI_Type_create_struct(3, blocklen, disp, type, &Particlestruct);

/* If compiler does padding in mysterious ways,

the following may be safer */

/* compute extent of the structure */

MPI_Get_address(particle+1, &sizeofentry);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 125

sizeofentry -= base;

/* build datatype describing structure */

MPI_Type_create_resized(Particlestruct, 0, sizeofentry, &Particletype);

/* 4.1:

send the entire array */

MPI_Type_commit(&Particletype);

MPI_Send(particle, 1000, Particletype, dest, tag, comm);

/* 4.2:

send only the entries of type zero particles,

preceded by the number of such entries */

MPI_Datatype Zparticles; /* datatype describing all particles

with type zero (needs to be recomputed

if types change) */

MPI_Datatype Ztype;

int zdisp[1000];

int zblock[1000], j, k;

int zzblock[2] = {1,1};

MPI_Aint zzdisp[2];

MPI_Datatype zztype[2];

/* compute displacements of type zero particles */

j = 0;

for (i=0; i < 1000; i++)

if (particle[i].type == 0)

{

zdisp[j] = i;

zblock[j] = 1;

j++;

}

/* create datatype for type zero particles */

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* prepend particle count */

MPI_Get_address(&j, zzdisp);

MPI_Get_address(particle, zzdisp+1);

zztype[0] = MPI_INT;

zztype[1] = Zparticles;

MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

126 CHAPTER 4. DATATYPES

MPI_Type_commit(&Ztype);

MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

/* A probably more efficient way of defining Zparticles */

/* consecutive particles with index zero are handled as one block */

j=0;

for (i=0; i < 1000; i++)

if (particle[i].type == 0)

{

for (k=i+1; (k < 1000)&&(particle[k].type == 0) ; k++);

zdisp[j] = i;

zblock[j] = k-i;

j++;

i = k;

}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* 4.3:

send the first two coordinates of all entries */

MPI_Datatype Allpairs; /* datatype for all pairs of coordinates */

MPI_Type_get_extent(Particletype, &lb, &sizeofentry);

/* sizeofentry can also be computed by subtracting the address

of particle[0] from the address of particle[1] */

MPI_Type_create_hvector(1000, 2, sizeofentry, MPI_DOUBLE, &Allpairs);

MPI_Type_commit(&Allpairs);

MPI_Send(particle[0].d, 1, Allpairs, dest, tag, comm);

/* an alternative solution to 4.3 */

MPI_Datatype Twodouble;

MPI_Type_contiguous(2, MPI_DOUBLE, &Twodouble);

MPI_Datatype Onepair; /* datatype for one pair of coordinates, with

the extent of one particle entry */

MPI_Type_create_resized(Twodouble, 0, sizeofentry, &Onepair);

MPI_Type_commit(&Onepair);

MPI_Send(particle[0].d, 1000, Onepair, dest, tag, comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 127

Example 4.18 The same manipulations as in the previous example, but use absolute
addresses in datatypes.

struct Partstruct

{

int type;

double d[6];

char b[7];

};

struct Partstruct particle[1000];

/* build datatype describing first array entry */

MPI_Datatype Particletype;

MPI_Datatype type[3] = {MPI_INT, MPI_DOUBLE, MPI_CHAR};

int block[3] = {1, 6, 7};

MPI_Aint disp[3];

MPI_Get_address(particle, disp);

MPI_Get_address(particle[0].d, disp+1);

MPI_Get_address(particle[0].b, disp+2);

MPI_Type_create_struct(3, block, disp, type, &Particletype);

/* Particletype describes first array entry -- using absolute

addresses */

/* 5.1:

send the entire array */

MPI_Type_commit(&Particletype);

MPI_Send(MPI_BOTTOM, 1000, Particletype, dest, tag, comm);

/* 5.2:

send the entries of type zero,

preceded by the number of such entries */

MPI_Datatype Zparticles, Ztype;

int zdisp[1000];

int zblock[1000], i, j, k;

int zzblock[2] = {1,1};

MPI_Datatype zztype[2];

MPI_Aint zzdisp[2];

j=0;

for (i=0; i < 1000; i++)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

128 CHAPTER 4. DATATYPES

if (particle[i].type == 0)

{

for (k=i+1; (k < 1000)&&(particle[k].type == 0) ; k++);

zdisp[j] = i;

zblock[j] = k-i;

j++;

i = k;

}

MPI_Type_indexed(j, zblock, zdisp, Particletype, &Zparticles);

/* Zparticles describe particles with type zero, using

their absolute addresses*/

/* prepend particle count */

MPI_Get_address(&j, zzdisp);

zzdisp[1] = (MPI_Aint)0;

zztype[0] = MPI_INT;

zztype[1] = Zparticles;

MPI_Type_create_struct(2, zzblock, zzdisp, zztype, &Ztype);

MPI_Type_commit(&Ztype);

MPI_Send(MPI_BOTTOM, 1, Ztype, dest, tag, comm);

Example 4.19 Handling of unions.

union {

int ival;

float fval;

} u[1000];

int utype;

/* All entries of u have identical type; variable

utype keeps track of their current type */

MPI_Datatype mpi_utype[2];

MPI_Aint i, extent;

/* compute an MPI datatype for each possible union type;

assume values are left-aligned in union storage. */

MPI_Get_address(u, &i);

MPI_Get_address(u+1, &extent);

extent -= i;

MPI_Type_create_resized(MPI_INT, 0, extent, &mpi_utype[0]);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.1. DERIVED DATATYPES 129

MPI_Type_create_resized(MPI_FLOAT, 0, extent, &mpi_utype[1]);

for(i=0; i<2; i++) MPI_Type_commit(&mpi_utype[i]);

/* actual communication */

MPI_Send(u, 1000, mpi_utype[utype], dest, tag, comm);

Example 4.20 This example shows how a datatype can be decoded. The routine
printdatatype prints out the elements of the datatype. Note the use of MPI_Type_free for
datatypes that are not predefined.

/*

Example of decoding a datatype.

Returns 0 if the datatype is predefined, 1 otherwise

*/

#include <stdio.h>

#include <stdlib.h>

#include "mpi.h"

int printdatatype(MPI_Datatype datatype)

{

int *array_of_ints;

MPI_Aint *array_of_adds;

MPI_Datatype *array_of_dtypes;

int num_ints, num_adds, num_dtypes, combiner;

int i;

MPI_Type_get_envelope(datatype,

&num_ints, &num_adds, &num_dtypes, &combiner);

switch (combiner) {

case MPI_COMBINER_NAMED:

printf("Datatype is named:");

/* To print the specific type, we can match against the

predefined forms. We can NOT use a switch statement here

We could also use MPI_TYPE_GET_NAME if we prefered to use

names that the user may have changed.

*/

if (datatype == MPI_INT) printf("MPI_INT\n");

else if (datatype == MPI_DOUBLE) printf("MPI_DOUBLE\n");

... else test for other types ...

return 0;

break;

case MPI_COMBINER_STRUCT:

case MPI_COMBINER_STRUCT_INTEGER:

printf("Datatype is struct containing");

array_of_ints = (int *)malloc(num_ints * sizeof(int));

array_of_adds =

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

130 CHAPTER 4. DATATYPES

(MPI_Aint *) malloc(num_adds * sizeof(MPI_Aint));

array_of_dtypes = (MPI_Datatype *)

malloc(num_dtypes * sizeof(MPI_Datatype));

MPI_Type_get_contents(datatype, num_ints, num_adds, num_dtypes,

array_of_ints, array_of_adds, array_of_dtypes);

printf(" %d datatypes:\n", array_of_ints[0]);

for (i=0; i<array_of_ints[0]; i++) {

printf("blocklength %d, displacement %ld, type:\n",

array_of_ints[i+1], (long)array_of_adds[i]);

if (printdatatype(array_of_dtypes[i])) {

/* Note that we free the type ONLY if it

is not predefined */

MPI_Type_free(&array_of_dtypes[i]);

}

}

free(array_of_ints);

free(array_of_adds);

free(array_of_dtypes);

break;

... other combiner values ...

default:

printf("Unrecognized combiner type\n");

}

return 1;

}

4.2 Pack and Unpack

Some existing communication libraries provide pack/unpack functions for sending noncon-
tiguous data. In these, the user explicitly packs data into a contiguous buffer before sending
it, and unpacks it from a contiguous buffer after receiving it. Derived datatypes, which are
described in Section 4.1, allow one, in most cases, to avoid explicit packing and unpacking.
The user specifies the layout of the data to be sent or received, and the communication
library directly accesses a noncontiguous buffer. The pack/unpack routines are provided
for compatibility with previous libraries. Also, they provide some functionality that is not
otherwise available in MPI. For instance, a message can be received in several parts, where
the receive operation done on a later part may depend on the content of a former part.
Another use is that outgoing messages may be explicitly buffered in user supplied space,
thus overriding the system buffering policy. Finally, the availability of pack and unpack
operations facilitates the development of additional communication libraries layered on top
of MPI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.2. PACK AND UNPACK 131

MPI_PACK(inbuf, incount, datatype, outbuf, outsize, position, comm)

IN inbuf input buffer start (choice)

IN incount number of input data items (non-negative integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (non-negative integer)

INOUT position current position in buffer, in bytes (integer)

IN comm communicator for packed message (handle)

int MPI_Pack(const void* inbuf, int incount, MPI_Datatype datatype,

void *outbuf, int outsize, int *position, MPI_Comm comm)

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount, outsize

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(INOUT) :: position

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

Packs the message in the send buffer specified by inbuf, incount, datatype into the buffer
space specified by outbuf and outsize. The input buffer can be any communication buffer
allowed in MPI_SEND. The output buffer is a contiguous storage area containing outsize
bytes, starting at the address outbuf (length is counted in bytes, not elements, as if it were
a communication buffer for a message of type MPI_PACKED).

The input value of position is the first location in the output buffer to be used for
packing. position is incremented by the size of the packed message, and the output value
of position is the first location in the output buffer following the locations occupied by the
packed message. The comm argument is the communicator that will be subsequently used
for sending the packed message.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

132 CHAPTER 4. DATATYPES

MPI_UNPACK(inbuf, insize, position, outbuf, outcount, datatype, comm)

IN inbuf input buffer start (choice)

IN insize size of input buffer, in bytes (non-negative integer)

INOUT position current position in bytes (integer)

OUT outbuf output buffer start (choice)

IN outcount number of items to be unpacked (integer)

IN datatype datatype of each output data item (handle)

IN comm communicator for packed message (handle)

int MPI_Unpack(const void* inbuf, int insize, int *position, void *outbuf,

int outcount, MPI_Datatype datatype, MPI_Comm comm)

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: insize, outcount

INTEGER, INTENT(INOUT) :: position

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,

IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

Unpacks a message into the receive buffer specified by outbuf, outcount, datatype from
the buffer space specified by inbuf and insize. The output buffer can be any communication
buffer allowed in MPI_RECV. The input buffer is a contiguous storage area containing insize
bytes, starting at address inbuf. The input value of position is the first location in the input
buffer occupied by the packed message. position is incremented by the size of the packed
message, so that the output value of position is the first location in the input buffer after
the locations occupied by the message that was unpacked. comm is the communicator used
to receive the packed message.

Advice to users. Note the difference between MPI_RECV and MPI_UNPACK: in
MPI_RECV, the count argument specifies the maximum number of items that can
be received. The actual number of items received is determined by the length of
the incoming message. In MPI_UNPACK, the count argument specifies the actual
number of items that are unpacked; the “size” of the corresponding message is the
increment in position. The reason for this change is that the “incoming message size”
is not predetermined since the user decides how much to unpack; nor is it easy to
determine the “message size” from the number of items to be unpacked. In fact, in a
heterogeneous system, this number may not be determined a priori. (End of advice
to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.2. PACK AND UNPACK 133

To understand the behavior of pack and unpack, it is convenient to think of the data
part of a message as being the sequence obtained by concatenating the successive values sent
in that message. The pack operation stores this sequence in the buffer space, as if sending
the message to that buffer. The unpack operation retrieves this sequence from buffer space,
as if receiving a message from that buffer. (It is helpful to think of internal Fortran files or
sscanf in C, for a similar function.)

Several messages can be successively packed into one packing unit . This is effected
by several successive related calls to MPI_PACK, where the first call provides position = 0,
and each successive call inputs the value of position that was output by the previous call,
and the same values for outbuf, outcount and comm. This packing unit now contains the
equivalent information that would have been stored in a message by one send call with a
send buffer that is the “concatenation” of the individual send buffers.

A packing unit can be sent using type MPI_PACKED. Any point to point or collective
communication function can be used to move the sequence of bytes that forms the packing
unit from one process to another. This packing unit can now be received using any receive
operation, with any datatype: the type matching rules are relaxed for messages sent with
type MPI_PACKED.

A message sent with any type (including MPI_PACKED) can be received using the type
MPI_PACKED. Such a message can then be unpacked by calls to MPI_UNPACK.

A packing unit (or a message created by a regular, “typed” send) can be unpacked into
several successive messages. This is effected by several successive related calls to
MPI_UNPACK, where the first call provides position = 0, and each successive call inputs the
value of position that was output by the previous call, and the same values for inbuf, insize
and comm.

The concatenation of two packing units is not necessarily a packing unit; nor is a
substring of a packing unit necessarily a packing unit. Thus, one cannot concatenate two
packing units and then unpack the result as one packing unit; nor can one unpack a substring
of a packing unit as a separate packing unit. Each packing unit, that was created by a related
sequence of pack calls, or by a regular send, must be unpacked as a unit, by a sequence of
related unpack calls.

Rationale. The restriction on “atomic” packing and unpacking of packing units
allows the implementation to add at the head of packing units additional information,
such as a description of the sender architecture (to be used for type conversion, in a
heterogeneous environment) (End of rationale.)

The following call allows the user to find out how much space is needed to pack a
message and, thus, manage space allocation for buffers.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

134 CHAPTER 4. DATATYPES

MPI_PACK_SIZE(incount, datatype, comm, size)

IN incount count argument to packing call (non-negative integer)

IN datatype datatype argument to packing call (handle)

IN comm communicator argument to packing call (handle)

OUT size upper bound on size of packed message, in bytes (non-

negative integer)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,

int *size)

MPI_Pack_size(incount, datatype, comm, size, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

A call to MPI_PACK_SIZE(incount, datatype, comm, size) returns in size an upper bound
on the increment in position that is effected by a call to MPI_PACK(inbuf, incount, datatype,
outbuf, outcount, position, comm). If the packed size of the datatype cannot be expressed
by the size parameter, then MPI_PACK_SIZE sets the value of size to MPI_UNDEFINED.

Rationale. The call returns an upper bound, rather than an exact bound, since the
exact amount of space needed to pack the message may depend on the context (e.g.,
first message packed in a packing unit may take more space). (End of rationale.)

Example 4.21 An example using MPI_PACK.

int position, i, j, a[2];

char buff[1000];

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0)

{

/* SENDER CODE */

position = 0;

MPI_Pack(&i, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);

MPI_Pack(&j, 1, MPI_INT, buff, 1000, &position, MPI_COMM_WORLD);

MPI_Send(buff, position, MPI_PACKED, 1, 0, MPI_COMM_WORLD);

}

else /* RECEIVER CODE */

MPI_Recv(a, 2, MPI_INT, 0, 0, MPI_COMM_WORLD, MPI_STATUS_IGNORE);

Example 4.22 An elaborate example.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.2. PACK AND UNPACK 135

int position, i;

float a[1000];

char buff[1000];

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

if (myrank == 0)

{

/* SENDER CODE */

int len[2];

MPI_Aint disp[2];

MPI_Datatype type[2], newtype;

/* build datatype for i followed by a[0]...a[i-1] */

len[0] = 1;

len[1] = i;

MPI_Get_address(&i, disp);

MPI_Get_address(a, disp+1);

type[0] = MPI_INT;

type[1] = MPI_FLOAT;

MPI_Type_create_struct(2, len, disp, type, &newtype);

MPI_Type_commit(&newtype);

/* Pack i followed by a[0]...a[i-1]*/

position = 0;

MPI_Pack(MPI_BOTTOM, 1, newtype, buff, 1000, &position, MPI_COMM_WORLD);

/* Send */

MPI_Send(buff, position, MPI_PACKED, 1, 0,

MPI_COMM_WORLD);

/* *****

One can replace the last three lines with

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

***** */

}

else if (myrank == 1)

{

/* RECEIVER CODE */

MPI_Status status;

/* Receive */

MPI_Recv(buff, 1000, MPI_PACKED, 0, 0, MPI_COMM_WORLD, &status);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

136 CHAPTER 4. DATATYPES

/* Unpack i */

position = 0;

MPI_Unpack(buff, 1000, &position, &i, 1, MPI_INT, MPI_COMM_WORLD);

/* Unpack a[0]...a[i-1] */

MPI_Unpack(buff, 1000, &position, a, i, MPI_FLOAT, MPI_COMM_WORLD);

}

Example 4.23 Each process sends a count, followed by count characters to the root; the
root concatenates all characters into one string.

int count, gsize, counts[64], totalcount, k1, k2, k,

displs[64], position, concat_pos;

char chr[100], *lbuf, *rbuf, *cbuf;

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

/* allocate local pack buffer */

MPI_Pack_size(1, MPI_INT, comm, &k1);

MPI_Pack_size(count, MPI_CHAR, comm, &k2);

k = k1+k2;

lbuf = (char *)malloc(k);

/* pack count, followed by count characters */

position = 0;

MPI_Pack(&count, 1, MPI_INT, lbuf, k, &position, comm);

MPI_Pack(chr, count, MPI_CHAR, lbuf, k, &position, comm);

if (myrank != root) {

/* gather at root sizes of all packed messages */

MPI_Gather(&position, 1, MPI_INT, NULL, 0,

MPI_DATATYPE_NULL, root, comm);

/* gather at root packed messages */

MPI_Gatherv(lbuf, position, MPI_PACKED, NULL,

NULL, NULL, MPI_DATATYPE_NULL, root, comm);

} else { /* root code */

/* gather sizes of all packed messages */

MPI_Gather(&position, 1, MPI_INT, counts, 1,

MPI_INT, root, comm);

/* gather all packed messages */

displs[0] = 0;

for (i=1; i < gsize; i++)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. CANONICAL MPI_PACK AND MPI_UNPACK 137

displs[i] = displs[i-1] + counts[i-1];

totalcount = displs[gsize-1] + counts[gsize-1];

rbuf = (char *)malloc(totalcount);

cbuf = (char *)malloc(totalcount);

MPI_Gatherv(lbuf, position, MPI_PACKED, rbuf,

counts, displs, MPI_PACKED, root, comm);

/* unpack all messages and concatenate strings */

concat_pos = 0;

for (i=0; i < gsize; i++) {

position = 0;

MPI_Unpack(rbuf+displs[i], totalcount-displs[i],

&position, &count, 1, MPI_INT, comm);

MPI_Unpack(rbuf+displs[i], totalcount-displs[i],

&position, cbuf+concat_pos, count, MPI_CHAR, comm);

concat_pos += count;

}

cbuf[concat_pos] = ’\0’;

}

4.3 Canonical MPI_PACK and MPI_UNPACK

These functions read/write data to/from the buffer in the “external32” data format specified
in Section 13.7.2, and calculate the size needed for packing. Their first arguments specify
the data format, for future extensibility, but currently the only valid value of the datarep
argument is “external32.”

Advice to users. These functions could be used, for example, to send typed data in a
portable format from one MPI implementation to another. (End of advice to users.)

The buffer will contain exactly the packed data, without headers. MPI_BYTE should
be used to send and receive data that is packed using MPI_PACK_EXTERNAL.

Rationale. MPI_PACK_EXTERNAL specifies that there is no header on the message
and further specifies the exact format of the data. Since MPI_PACK may (and is
allowed to) use a header, the datatype MPI_PACKED cannot be used for data packed
with MPI_PACK_EXTERNAL. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

138 CHAPTER 4. DATATYPES

MPI_PACK_EXTERNAL(datarep, inbuf, incount, datatype, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT outbuf output buffer start (choice)

IN outsize output buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)

int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,

MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,

MPI_Aint *position)

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,

position, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_UNPACK_EXTERNAL(datarep, inbuf, insize, position, outbuf, outsize, position)

IN datarep data representation (string)

IN inbuf input buffer start (choice)

IN insize input buffer size, in bytes (integer)

INOUT position current position in buffer, in bytes (integer)

OUT outbuf output buffer start (choice)

IN outcount number of output data items (integer)

IN datatype datatype of output data item (handle)

int MPI_Unpack_external(const char datarep[], const void *inbuf,

MPI_Aint insize, MPI_Aint *position, void *outbuf,

int outcount, MPI_Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4.3. CANONICAL MPI_PACK AND MPI_UNPACK 139

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount,

datatype, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position

INTEGER, INTENT(IN) :: outcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_PACK_EXTERNAL_SIZE(datarep, incount, datatype, size)

IN datarep data representation (string)

IN incount number of input data items (integer)

IN datatype datatype of each input data item (handle)

OUT size output buffer size, in bytes (integer)

int MPI_Pack_external_size(const char datarep[], int incount,

MPI_Datatype datatype, MPI_Aint *size)

MPI_Pack_external_size(datarep, incount, datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: incount

CHARACTER(LEN=*), INTENT(IN) :: datarep

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

CHARACTER*(*) DATAREP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

140 CHAPTER 4. DATATYPES

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 5

Collective Communication

5.1 Introduction and Overview

Collective communication is defined as communication that involves a group or groups of
processes. The functions of this type provided by MPI are the following:

• MPI_BARRIER, MPI_IBARRIER: Barrier synchronization across all members of a group
(Section 5.3 and Section 5.12.1).

• MPI_BCAST, MPI_IBCAST: Broadcast from one member to all members of a group
(Section 5.4 and Section 5.12.2). This is shown as “broadcast” in Figure 5.1.

• MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV: Gather data from
all members of a group to one member (Section 5.5 and Section 5.12.3). This is shown
as “gather” in Figure 5.1.

• MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV: Scatter data
from one member to all members of a group (Section 5.6 and Section 5.12.4). This is
shown as “scatter” in Figure 5.1.

• MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV: A
variation on Gather where all members of a group receive the result (Section 5.7 and
Section 5.12.5). This is shown as “allgather” in Figure 5.1.

• MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV,
MPI_ALLTOALLW, MPI_IALLTOALLW: Scatter/Gather data from all members to all
members of a group (also called complete exchange) (Section 5.8 and Section 5.12.6).
This is shown as “complete exchange” in Figure 5.1.

• MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE: Global reduc-
tion operations such as sum, max, min, or user-defined functions, where the result is
returned to all members of a group (Section 5.9.6 and Section 5.12.8) and a variation
where the result is returned to only one member (Section 5.9 and Section 5.12.7).

• MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER: A combined reduction and scat-
ter operation (Section 5.10, Section 5.12.9, and Section 5.12.10).

141

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

142 CHAPTER 5. COLLECTIVE COMMUNICATION

• MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN: Scan across all members of
a group (also called prefix) (Section 5.11, Section 5.11.2, Section 5.12.11, and Sec-
tion 5.12.12).

One of the key arguments in a call to a collective routine is a communicator that
defines the group or groups of participating processes and provides a context for the oper-
ation. This is discussed further in Section 5.2. The syntax and semantics of the collective
operations are defined to be consistent with the syntax and semantics of the point-to-point
operations. Thus, general datatypes are allowed and must match between sending and re-
ceiving processes as specified in Chapter 4. Several collective routines such as broadcast
and gather have a single originating or receiving process. Such a process is called the root.
Some arguments in the collective functions are specified as “significant only at root,” and
are ignored for all participants except the root. The reader is referred to Chapter 4 for
information concerning communication buffers, general datatypes and type matching rules,
and to Chapter 6 for information on how to define groups and create communicators.

The type-matching conditions for the collective operations are more strict than the cor-
responding conditions between sender and receiver in point-to-point. Namely, for collective
operations, the amount of data sent must exactly match the amount of data specified by
the receiver. Different type maps (the layout in memory, see Section 4.1) between sender
and receiver are still allowed.

Collective operations can (but are not required to) complete as soon as the caller’s
participation in the collective communication is finished. A blocking operation is complete
as soon as the call returns. A nonblocking (immediate) call requires a separate completion
call (cf. Section 3.7). The completion of a collective operation indicates that the caller is free
to modify locations in the communication buffer. It does not indicate that other processes
in the group have completed or even started the operation (unless otherwise implied by the
description of the operation). Thus, a collective communication operation may, or may not,
have the effect of synchronizing all calling processes. This statement excludes, of course,
the barrier operation.

Collective communication calls may use the same communicators as point-to-point
communication; MPI guarantees that messages generated on behalf of collective communi-
cation calls will not be confused with messages generated by point-to-point communication.
The collective operations do not have a message tag argument. A more detailed discussion
of correct use of collective routines is found in Section 5.13.

Rationale. The equal-data restriction (on type matching) was made so as to avoid
the complexity of providing a facility analogous to the status argument of MPI_RECV
for discovering the amount of data sent. Some of the collective routines would require
an array of status values.

The statements about synchronization are made so as to allow a variety of implemen-
tations of the collective functions.

(End of rationale.)

Advice to users. It is dangerous to rely on synchronization side-effects of the col-
lective operations for program correctness. For example, even though a particular
implementation may provide a broadcast routine with a side-effect of synchroniza-
tion, the standard does not require this, and a program that relies on this will not be
portable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.1. INTRODUCTION AND OVERVIEW 143

A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

complete
exchange

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast
pr

oc
es

se
s

A0

A0

A0

A0

A0

A0

Figure 5.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data A0, but after the broadcast all processes contain it.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

144 CHAPTER 5. COLLECTIVE COMMUNICATION

On the other hand, a correct, portable program must allow for the fact that a collective
call may be synchronizing. Though one cannot rely on any synchronization side-effect,
one must program so as to allow it. These issues are discussed further in Section 5.13.
(End of advice to users.)

Advice to implementors. While vendors may write optimized collective routines
matched to their architectures, a complete library of the collective communication
routines can be written entirely using the MPI point-to-point communication func-
tions and a few auxiliary functions. If implementing on top of point-to-point, a hidden,
special communicator might be created for the collective operation so as to avoid inter-
ference with any on-going point-to-point communication at the time of the collective
call. This is discussed further in Section 5.13. (End of advice to implementors.)

Many of the descriptions of the collective routines provide illustrations in terms of
blocking MPI point-to-point routines. These are intended solely to indicate what data is
sent or received by what process. Many of these examples are not correct MPI programs;
for purposes of simplicity, they often assume infinite buffering.

5.2 Communicator Argument

The key concept of the collective functions is to have a group or groups of participating
processes. The routines do not have group identifiers as explicit arguments. Instead, there
is a communicator argument. Groups and communicators are discussed in full detail in
Chapter 6. For the purposes of this chapter, it is sufficient to know that there are two types
of communicators: intra-communicators and inter-communicators. An intracommunicator
can be thought of as an identifier for a single group of processes linked with a context. An
intercommunicator identifies two distinct groups of processes linked with a context.

5.2.1 Specifics for Intracommunicator Collective Operations

All processes in the group identified by the intracommunicator must call the collective
routine.

In many cases, collective communication can occur “in place” for intracommunicators,
with the output buffer being identical to the input buffer. This is specified by providing
a special argument value, MPI_IN_PLACE, instead of the send buffer or the receive buffer
argument, depending on the operation performed.

Rationale. The “in place” operations are provided to reduce unnecessary memory
motion by both the MPI implementation and by the user. Note that while the simple
check of testing whether the send and receive buffers have the same address will
work for some cases (e.g., MPI_ALLREDUCE), they are inadequate in others (e.g.,
MPI_GATHER, with root not equal to zero). Further, Fortran explicitly prohibits
aliasing of arguments; the approach of using a special value to denote “in place”
operation eliminates that difficulty. (End of rationale.)

Advice to users. By allowing the “in place” option, the receive buffer in many of the
collective calls becomes a send-and-receive buffer. For this reason, a Fortran binding
that includes INTENT must mark these as INOUT, not OUT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.2. COMMUNICATOR ARGUMENT 145

Note that MPI_IN_PLACE is a special kind of value; it has the same restrictions on its
use that MPI_BOTTOM has. (End of advice to users.)

5.2.2 Applying Collective Operations to Intercommunicators

To understand how collective operations apply to intercommunicators, we can view most
MPI intracommunicator collective operations as fitting one of the following categories (see,
for instance, [56]):

All-To-All All processes contribute to the result. All processes receive the result.

• MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV,
MPI_IALLGATHERV

• MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV,
MPI_ALLTOALLW, MPI_IALLTOALLW

• MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE_SCATTER_BLOCK,
MPI_IREDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER,
MPI_IREDUCE_SCATTER

• MPI_BARRIER, MPI_IBARRIER

All-To-One All processes contribute to the result. One process receives the result.

• MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV

• MPI_REDUCE, MPI_IREDUCE

One-To-All One process contributes to the result. All processes receive the result.

• MPI_BCAST, MPI_IBCAST

• MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV

Other Collective operations that do not fit into one of the above categories.

• MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, MPI_IEXSCAN

The data movement patterns of MPI_SCAN, MPI_ISCAN, MPI_EXSCAN, and
MPI_IEXSCAN do not fit this taxonomy.

The application of collective communication to intercommunicators is best described
in terms of two groups. For example, an all-to-all MPI_ALLGATHER operation can be
described as collecting data from all members of one group with the result appearing in all
members of the other group (see Figure 5.2). As another example, a one-to-all
MPI_BCAST operation sends data from one member of one group to all members of the
other group. Collective computation operations such as MPI_REDUCE_SCATTER have a
similar interpretation (see Figure 5.3). For intracommunicators, these two groups are the
same. For intercommunicators, these two groups are distinct. For the all-to-all operations,
each such operation is described in two phases, so that it has a symmetric, full-duplex
behavior.

The following collective operations also apply to intercommunicators:

• MPI_BARRIER, MPI_IBARRIER

• MPI_BCAST, MPI_IBCAST

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

146 CHAPTER 5. COLLECTIVE COMMUNICATION

• MPI_GATHER, MPI_IGATHER, MPI_GATHERV, MPI_IGATHERV,

• MPI_SCATTER, MPI_ISCATTER, MPI_SCATTERV, MPI_ISCATTERV,

• MPI_ALLGATHER, MPI_IALLGATHER, MPI_ALLGATHERV, MPI_IALLGATHERV,

• MPI_ALLTOALL, MPI_IALLTOALL, MPI_ALLTOALLV, MPI_IALLTOALLV,
MPI_ALLTOALLW, MPI_IALLTOALLW,

• MPI_ALLREDUCE, MPI_IALLREDUCE, MPI_REDUCE, MPI_IREDUCE,

• MPI_REDUCE_SCATTER_BLOCK, MPI_IREDUCE_SCATTER_BLOCK,
MPI_REDUCE_SCATTER, MPI_IREDUCE_SCATTER.

0

1

2

1

2

0

3

Lcomm Rcomm

0

1

2

1

2

0

3

Lcomm Rcomm

Figure 5.2: Intercommunicator allgather. The focus of data to one process is represented,
not mandated by the semantics. The two phases do allgathers in both directions.

5.2.3 Specifics for Intercommunicator Collective Operations

All processes in both groups identified by the intercommunicator must call the collective
routine.

Note that the “in place” option for intracommunicators does not apply to intercom-
municators since in the intercommunicator case there is no communication from a process
to itself.

For intercommunicator collective communication, if the operation is in the All-To-One
or One-To-All categories, then the transfer is unidirectional. The direction of the transfer is
indicated by a special value of the root argument. In this case, for the group containing the
root process, all processes in the group must call the routine using a special argument for
the root. For this, the root process uses the special root value MPI_ROOT; all other processes
in the same group as the root use MPI_PROC_NULL. All processes in the other group (the
group that is the remote group relative to the root process) must call the collective routine

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.3. BARRIER SYNCHRONIZATION 147

0

1

2

1

2

0

3

Lcomm Rcomm

0

1

2

1

2

0

3

Lcomm Rcomm

Figure 5.3: Intercommunicator reduce-scatter. The focus of data to one process is rep-
resented, not mandated by the semantics. The two phases do reduce-scatters in both
directions.

and provide the rank of the root. If the operation is in the All-To-All category, then the
transfer is bidirectional.

Rationale. Operations in the All-To-One and One-To-All categories are unidirectional
by nature, and there is a clear way of specifying direction. Operations in the All-To-All
category will often occur as part of an exchange, where it makes sense to communicate
in both directions at once. (End of rationale.)

5.3 Barrier Synchronization

MPI_BARRIER(comm)

IN comm communicator (handle)

int MPI_Barrier(MPI_Comm comm)

MPI_Barrier(comm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BARRIER(COMM, IERROR)

INTEGER COMM, IERROR

If comm is an intracommunicator, MPI_BARRIER blocks the caller until all group mem-
bers have called it. The call returns at any process only after all group members have entered
the call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

148 CHAPTER 5. COLLECTIVE COMMUNICATION

If comm is an intercommunicator, MPI_BARRIER involves two groups. The call returns
at processes in one group (group A) of the intercommunicator only after all members of the
other group (group B) have entered the call (and vice versa). A process may return from
the call before all processes in its own group have entered the call.

5.4 Broadcast

MPI_BCAST(buffer, count, datatype, root, comm)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm)

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

If comm is an intracommunicator, MPI_BCAST broadcasts a message from the process
with rank root to all processes of the group, itself included. It is called by all members of
the group using the same arguments for comm and root. On return, the content of root’s
buffer is copied to all other processes.

General, derived datatypes are allowed for datatype. The type signature of count,
datatype on any process must be equal to the type signature of count, datatype at the root.
This implies that the amount of data sent must be equal to the amount received, pairwise
between each process and the root. MPI_BCAST and all other data-movement collective
routines make this restriction. Distinct type maps between sender and receiver are still
allowed.

The “in place” option is not meaningful here.
If comm is an intercommunicator, then the call involves all processes in the intercom-

municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is broadcast from the root to all processes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GATHER 149

in group B. The buffer arguments of the processes in group B must be consistent with the
buffer argument of the root.

5.4.1 Example using MPI_BCAST

The examples in this section use intracommunicators.

Example 5.1
Broadcast 100 ints from process 0 to every process in the group.

MPI_Comm comm;

int array[100];

int root=0;

...

MPI_Bcast(array, 100, MPI_INT, root, comm);

As in many of our example code fragments, we assume that some of the variables (such as
comm in the above) have been assigned appropriate values.

5.5 Gather

MPI_GATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at

root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

150 CHAPTER 5. COLLECTIVE COMMUNICATION

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

If comm is an intracommunicator, each process (root process included) sends the con-
tents of its send buffer to the root process. The root process receives the messages and stores
them in rank order. The outcome is as if each of the n processes in the group (including
the root process) had executed a call to

MPI_Send(sendbuf, sendcount, sendtype, root , ...), and the root had executed n calls to

MPI_Recv(recvbuf+i· recvcount· extent(recvtype), recvcount, recvtype, i,...), where extent(recvtype)
is the type extent obtained from a call to MPI_Type_get_extent.

An alternative description is that the n messages sent by the processes in the group
are concatenated in rank order, and the resulting message is received by the root as if by a
call to MPI_RECV(recvbuf, recvcount·n, recvtype, ...).

The receive buffer is ignored for all non-root processes.
General, derived datatypes are allowed for both sendtype and recvtype. The type signa-

ture of sendcount, sendtype on each process must be equal to the type signature of recvcount,
recvtype at the root. This implies that the amount of data sent must be equal to the amount
of data received, pairwise between each process and the root. Distinct type maps between
sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
written more than once. Such a call is erroneous.

Note that the recvcount argument at the root indicates the number of items it receives
from each process, not the total number of items it receives.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GATHER 151

MPI_GATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN recvcounts non-negative integer array (of length group size) con-

taining the number of elements that are received from

each process (significant only at root)

IN displs integer array (of length group size). Entry i specifies

the displacement relative to recvbuf at which to place

the incoming data from process i (significant only at

root)

IN recvtype data type of recv buffer elements (significant only at

root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

int MPI_Gatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, IERROR

MPI_GATHERV extends the functionality of MPI_GATHER by allowing a varying count
of data from each process, since recvcounts is now an array. It also allows more flexibility
as to where the data is placed on the root, by providing the new argument, displs.

If comm is an intracommunicator, the outcome is as if each process, including the root
process, sends a message to the root,

MPI_Send(sendbuf, sendcount, sendtype, root, ...), and the root executes n receives,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

152 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Recv(recvbuf+displs[j]· extent(recvtype), recvcounts[j], recvtype, i, ...).
The data received from process j is placed into recvbuf of the root process beginning at

offset displs[j] elements (in terms of the recvtype).
The receive buffer is ignored for all non-root processes.
The type signature implied by sendcount, sendtype on process i must be equal to the

type signature implied by recvcounts[i], recvtype at the root. This implies that the amount
of data sent must be equal to the amount of data received, pairwise between each process
and the root. Distinct type maps between sender and receiver are still allowed, as illustrated
in Example 5.6.

All arguments to the function are significant on process root, while on other processes,
only arguments sendbuf, sendcount, sendtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be written more than once. Such a call is erroneous.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of sendbuf at the root. In such a case, sendcount and sendtype are ignored, and
the contribution of the root to the gathered vector is assumed to be already in the correct
place in the receive buffer.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is gathered from all processes in group B to
the root. The send buffer arguments of the processes in group B must be consistent with
the receive buffer argument of the root.

5.5.1 Examples using MPI_GATHER, MPI_GATHERV

The examples in this section use intracommunicators.

Example 5.2
Gather 100 ints from every process in group to root. See Figure 5.4.

MPI_Comm comm;

int gsize,sendarray[100];

int root, *rbuf;

...

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*100*sizeof(int));

MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.3
Previous example modified — only the root allocates memory for the receive buffer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GATHER 153

100 100 100

100 100

all processes

100

rbuf

at root

Figure 5.4: The root process gathers 100 ints from each process in the group.

MPI_Comm comm;

int gsize,sendarray[100];

int root, myrank, *rbuf;

...

MPI_Comm_rank(comm, &myrank);

if (myrank == root) {

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*100*sizeof(int));

}

MPI_Gather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.4
Do the same as the previous example, but use a derived datatype. Note that the type

cannot be the entire set of gsize*100 ints since type matching is defined pairwise between
the root and each process in the gather.

MPI_Comm comm;

int gsize,sendarray[100];

int root, *rbuf;

MPI_Datatype rtype;

...

MPI_Comm_size(comm, &gsize);

MPI_Type_contiguous(100, MPI_INT, &rtype);

MPI_Type_commit(&rtype);

rbuf = (int *)malloc(gsize*100*sizeof(int));

MPI_Gather(sendarray, 100, MPI_INT, rbuf, 1, rtype, root, comm);

Example 5.5
Now have each process send 100 ints to root, but place each set (of 100) stride ints

apart at receiving end. Use MPI_GATHERV and the displs argument to achieve this effect.
Assume stride ≥ 100. See Figure 5.5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

154 CHAPTER 5. COLLECTIVE COMMUNICATION

100 100 100

100 100 100

stride
rbuf

at root

all processes

Figure 5.5: The root process gathers 100 ints from each process in the group, each set is
placed stride ints apart.

MPI_Comm comm;

int gsize,sendarray[100];

int root, *rbuf, stride;

int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*stride*sizeof(int));

displs = (int *)malloc(gsize*sizeof(int));

rcounts = (int *)malloc(gsize*sizeof(int));

for (i=0; i<gsize; ++i) {

displs[i] = i*stride;

rcounts[i] = 100;

}

MPI_Gatherv(sendarray, 100, MPI_INT, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that the program is erroneous if stride < 100.

Example 5.6
Same as Example 5.5 on the receiving side, but send the 100 ints from the 0th column

of a 100×150 int array, in C. See Figure 5.6.

MPI_Comm comm;

int gsize,sendarray[100][150];

int root, *rbuf, stride;

MPI_Datatype stype;

int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*stride*sizeof(int));

displs = (int *)malloc(gsize*sizeof(int));

rcounts = (int *)malloc(gsize*sizeof(int));

for (i=0; i<gsize; ++i) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GATHER 155

100 100 100

150

rbuf

at root

stride

all processes100

150

100

150

100

Figure 5.6: The root process gathers column 0 of a 100×150 C array, and each set is placed
stride ints apart.

displs[i] = i*stride;

rcounts[i] = 100;

}

/* Create datatype for 1 column of array

*/

MPI_Type_vector(100, 1, 150, MPI_INT, &stype);

MPI_Type_commit(&stype);

MPI_Gatherv(sendarray, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 5.7
Process i sends (100-i) ints from the i-th column of a 100 × 150 int array, in C.

It is received into a buffer with stride, as in the previous two examples. See Figure 5.7.

MPI_Comm comm;

int gsize,sendarray[100][150],*sptr;

int root, *rbuf, stride, myrank;

MPI_Datatype stype;

int *displs,i,*rcounts;

...

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

rbuf = (int *)malloc(gsize*stride*sizeof(int));

displs = (int *)malloc(gsize*sizeof(int));

rcounts = (int *)malloc(gsize*sizeof(int));

for (i=0; i<gsize; ++i) {

displs[i] = i*stride;

rcounts[i] = 100-i; /* note change from previous example */

}

/* Create datatype for the column we are sending

*/

MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);

MPI_Type_commit(&stype);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

156 CHAPTER 5. COLLECTIVE COMMUNICATION

100 99

rbuf

at root

stride

all processes100

150

100

150

100

150

98

Figure 5.7: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride ints apart.

/* sptr is the address of start of "myrank" column

*/

sptr = &sendarray[0][myrank];

MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Note that a different amount of data is received from each process.

Example 5.8
Same as Example 5.7, but done in a different way at the sending end. We create a

datatype that causes the correct striding at the sending end so that we read a column of a
C array. A similar thing was done in Example 4.16, Section 4.1.14.

MPI_Comm comm;

int gsize, sendarray[100][150], *sptr;

int root, *rbuf, stride, myrank;

MPI_Datatype stype;

int *displs, i, *rcounts;

...

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

rbuf = (int *)malloc(gsize*stride*sizeof(int));

displs = (int *)malloc(gsize*sizeof(int));

rcounts = (int *)malloc(gsize*sizeof(int));

for (i=0; i<gsize; ++i) {

displs[i] = i*stride;

rcounts[i] = 100-i;

}

/* Create datatype for one int, with extent of entire row

*/

MPI_Type_create_resized(MPI_INT, 0, 150*sizeof(int), &stype);

MPI_Type_commit(&stype);

sptr = &sendarray[0][myrank];

MPI_Gatherv(sptr, 100-myrank, stype, rbuf, rcounts, displs, MPI_INT,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.5. GATHER 157

root, comm);

Example 5.9
Same as Example 5.7 at sending side, but at receiving side we make the stride between

received blocks vary from block to block. See Figure 5.8.

MPI_Comm comm;

int gsize,sendarray[100][150],*sptr;

int root, *rbuf, *stride, myrank, bufsize;

MPI_Datatype stype;

int *displs,i,*rcounts,offset;

...

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

stride = (int *)malloc(gsize*sizeof(int));

...

/* stride[i] for i = 0 to gsize-1 is set somehow

*/

/* set up displs and rcounts vectors first

*/

displs = (int *)malloc(gsize*sizeof(int));

rcounts = (int *)malloc(gsize*sizeof(int));

offset = 0;

for (i=0; i<gsize; ++i) {

displs[i] = offset;

offset += stride[i];

rcounts[i] = 100-i;

}

/* the required buffer size for rbuf is now easily obtained

*/

bufsize = displs[gsize-1]+rcounts[gsize-1];

rbuf = (int *)malloc(bufsize*sizeof(int));

/* Create datatype for the column we are sending

*/

MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &stype);

MPI_Type_commit(&stype);

sptr = &sendarray[0][myrank];

MPI_Gatherv(sptr, 1, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

Example 5.10

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

158 CHAPTER 5. COLLECTIVE COMMUNICATION

100

stride[1]
rbuf

at root

all processes100

150

100

150

100

150

99 98

Figure 5.8: The root process gathers 100-i ints from column i of a 100×150 C array, and
each set is placed stride[i] ints apart (a varying stride).

Process i sends num ints from the i-th column of a 100 × 150 int array, in C. The
complicating factor is that the various values of num are not known to root, so a separate
gather must first be run to find these out. The data is placed contiguously at the receiving
end.

MPI_Comm comm;

int gsize,sendarray[100][150],*sptr;

int root, *rbuf, myrank;

MPI_Datatype stype;

int *displs,i,*rcounts,num;

...

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

/* First, gather nums to root

*/

rcounts = (int *)malloc(gsize*sizeof(int));

MPI_Gather(&num, 1, MPI_INT, rcounts, 1, MPI_INT, root, comm);

/* root now has correct rcounts, using these we set displs[] so

* that data is placed contiguously (or concatenated) at receive end

*/

displs = (int *)malloc(gsize*sizeof(int));

displs[0] = 0;

for (i=1; i<gsize; ++i) {

displs[i] = displs[i-1]+rcounts[i-1];

}

/* And, create receive buffer

*/

rbuf = (int *)malloc(gsize*(displs[gsize-1]+rcounts[gsize-1])

*sizeof(int));

/* Create datatype for one int, with extent of entire row

*/

MPI_Type_create_resized(MPI_INT, 0, 150*sizeof(int), &stype);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. SCATTER 159

MPI_Type_commit(&stype);

sptr = &sendarray[0][myrank];

MPI_Gatherv(sptr, num, stype, rbuf, rcounts, displs, MPI_INT,

root, comm);

5.6 Scatter

MPI_SCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative

integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at

root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-

teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTER is the inverse operation to MPI_GATHER.
If comm is an intracommunicator, the outcome is as if the root executed n send oper-

ations,

MPI_Send(sendbuf+i· sendcount· extent(sendtype), sendcount, sendtype, i,...), and each
process executed a receive,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

160 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Recv(recvbuf, recvcount, recvtype, i,...).
An alternative description is that the root sends a message with MPI_Send(sendbuf,

sendcount·n, sendtype, . . .). This message is split into n equal segments, the i-th segment is
sent to the i-th process in the group, and each process receives this message as above.

The send buffer is ignored for all non-root processes.
The type signature associated with sendcount, sendtype at the root must be equal to

the type signature associated with recvcount, recvtype at all processes (however, the type
maps may be different). This implies that the amount of data sent must be equal to the
amount of data received, pairwise between each process and the root. Distinct type maps
between sender and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts and types should not cause any location on the root to be
read more than once.

Rationale. Though not needed, the last restriction is imposed so as to achieve
symmetry with MPI_GATHER, where the corresponding restriction (a multiple-write
restriction) is necessary. (End of rationale.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. SCATTER 161

MPI_SCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) spec-

ifying the number of elements to send to each rank

IN displs integer array (of length group size). Entry i specifies

the displacement (relative to sendbuf) from which to

take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-

teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

int MPI_Scatterv(const void* sendbuf, const int sendcounts[], const

int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,

recvtype, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), displs(*), recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

MPI_SCATTERV is the inverse operation to MPI_GATHERV.
MPI_SCATTERV extends the functionality of MPI_SCATTER by allowing a varying

count of data to be sent to each process, since sendcounts is now an array. It also allows
more flexibility as to where the data is taken from on the root, by providing an additional
argument, displs.

If comm is an intracommunicator, the outcome is as if the root executed n send oper-
ations,

MPI_Send(sendbuf+displs[i]· extent(sendtype), sendcounts[i], sendtype, i,...), and each pro-
cess executed a receive,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

162 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Recv(recvbuf, recvcount, recvtype, i,...).
The send buffer is ignored for all non-root processes.
The type signature implied by sendcount[i], sendtype at the root must be equal to the

type signature implied by recvcount, recvtype at process i (however, the type maps may be
different). This implies that the amount of data sent must be equal to the amount of data
received, pairwise between each process and the root. Distinct type maps between sender
and receiver are still allowed.

All arguments to the function are significant on process root, while on other processes,
only arguments recvbuf, recvcount, recvtype, root, and comm are significant. The arguments
root and comm must have identical values on all processes.

The specification of counts, types, and displacements should not cause any location on
the root to be read more than once.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE as
the value of recvbuf at the root. In such a case, recvcount and recvtype are ignored, and
root “sends” no data to itself. The scattered vector is still assumed to contain n segments,
where n is the group size; the root-th segment, which root should “send to itself,” is not
moved.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Data is scattered from the root to all processes in
group B. The receive buffer arguments of the processes in group B must be consistent with
the send buffer argument of the root.

5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

The examples in this section use intracommunicators.

Example 5.11
The reverse of Example 5.2. Scatter sets of 100 ints from the root to each process in

the group. See Figure 5.9.

MPI_Comm comm;

int gsize,*sendbuf;

int root, rbuf[100];

...

MPI_Comm_size(comm, &gsize);

sendbuf = (int *)malloc(gsize*100*sizeof(int));

...

MPI_Scatter(sendbuf, 100, MPI_INT, rbuf, 100, MPI_INT, root, comm);

Example 5.12
The reverse of Example 5.5. The root process scatters sets of 100 ints to the other

processes, but the sets of 100 are stride ints apart in the sending buffer. Requires use of
MPI_SCATTERV. Assume stride ≥ 100. See Figure 5.10.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.6. SCATTER 163

100 100 100

100 100

sendbuf

100

at root

all processes

Figure 5.9: The root process scatters sets of 100 ints to each process in the group.

100 100 100

100 100 100

sendbuf

at root

all processes

stride

Figure 5.10: The root process scatters sets of 100 ints, moving by stride ints from send
to send in the scatter.

MPI_Comm comm;

int gsize,*sendbuf;

int root, rbuf[100], i, *displs, *scounts;

...

MPI_Comm_size(comm, &gsize);

sendbuf = (int *)malloc(gsize*stride*sizeof(int));

...

displs = (int *)malloc(gsize*sizeof(int));

scounts = (int *)malloc(gsize*sizeof(int));

for (i=0; i<gsize; ++i) {

displs[i] = i*stride;

scounts[i] = 100;

}

MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rbuf, 100, MPI_INT,

root, comm);

Example 5.13
The reverse of Example 5.9. We have a varying stride between blocks at sending (root)

side, at the receiving side we receive into the i-th column of a 100×150 C array. See
Figure 5.11.

MPI_Comm comm;

int gsize,recvarray[100][150],*rptr;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

164 CHAPTER 5. COLLECTIVE COMMUNICATION

100

sendbuf

at root

all processes100

150

100

150

100

150

99 98

stride[1]

Figure 5.11: The root scatters blocks of 100-i ints into column i of a 100×150 C array.
At the sending side, the blocks are stride[i] ints apart.

int root, *sendbuf, myrank, *stride;

MPI_Datatype rtype;

int i, *displs, *scounts, offset;

...

MPI_Comm_size(comm, &gsize);

MPI_Comm_rank(comm, &myrank);

stride = (int *)malloc(gsize*sizeof(int));

...

/* stride[i] for i = 0 to gsize-1 is set somehow

* sendbuf comes from elsewhere

*/

...

displs = (int *)malloc(gsize*sizeof(int));

scounts = (int *)malloc(gsize*sizeof(int));

offset = 0;

for (i=0; i<gsize; ++i) {

displs[i] = offset;

offset += stride[i];

scounts[i] = 100 - i;

}

/* Create datatype for the column we are receiving

*/

MPI_Type_vector(100-myrank, 1, 150, MPI_INT, &rtype);

MPI_Type_commit(&rtype);

rptr = &recvarray[0][myrank];

MPI_Scatterv(sendbuf, scounts, displs, MPI_INT, rptr, 1, rtype,

root, comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. GATHER-TO-ALL 165

5.7 Gather-to-all

MPI_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHER can be thought of as MPI_GATHER, but where all processes receive
the result, instead of just the root. The block of data sent from the j-th process is received
by every process and placed in the j-th block of the buffer recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process.

If comm is an intracommunicator, the outcome of a call to MPI_ALLGATHER(...) is as
if all processes executed n calls to

MPI_Gather(sendbuf,sendcount,sendtype,recvbuf,recvcount,

recvtype,root,comm)

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHER are easily found
from the corresponding rules for MPI_GATHER.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. sendcount and sendtype are ignored.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

166 CHAPTER 5. COLLECTIVE COMMUNICATION

Then the input data of each process is assumed to be in the area where that process would
receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes
sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

Advice to users. The communication pattern of MPI_ALLGATHER executed on an
intercommunication domain need not be symmetric. The number of items sent by
processes in group A (as specified by the arguments sendcount, sendtype in group A
and the arguments recvcount, recvtype in group B), need not equal the number of
items sent by processes in group B (as specified by the arguments sendcount, sendtype
in group B and the arguments recvcount, recvtype in group A). In particular, one can
move data in only one direction by specifying sendcount = 0 for the communication
in the reverse direction. (End of advice to users.)

MPI_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) con-

taining the number of elements that are received from

each process

IN displs integer array (of length group size). Entry i specifies

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.7. GATHER-TO-ALL 167

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

MPI_ALLGATHERV can be thought of as MPI_GATHERV, but where all processes re-
ceive the result, instead of just the root. The block of data sent from the j-th process is
received by every process and placed in the j-th block of the buffer recvbuf. These blocks
need not all be the same size.

The type signature associated with sendcount, sendtype, at process j must be equal to
the type signature associated with recvcounts[j], recvtype at any other process.

If comm is an intracommunicator, the outcome is as if all processes executed calls to

MPI_Gatherv(sendbuf,sendcount,sendtype,recvbuf,recvcounts,displs,

recvtype,root,comm),

for root = 0 , ..., n-1. The rules for correct usage of MPI_ALLGATHERV are easily
found from the corresponding rules for MPI_GATHERV.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcount and
sendtype are ignored, and the input data of each process is assumed to be in the area where
that process would receive its own contribution to the receive buffer.

If comm is an intercommunicator, then each process of one group (group A) contributes
sendcount data items; these data are concatenated and the result is stored at each process
in the other group (group B). Conversely the concatenation of the contributions of the
processes in group B is stored at each process in group A. The send buffer arguments in
group A must be consistent with the receive buffer arguments in group B, and vice versa.

5.7.1 Example using MPI_ALLGATHER

The example in this section uses intracommunicators.

Example 5.14
The all-gather version of Example 5.2. Using MPI_ALLGATHER, we will gather 100

ints from every process in the group to every process.

MPI_Comm comm;

int gsize,sendarray[100];

int *rbuf;

...

MPI_Comm_size(comm, &gsize);

rbuf = (int *)malloc(gsize*100*sizeof(int));

MPI_Allgather(sendarray, 100, MPI_INT, rbuf, 100, MPI_INT, comm);

After the call, every process has the group-wide concatenation of the sets of data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

168 CHAPTER 5. COLLECTIVE COMMUNICATION

5.8 All-to-All Scatter/Gather

MPI_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALL is an extension of MPI_ALLGATHER to the case where each process
sends distinct data to each of the receivers. The j-th block sent from process i is received
by process j and is placed in the i-th block of recvbuf.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. As usual, however, the type maps may be different.

If comm is an intracommunicator, the outcome is as if each process executed a send to
each process (itself included) with a call to,

MPI_Send(sendbuf+i· sendcount· extent(sendtype),sendcount,sendtype,i, ...), and a receive
from every other process with a call to,

MPI_Recv(recvbuf+i· recvcount· extent(recvtype),recvcount,recvtype,i,...).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.8. ALL-TO-ALL SCATTER/GATHER 169

All arguments on all processes are significant. The argument comm must have identical
values on all processes.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to
the argument sendbuf at all processes. In such a case, sendcount and sendtype are ignored.
The data to be sent is taken from the recvbuf and replaced by the received data. Data sent
and received must have the same type map as specified by recvcount and recvtype.

Rationale. For large MPI_ALLTOALL instances, allocating both send and receive
buffers may consume too much memory. The “in place” option effectively halves the
application memory consumption and is useful in situations where the data to be sent
will not be used by the sending process after the MPI_ALLTOALL exchange (e.g., in
parallel Fast Fourier Transforms). (End of rationale.)

Advice to implementors. Users may opt to use the “in place” option in order to
conserve memory. Quality MPI implementations should thus strive to minimize system
buffering. (End of advice to implementors.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Advice to users. When a complete exchange is executed on an intercommunication
domain, then the number of data items sent from processes in group A to processes
in group B need not equal the number of items sent in the reverse direction. In
particular, one can have unidirectional communication by specifying sendcount = 0 in
the reverse direction. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

170 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) spec-

ifying the number of elements to send to each rank

IN sdispls integer array (of length group size). Entry j specifies

the displacement (relative to sendbuf) from which to

take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-

ifying the number of elements that can be received

from each rank

IN rdispls integer array (of length group size). Entry i specifies

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

int MPI_Alltoallv(const void* sendbuf, const int sendcounts[], const

int sdispls[], MPI_Datatype sendtype, void* recvbuf, const

int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_ALLTOALLV adds flexibility to MPI_ALLTOALL in that the location of data for
the send is specified by sdispls and the location of the placement of the data on the receive
side is specified by rdispls.

If comm is an intracommunicator, then the j-th block sent from process i is received by
process j and is placed in the i-th block of recvbuf. These blocks need not all have the same
size.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.8. ALL-TO-ALL SCATTER/GATHER 171

The type signature associated with sendcounts[j], sendtype at process i must be equal
to the type signature associated with recvcounts[i], recvtype at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with,

MPI_Send(sendbuf+sdispls[i]· extent(sendtype),sendcounts[i],sendtype,i,...), and received a
message from every other process with a call to

MPI_Recv(recvbuf+rdispls[i]· extent(recvtype),recvcounts[i],recvtype,i,...).
All arguments on all processes are significant. The argument comm must have identical

values on all processes.
The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE to

the argument sendbuf at all processes. In such a case, sendcounts, sdispls and sendtype are
ignored. The data to be sent is taken from the recvbuf and replaced by the received data.
Data sent and received must have the same type map as specified by the recvcounts array
and the recvtype, and is taken from the locations of the receive buffer specified by rdispls.

Advice to users. Specifying the “in place” option (which must be given on all
processes) implies that the same amount and type of data is sent and received between
any two processes in the group of the communicator. Different pairs of processes can
exchange different amounts of data. Users must ensure that recvcounts[j] and recvtype
on process i match recvcounts[i] and recvtype on process j. This symmetric exchange
can be useful in applications where the data to be sent will not be used by the sending
process after the MPI_ALLTOALLV exchange. (End of advice to users.)

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The definitions of MPI_ALLTOALL and MPI_ALLTOALLV give as much
flexibility as one would achieve by specifying n independent, point-to-point communi-
cations, with two exceptions: all messages use the same datatype, and messages are
scattered from (or gathered to) sequential storage. (End of rationale.)

Advice to implementors. Although the discussion of collective communication in
terms of point-to-point operation implies that each message is transferred directly
from sender to receiver, implementations may use a tree communication pattern.
Messages can be forwarded by intermediate nodes where they are split (for scatter) or
concatenated (for gather), if this is more efficient. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

172 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,
recvtypes, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) spec-

ifying the number of elements to send to each rank

IN sdispls integer array (of length group size). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for process j

(array of integers)

IN sendtypes array of datatypes (of length group size). Entry j spec-

ifies the type of data to send to process j (array of

handles)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-

ifying the number of elements that can be received

from each rank

IN rdispls integer array (of length group size). Entry i specifies

the displacement in bytes (relative to recvbuf) at which

to place the incoming data from process i (array of

integers)

IN recvtypes array of datatypes (of length group size). Entry i spec-

ifies the type of data received from process i (array of

handles)

IN comm communicator (handle)

int MPI_Alltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const MPI_Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const

MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,

rdispls, recvtypes, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*)

TYPE(MPI_Datatype), INTENT(IN) :: recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 173

MPI_ALLTOALLW is the most general form of complete exchange. Like
MPI_TYPE_CREATE_STRUCT, the most general type constructor, MPI_ALLTOALLW al-
lows separate specification of count, displacement and datatype. In addition, to allow max-
imum flexibility, the displacement of blocks within the send and receive buffers is specified
in bytes.

If comm is an intracommunicator, then the j-th block sent from process i is received by
process j and is placed in the i-th block of recvbuf. These blocks need not all have the same
size.

The type signature associated with sendcounts[j], sendtypes[j] at process i must be equal
to the type signature associated with recvcounts[i], recvtypes[i] at process j. This implies that
the amount of data sent must be equal to the amount of data received, pairwise between
every pair of processes. Distinct type maps between sender and receiver are still allowed.

The outcome is as if each process sent a message to every other process with

MPI_Send(sendbuf+sdispls[i],sendcounts[i],sendtypes[i] ,i,...), and received a message from
every other process with a call to

MPI_Recv(recvbuf+rdispls[i],recvcounts[i],recvtypes[i] ,i,...).
All arguments on all processes are significant. The argument comm must describe the

same communicator on all processes.
Like for MPI_ALLTOALLV, the “in place” option for intracommunicators is specified by

passing MPI_IN_PLACE to the argument sendbuf at all processes. In such a case, sendcounts,
sdispls and sendtypes are ignored. The data to be sent is taken from the recvbuf and replaced
by the received data. Data sent and received must have the same type map as specified
by the recvcounts and recvtypes arrays, and is taken from the locations of the receive buffer
specified by rdispls.

If comm is an intercommunicator, then the outcome is as if each process in group A
sends a message to each process in group B, and vice versa. The j-th send buffer of process
i in group A should be consistent with the i-th receive buffer of process j in group B, and
vice versa.

Rationale. The MPI_ALLTOALLW function generalizes several MPI functions by
carefully selecting the input arguments. For example, by making all but one process
have sendcounts[i] = 0, this achieves an MPI_SCATTERW function. (End of rationale.)

5.9 Global Reduction Operations

The functions in this section perform a global reduce operation (for example sum, maximum,
and logical and) across all members of a group. The reduction operation can be either one of
a predefined list of operations, or a user-defined operation. The global reduction functions
come in several flavors: a reduce that returns the result of the reduction to one member of a
group, an all-reduce that returns this result to all members of a group, and two scan (parallel
prefix) operations. In addition, a reduce-scatter operation combines the functionality of a
reduce and of a scatter operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

174 CHAPTER 5. COLLECTIVE COMMUNICATION

5.9.1 Reduce

MPI_REDUCE(sendbuf, recvbuf, count, datatype, op, root, comm)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE combines the elements provided in the
input buffer of each process in the group, using the operation op, and returns the combined
value in the output buffer of the process with rank root. The input buffer is defined by
the arguments sendbuf, count and datatype; the output buffer is defined by the arguments
recvbuf, count and datatype; both have the same number of elements, with the same type.
The routine is called by all group members using the same arguments for count, datatype, op,
root and comm. Thus, all processes provide input buffers of the same length, with elements
of the same type as the output buffer at the root. Each process can provide one element, or a
sequence of elements, in which case the combine operation is executed element-wise on each
entry of the sequence. For example, if the operation is MPI_MAX and the send buffer contains
two elements that are floating point numbers (count = 2 and datatype = MPI_FLOAT), then
recvbuf(1) = globalmax(sendbuf(1)) and recvbuf(2) = globalmax(sendbuf(2)).

Section 5.9.2, lists the set of predefined operations provided by MPI. That section also
enumerates the datatypes to which each operation can be applied.

In addition, users may define their own operations that can be overloaded to operate
on several datatypes, either basic or derived. This is further explained in Section 5.9.5.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 175

The operation op is always assumed to be associative. All predefined operations are also
assumed to be commutative. Users may define operations that are assumed to be associative,
but not commutative. The “canonical” evaluation order of a reduction is determined by the
ranks of the processes in the group. However, the implementation can take advantage of
associativity, or associativity and commutativity in order to change the order of evaluation.
This may change the result of the reduction for operations that are not strictly associative
and commutative, such as floating point addition.

Advice to implementors. It is strongly recommended that MPI_REDUCE be im-
plemented so that the same result be obtained whenever the function is applied on
the same arguments, appearing in the same order. Note that this may prevent op-
timizations that take advantage of the physical location of ranks. (End of advice to
implementors.)

Advice to users. Some applications may not be able to ignore the non-associative na-
ture of floating-point operations or may use user-defined operations (see Section 5.9.5)
that require a special reduction order and cannot be treated as associative. Such
applications should enforce the order of evaluation explicitly. For example, in the
case of operations that require a strict left-to-right (or right-to-left) evaluation or-
der, this could be done by gathering all operands at a single process (e.g., with
MPI_GATHER), applying the reduction operation in the desired order (e.g., with
MPI_REDUCE_LOCAL), and if needed, broadcast or scatter the result to the other
processes (e.g., with MPI_BCAST). (End of advice to users.)

The datatype argument of MPI_REDUCE must be compatible with op. Predefined op-
erators work only with the MPI types listed in Section 5.9.2 and Section 5.9.4. Furthermore,
the datatype and op given for predefined operators must be the same on all processes.

Note that it is possible for users to supply different user-defined operations to
MPI_REDUCE in each process. MPI does not define which operations are used on which
operands in this case. User-defined operators may operate on general, derived datatypes.
In this case, each argument that the reduce operation is applied to is one element described
by such a datatype, which may contain several basic values. This is further explained in
Section 5.9.5.

Advice to users. Users should make no assumptions about how MPI_REDUCE is
implemented. It is safest to ensure that the same function is passed to MPI_REDUCE
by each process. (End of advice to users.)

Overlapping datatypes are permitted in “send” buffers. Overlapping datatypes in “re-
ceive” buffers are erroneous and may give unpredictable results.

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at the root. In such a case, the input data is taken
at the root from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the call involves all processes in the intercom-
municator, but with one group (group A) defining the root process. All processes in the
other group (group B) pass the same value in argument root, which is the rank of the root
in group A. The root passes the value MPI_ROOT in root. All other processes in group A
pass the value MPI_PROC_NULL in root. Only send buffer arguments are significant in group
B and only receive buffer arguments are significant at the root.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

176 CHAPTER 5. COLLECTIVE COMMUNICATION

5.9.2 Predefined Reduction Operations

The following predefined operations are supplied for MPI_REDUCE and related functions
MPI_ALLREDUCE, MPI_REDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER,
MPI_SCAN, MPI_EXSCAN, all nonblocking variants of those (see Section 5.12), and
MPI_REDUCE_LOCAL. These operations are invoked by placing the following in op.

Name Meaning

MPI_MAX maximum
MPI_MIN minimum
MPI_SUM sum
MPI_PROD product
MPI_LAND logical and
MPI_BAND bit-wise and
MPI_LOR logical or
MPI_BOR bit-wise or
MPI_LXOR logical exclusive or (xor)
MPI_BXOR bit-wise exclusive or (xor)
MPI_MAXLOC max value and location
MPI_MINLOC min value and location

The two operations MPI_MINLOC and MPI_MAXLOC are discussed separately in Sec-
tion 5.9.4. For the other predefined operations, we enumerate below the allowed combi-
nations of op and datatype arguments. First, define groups of MPI basic datatypes in the
following way.

C integer: MPI_INT, MPI_LONG, MPI_SHORT,
MPI_UNSIGNED_SHORT, MPI_UNSIGNED,
MPI_UNSIGNED_LONG,
MPI_LONG_LONG_INT,
MPI_LONG_LONG (as synonym),
MPI_UNSIGNED_LONG_LONG,
MPI_SIGNED_CHAR,
MPI_UNSIGNED_CHAR,
MPI_INT8_T, MPI_INT16_T,
MPI_INT32_T, MPI_INT64_T,
MPI_UINT8_T, MPI_UINT16_T,
MPI_UINT32_T, MPI_UINT64_T

Fortran integer: MPI_INTEGER,
and handles returned from
MPI_TYPE_CREATE_F90_INTEGER,
and if available: MPI_INTEGER1,
MPI_INTEGER2, MPI_INTEGER4,
MPI_INTEGER8, MPI_INTEGER16

Floating point: MPI_FLOAT, MPI_DOUBLE, MPI_REAL,
MPI_DOUBLE_PRECISION
MPI_LONG_DOUBLE
and handles returned from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 177

MPI_TYPE_CREATE_F90_REAL,
and if available: MPI_REAL2,
MPI_REAL4, MPI_REAL8, MPI_REAL16

Logical: MPI_LOGICAL,MPI_C_BOOL,
MPI_CXX_BOOL

Complex: MPI_COMPLEX, MPI_C_COMPLEX,
MPI_C_FLOAT_COMPLEX (as synonym),
MPI_C_DOUBLE_COMPLEX,
MPI_C_LONG_DOUBLE_COMPLEX,
MPI_CXX_FLOAT_COMPLEX,
MPI_CXX_DOUBLE_COMPLEX,
MPI_CXX_LONG_DOUBLE_COMPLEX,
and handles returned from
MPI_TYPE_CREATE_F90_COMPLEX,
and if available: MPI_DOUBLE_COMPLEX,
MPI_COMPLEX4, MPI_COMPLEX8,
MPI_COMPLEX16, MPI_COMPLEX32

Byte: MPI_BYTE
Multi-language types: MPI_AINT, MPI_OFFSET, MPI_COUNT

Now, the valid datatypes for each operation are specified below.

Op Allowed Types

MPI_MAX, MPI_MIN C integer, Fortran integer, Floating point,

Multi-language types
MPI_SUM, MPI_PROD C integer, Fortran integer, Floating point, Complex,

Multi-language types
MPI_LAND, MPI_LOR, MPI_LXOR C integer, Logical

MPI_BAND, MPI_BOR, MPI_BXOR C integer, Fortran integer, Byte, Multi-language types

These operations together with all listed datatypes are valid in all supported program-
ming languages, see also Reduce Operations on page 652 in Section 17.2.6.

The following examples use intracommunicators.

Example 5.15
A routine that computes the dot product of two vectors that are distributed across a

group of processes and returns the answer at node zero.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

178 CHAPTER 5. COLLECTIVE COMMUNICATION

SUBROUTINE PAR_BLAS1(m, a, b, c, comm)

REAL a(m), b(m) ! local slice of array

REAL c ! result (at node zero)

REAL sum

INTEGER m, comm, i, ierr

! local sum

sum = 0.0

DO i = 1, m

sum = sum + a(i)*b(i)

END DO

! global sum

CALL MPI_REDUCE(sum, c, 1, MPI_REAL, MPI_SUM, 0, comm, ierr)

RETURN

END

Example 5.16
A routine that computes the product of a vector and an array that are distributed

across a group of processes and returns the answer at node zero.

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)

REAL a(m), b(m,n) ! local slice of array

REAL c(n) ! result

REAL sum(n)

INTEGER n, comm, i, j, ierr

! local sum

DO j= 1, n

sum(j) = 0.0

DO i = 1, m

sum(j) = sum(j) + a(i)*b(i,j)

END DO

END DO

! global sum

CALL MPI_REDUCE(sum, c, n, MPI_REAL, MPI_SUM, 0, comm, ierr)

! return result at node zero (and garbage at the other nodes)

RETURN

END

5.9.3 Signed Characters and Reductions

The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR can be used in reduction opera-
tions. MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER (which represent printable charac-
ters) cannot be used in reduction operations. In a heterogeneous environment, MPI_CHAR,
MPI_WCHAR, and MPI_CHARACTER will be translated so as to preserve the printable

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 179

character, whereas MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR will be translated so
as to preserve the integer value.

Advice to users. The types MPI_CHAR, MPI_WCHAR, and MPI_CHARACTER are
intended for characters, and so will be translated to preserve the printable representa-
tion, rather than the integer value, if sent between machines with different character
codes. The types MPI_SIGNED_CHAR and MPI_UNSIGNED_CHAR should be used in
C if the integer value should be preserved. (End of advice to users.)

5.9.4 MINLOC and MAXLOC

The operator MPI_MINLOC is used to compute a global minimum and also an index attached
to the minimum value. MPI_MAXLOC similarly computes a global maximum and index. One
application of these is to compute a global minimum (maximum) and the rank of the process
containing this value.

The operation that defines MPI_MAXLOC is:(
u
i

)
◦
(
v
j

)
=

(
w
k

)

where

w = max(u, v)

and

k =

i if u > v
min(i, j) if u = v
j if u < v

MPI_MINLOC is defined similarly:(
u
i

)
◦
(
v
j

)
=

(
w
k

)

where

w = min(u, v)

and

k =

i if u < v
min(i, j) if u = v
j if u > v

Both operations are associative and commutative. Note that if MPI_MAXLOC is applied
to reduce a sequence of pairs (u0, 0), (u1, 1), . . . , (un−1, n − 1), then the value returned is
(u, r), where u = maxi ui and r is the index of the first global maximum in the sequence.
Thus, if each process supplies a value and its rank within the group, then a reduce operation
with op = MPI_MAXLOC will return the maximum value and the rank of the first process with
that value. Similarly, MPI_MINLOC can be used to return a minimum and its index. More
generally, MPI_MINLOC computes a lexicographic minimum, where elements are ordered

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

180 CHAPTER 5. COLLECTIVE COMMUNICATION

according to the first component of each pair, and ties are resolved according to the second
component.

The reduce operation is defined to operate on arguments that consist of a pair: value
and index. For both Fortran and C, types are provided to describe the pair. The potentially
mixed-type nature of such arguments is a problem in Fortran. The problem is circumvented,
for Fortran, by having the MPI-provided type consist of a pair of the same type as value,
and coercing the index to this type also. In C, the MPI-provided pair type has distinct
types and the index is an int.

In order to use MPI_MINLOC and MPI_MAXLOC in a reduce operation, one must provide
a datatype argument that represents a pair (value and index). MPI provides nine such
predefined datatypes. The operations MPI_MAXLOC and MPI_MINLOC can be used with
each of the following datatypes.

Fortran:

Name Description
MPI_2REAL pair of REALs
MPI_2DOUBLE_PRECISION pair of DOUBLE PRECISION variables
MPI_2INTEGER pair of INTEGERs

C:

Name Description
MPI_FLOAT_INT float and int

MPI_DOUBLE_INT double and int

MPI_LONG_INT long and int

MPI_2INT pair of int
MPI_SHORT_INT short and int

MPI_LONG_DOUBLE_INT long double and int

The datatype MPI_2REAL is as if defined by the following (see Section 4.1).

MPI_TYPE_CONTIGUOUS(2, MPI_REAL, MPI_2REAL)

Similar statements apply for MPI_2INTEGER, MPI_2DOUBLE_PRECISION, and MPI_2INT.
The datatype MPI_FLOAT_INT is as if defined by the following sequence of instructions.

type[0] = MPI_FLOAT

type[1] = MPI_INT

disp[0] = 0

disp[1] = sizeof(float)

block[0] = 1

block[1] = 1

MPI_TYPE_CREATE_STRUCT(2, block, disp, type, MPI_FLOAT_INT)

Similar statements apply for MPI_LONG_INT and MPI_DOUBLE_INT.
The following examples use intracommunicators.

Example 5.17
Each process has an array of 30 doubles, in C. For each of the 30 locations, compute

the value and rank of the process containing the largest value.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 181

...

/* each process has an array of 30 double: ain[30]

*/

double ain[30], aout[30];

int ind[30];

struct {

double val;

int rank;

} in[30], out[30];

int i, myrank, root;

MPI_Comm_rank(comm, &myrank);

for (i=0; i<30; ++i) {

in[i].val = ain[i];

in[i].rank = myrank;

}

MPI_Reduce(in, out, 30, MPI_DOUBLE_INT, MPI_MAXLOC, root, comm);

/* At this point, the answer resides on process root

*/

if (myrank == root) {

/* read ranks out

*/

for (i=0; i<30; ++i) {

aout[i] = out[i].val;

ind[i] = out[i].rank;

}

}

Example 5.18
Same example, in Fortran.

...

! each process has an array of 30 double: ain(30)

DOUBLE PRECISION ain(30), aout(30)

INTEGER ind(30)

DOUBLE PRECISION in(2,30), out(2,30)

INTEGER i, myrank, root, ierr

CALL MPI_COMM_RANK(comm, myrank, ierr)

DO I=1, 30

in(1,i) = ain(i)

in(2,i) = myrank ! myrank is coerced to a double

END DO

CALL MPI_REDUCE(in, out, 30, MPI_2DOUBLE_PRECISION, MPI_MAXLOC, root,

comm, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

182 CHAPTER 5. COLLECTIVE COMMUNICATION

! At this point, the answer resides on process root

IF (myrank .EQ. root) THEN

! read ranks out

DO I= 1, 30

aout(i) = out(1,i)

ind(i) = out(2,i) ! rank is coerced back to an integer

END DO

END IF

Example 5.19
Each process has a non-empty array of values. Find the minimum global value, the

rank of the process that holds it and its index on this process.

#define LEN 1000

float val[LEN]; /* local array of values */

int count; /* local number of values */

int myrank, minrank, minindex;

float minval;

struct {

float value;

int index;

} in, out;

/* local minloc */

in.value = val[0];

in.index = 0;

for (i=1; i < count; i++)

if (in.value > val[i]) {

in.value = val[i];

in.index = i;

}

/* global minloc */

MPI_Comm_rank(comm, &myrank);

in.index = myrank*LEN + in.index;

MPI_Reduce(&in, &out, 1, MPI_FLOAT_INT, MPI_MINLOC, root, comm);

/* At this point, the answer resides on process root

*/

if (myrank == root) {

/* read answer out

*/

minval = out.value;

minrank = out.index / LEN;

minindex = out.index % LEN;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 183

Rationale. The definition of MPI_MINLOC and MPI_MAXLOC given here has the
advantage that it does not require any special-case handling of these two operations:
they are handled like any other reduce operation. A programmer can provide his or
her own definition of MPI_MAXLOC and MPI_MINLOC, if so desired. The disadvantage
is that values and indices have to be first interleaved, and that indices and values have
to be coerced to the same type, in Fortran. (End of rationale.)

5.9.5 User-Defined Reduction Operations

MPI_OP_CREATE(user_fn, commute, op)

IN user_fn user defined function (function)

IN commute true if commutative; false otherwise.

OUT op operation (handle)

int MPI_Op_create(MPI_User_function* user_fn, int commute, MPI_Op* op)

MPI_Op_create(user_fn, commute, op, ierror)

PROCEDURE(MPI_User_function) :: user_fn

LOGICAL, INTENT(IN) :: commute

TYPE(MPI_Op), INTENT(OUT) :: op

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_OP_CREATE(USER_FN, COMMUTE, OP, IERROR)

EXTERNAL USER_FN

LOGICAL COMMUTE

INTEGER OP, IERROR

MPI_OP_CREATE binds a user-defined reduction operation to an
op handle that can subsequently be used in MPI_REDUCE, MPI_ALLREDUCE,
MPI_REDUCE_SCATTER_BLOCK, MPI_REDUCE_SCATTER, MPI_SCAN,
MPI_EXSCAN, all nonblocking variants of those (see Section 5.12), and
MPI_REDUCE_LOCAL. The user-defined operation is assumed to be associative. If commute
= true, then the operation should be both commutative and associative. If commute = false,
then the order of operands is fixed and is defined to be in ascending, process rank order,
beginning with process zero. The order of evaluation can be changed, talking advantage of
the associativity of the operation. If commute = true then the order of evaluation can be
changed, taking advantage of commutativity and associativity.

The argument user_fn is the user-defined function, which must have the following four
arguments: invec, inoutvec, len, and datatype.

The ISO C prototype for the function is the following.
typedef void MPI_User_function(void* invec, void* inoutvec, int *len,

MPI_Datatype *datatype);

The Fortran declarations of the user-defined function user_fn appear below.
ABSTRACT INTERFACE

SUBROUTINE MPI_User_function(invec, inoutvec, len, datatype)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

184 CHAPTER 5. COLLECTIVE COMMUNICATION

TYPE(C_PTR), VALUE :: invec, inoutvec

INTEGER :: len

TYPE(MPI_Datatype) :: datatype

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, DATATYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, DATATYPE

The datatype argument is a handle to the data type that was passed into the call to
MPI_REDUCE. The user reduce function should be written such that the following holds:
Let u[0], . . ., u[len-1] be the len elements in the communication buffer described by the
arguments invec, len and datatype when the function is invoked; let v[0], . . . , v[len-1] be len
elements in the communication buffer described by the arguments inoutvec, len and datatype
when the function is invoked; let w[0], . . . , w[len-1] be len elements in the communication
buffer described by the arguments inoutvec, len and datatype when the function returns;
then w[i] = u[i]◦v[i], for i=0 , . . . , len-1, where ◦ is the reduce operation that the function
computes.

Informally, we can think of invec and inoutvec as arrays of len elements that user_fn
is combining. The result of the reduction over-writes values in inoutvec, hence the name.
Each invocation of the function results in the pointwise evaluation of the reduce operator
on len elements: i.e., the function returns in inoutvec[i] the value invec[i] ◦ inoutvec[i], for
i=0, . . . , count-1, where ◦ is the combining operation computed by the function.

Rationale. The len argument allows MPI_REDUCE to avoid calling the function for
each element in the input buffer. Rather, the system can choose to apply the function
to chunks of input. In C, it is passed in as a reference for reasons of compatibility
with Fortran.

By internally comparing the value of the datatype argument to known, global handles,
it is possible to overload the use of a single user-defined function for several, different
data types. (End of rationale.)

General datatypes may be passed to the user function. However, use of datatypes that
are not contiguous is likely to lead to inefficiencies.

No MPI communication function may be called inside the user function. MPI_ABORT
may be called inside the function in case of an error.

Advice to users. Suppose one defines a library of user-defined reduce functions that
are overloaded: the datatype argument is used to select the right execution path at each
invocation, according to the types of the operands. The user-defined reduce function
cannot “decode” the datatype argument that it is passed, and cannot identify, by itself,
the correspondence between the datatype handles and the datatype they represent.
This correspondence was established when the datatypes were created. Before the
library is used, a library initialization preamble must be executed. This preamble
code will define the datatypes that are used by the library, and store handles to these
datatypes in global, static variables that are shared by the user code and the library
code.

The Fortran version of MPI_REDUCE will invoke a user-defined reduce function using
the Fortran calling conventions and will pass a Fortran-type datatype argument; the
C version will use C calling convention and the C representation of a datatype handle.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 185

Users who plan to mix languages should define their reduction functions accordingly.
(End of advice to users.)

Advice to implementors. We outline below a naive and inefficient implementation of
MPI_REDUCE not supporting the “in place” option.

MPI_Comm_size(comm, &groupsize);

MPI_Comm_rank(comm, &rank);

if (rank > 0) {

MPI_Recv(tempbuf, count, datatype, rank-1,...);

User_reduce(tempbuf, sendbuf, count, datatype);

}

if (rank < groupsize-1) {

MPI_Send(sendbuf, count, datatype, rank+1, ...);

}

/* answer now resides in process groupsize-1 ... now send to root

*/

if (rank == root) {

MPI_Irecv(recvbuf, count, datatype, groupsize-1,..., &req);

}

if (rank == groupsize-1) {

MPI_Send(sendbuf, count, datatype, root, ...);

}

if (rank == root) {

MPI_Wait(&req, &status);

}

The reduction computation proceeds, sequentially, from process 0 to process
groupsize-1. This order is chosen so as to respect the order of a possibly non-
commutative operator defined by the function User_reduce(). A more efficient im-
plementation is achieved by taking advantage of associativity and using a logarithmic
tree reduction. Commutativity can be used to advantage, for those cases in which
the commute argument to MPI_OP_CREATE is true. Also, the amount of temporary
buffer required can be reduced, and communication can be pipelined with computa-
tion, by transferring and reducing the elements in chunks of size len <count.

The predefined reduce operations can be implemented as a library of user-defined
operations. However, better performance might be achieved if MPI_REDUCE handles
these functions as a special case. (End of advice to implementors.)

MPI_OP_FREE(op)

INOUT op operation (handle)

int MPI_Op_free(MPI_Op *op)

MPI_Op_free(op, ierror)

TYPE(MPI_Op), INTENT(INOUT) :: op

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

186 CHAPTER 5. COLLECTIVE COMMUNICATION

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_OP_FREE(OP, IERROR)

INTEGER OP, IERROR

Marks a user-defined reduction operation for deallocation and sets op to MPI_OP_NULL.

Example of User-defined Reduce

It is time for an example of user-defined reduction. The example in this section uses an
intracommunicator.

Example 5.20 Compute the product of an array of complex numbers, in C.

typedef struct {

double real,imag;

} Complex;

/* the user-defined function

*/

void myProd(void *inP, void *inoutP, int *len, MPI_Datatype *dptr)

{

int i;

Complex c;

Complex *in = (Complex *)inP, *inout = (Complex *)inoutP;

for (i=0; i< *len; ++i) {

c.real = inout->real*in->real -

inout->imag*in->imag;

c.imag = inout->real*in->imag +

inout->imag*in->real;

*inout = c;

in++; inout++;

}

}

/* and, to call it...

*/

...

/* each process has an array of 100 Complexes

*/

Complex a[100], answer[100];

MPI_Op myOp;

MPI_Datatype ctype;

/* explain to MPI how type Complex is defined

*/

MPI_Type_contiguous(2, MPI_DOUBLE, &ctype);

MPI_Type_commit(&ctype);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 187

/* create the complex-product user-op

*/

MPI_Op_create(myProd, 1, &myOp);

MPI_Reduce(a, answer, 100, ctype, myOp, root, comm);

/* At this point, the answer, which consists of 100 Complexes,

* resides on process root

*/

Example 5.21 How to use the mpi_f08 interface of the Fortran MPI_User_function.

subroutine my_user_function(invec, inoutvec, len, type)

use, intrinsic :: iso_c_binding, only : c_ptr, c_f_pointer

use mpi_f08

type(c_ptr), value :: invec, inoutvec

integer :: len

type(MPI_Datatype) :: type

real, pointer :: invec_r(:), inoutvec_r(:)

if (type%MPI_VAL == MPI_REAL%MPI_VAL) then

call c_f_pointer(invec, invec_r, (/ len /))

call c_f_pointer(inoutvec, inoutvec_r, (/ len /))

inoutvec_r = invec_r + inoutvec_r

end if

end subroutine

5.9.6 All-Reduce

MPI includes a variant of the reduce operations where the result is returned to all processes
in a group. MPI requires that all processes from the same group participating in these
operations receive identical results.

MPI_ALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Allreduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

188 CHAPTER 5. COLLECTIVE COMMUNICATION

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_ALLREDUCE behaves the same as
MPI_REDUCE except that the result appears in the receive buffer of all the group members.

Advice to implementors. The all-reduce operations can be implemented as a re-
duce, followed by a broadcast. However, a direct implementation can lead to better
performance. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing the value
MPI_IN_PLACE to the argument sendbuf at all processes. In this case, the input data is
taken at each process from the receive buffer, where it will be replaced by the output data.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in group A is stored at each process in group B, and vice versa. Both groups
should provide count and datatype arguments that specify the same type signature.

The following example uses an intracommunicator.

Example 5.22
A routine that computes the product of a vector and an array that are distributed

across a group of processes and returns the answer at all nodes (see also Example 5.16).

SUBROUTINE PAR_BLAS2(m, n, a, b, c, comm)

REAL a(m), b(m,n) ! local slice of array

REAL c(n) ! result

REAL sum(n)

INTEGER n, comm, i, j, ierr

! local sum

DO j= 1, n

sum(j) = 0.0

DO i = 1, m

sum(j) = sum(j) + a(i)*b(i,j)

END DO

END DO

! global sum

CALL MPI_ALLREDUCE(sum, c, n, MPI_REAL, MPI_SUM, comm, ierr)

! return result at all nodes

RETURN

END

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.9. GLOBAL REDUCTION OPERATIONS 189

5.9.7 Process-Local Reduction

The functions in this section are of importance to library implementors who may want to
implement special reduction patterns that are otherwise not easily covered by the standard
MPI operations.

The following function applies a reduction operator to local arguments.

MPI_REDUCE_LOCAL(inbuf, inoutbuf, count, datatype, op)

IN inbuf input buffer (choice)

INOUT inoutbuf combined input and output buffer (choice)

IN count number of elements in inbuf and inoutbuf buffers (non-

negative integer)

IN datatype data type of elements of inbuf and inoutbuf buffers

(handle)

IN op operation (handle)

int MPI_Reduce_local(const void* inbuf, void* inoutbuf, int count,

MPI_Datatype datatype, MPI_Op op)

MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: inoutbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE_LOCAL(INBUF, INOUTBUF, COUNT, DATATYPE, OP, IERROR)

<type> INBUF(*), INOUTBUF(*)

INTEGER COUNT, DATATYPE, OP, IERROR

The function applies the operation given by op element-wise to the elements of inbuf
and inoutbuf with the result stored element-wise in inoutbuf, as explained for user-defined
operations in Section 5.9.5. Both inbuf and inoutbuf (input as well as result) have the
same number of elements given by count and the same datatype given by datatype. The
MPI_IN_PLACE option is not allowed.

Reduction operations can be queried for their commutativity.

MPI_OP_COMMUTATIVE(op, commute)

IN op operation (handle)

OUT commute true if op is commutative, false otherwise (logical)

int MPI_Op_commutative(MPI_Op op, int *commute)

MPI_Op_commutative(op, commute, ierror)

TYPE(MPI_Op), INTENT(IN) :: op

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

190 CHAPTER 5. COLLECTIVE COMMUNICATION

LOGICAL, INTENT(OUT) :: commute

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)

LOGICAL COMMUTE

INTEGER OP, IERROR

5.10 Reduce-Scatter

MPI includes variants of the reduce operations where the result is scattered to all processes
in a group on return. One variant scatters equal-sized blocks to all processes, while another
variant scatters blocks that may vary in size for each process.

5.10.1 MPI_REDUCE_SCATTER_BLOCK

MPI_REDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount element count per block (non-negative integer)

IN datatype data type of elements of send and receive buffers (han-

dle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Reduce_scatter_block(const void* sendbuf, void* recvbuf,

int recvcount, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: recvcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE_SCATTER_BLOCK first performs a
global, element-wise reduction on vectors of count = n*recvcount elements in the send buffers

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.10. REDUCE-SCATTER 191

defined by sendbuf, count and datatype, using the operation op, where n is the number of
processes in the group of comm. The routine is called by all group members using the
same arguments for recvcount, datatype, op and comm. The resulting vector is treated
as n consecutive blocks of recvcount elements that are scattered to the processes of the
group. The i-th block is sent to process i and stored in the receive buffer defined by recvbuf,
recvcount, and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER_BLOCK routine is func-
tionally equivalent to: an MPI_REDUCE collective operation with count equal to
recvcount*n, followed by an MPI_SCATTER with sendcount equal to recvcount. How-
ever, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument on all processes. In this case, the input data is taken from the receive
buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in one group (group A) is scattered among processes in the other group (group
B) and vice versa. Within each group, all processes provide the same value for the recvcount
argument, and provide input vectors of count = n*recvcount elements stored in the send
buffers, where n is the size of the group. The number of elements count must be the same
for the two groups. The resulting vector from the other group is scattered in blocks of
recvcount elements among the processes in the group.

Rationale. The last restriction is needed so that the length of the send buffer of
one group can be determined by the local recvcount argument of the other group.
Otherwise, a communication is needed to figure out how many elements are reduced.
(End of rationale.)

5.10.2 MPI_REDUCE_SCATTER

MPI_REDUCE_SCATTER extends the functionality of MPI_REDUCE_SCATTER_BLOCK
such that the scattered blocks can vary in size. Block sizes are determined by the recvcounts
array, such that the i-th block contains recvcounts[i] elements.

MPI_REDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-

ifying the number of elements of the result distributed

to each process.

IN datatype data type of elements of send and receive buffers (han-

dle)

IN op operation (handle)

IN comm communicator (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

192 CHAPTER 5. COLLECTIVE COMMUNICATION

int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf, const

int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: recvcounts(*)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_REDUCE_SCATTER first performs a global,
element-wise reduction on vectors of count =

∑n−1
i=0 recvcounts[i] elements in the send buffers

defined by sendbuf, count and datatype, using the operation op, where n is the number of
processes in the group of comm. The routine is called by all group members using the
same arguments for recvcounts, datatype, op and comm. The resulting vector is treated as
n consecutive blocks where the number of elements of the i-th block is recvcounts[i]. The
blocks are scattered to the processes of the group. The i-th block is sent to process i and
stored in the receive buffer defined by recvbuf, recvcounts[i] and datatype.

Advice to implementors. The MPI_REDUCE_SCATTER routine is functionally equiv-
alent to: an MPI_REDUCE collective operation with count equal to the sum of
recvcounts[i] followed by MPI_SCATTERV with sendcounts equal to recvcounts. How-
ever, a direct implementation may run faster. (End of advice to implementors.)

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer. It is
not required to specify the “in place” option on all processes, since the processes for which
recvcounts[i] ==0 may not have allocated a receive buffer.

If comm is an intercommunicator, then the result of the reduction of the data provided
by processes in one group (group A) is scattered among processes in the other group (group
B), and vice versa. Within each group, all processes provide the same recvcounts argument,
and provide input vectors of count =

∑n−1
i=0 recvcounts[i] elements stored in the send buffers,

where n is the size of the group. The resulting vector from the other group is scattered in
blocks of recvcounts[i] elements among the processes in the group. The number of elements
count must be the same for the two groups.

Rationale. The last restriction is needed so that the length of the send buffer can be
determined by the sum of the local recvcounts entries. Otherwise, a communication
is needed to figure out how many elements are reduced. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.11. SCAN 193

5.11 Scan

5.11.1 Inclusive Scan

MPI_SCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-

teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

int MPI_Scan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_SCAN is used to perform a prefix reduction on
data distributed across the group. The operation returns, in the receive buffer of the process
with rank i, the reduction of the values in the send buffers of processes with ranks 0,. . .,i
(inclusive). The routine is called by all group members using the same arguments for count,
datatype, op and comm, except that for user-defined operations, the same rules apply as
for MPI_REDUCE. The type of operations supported, their semantics, and the constraints
on send and receive buffers are as for MPI_REDUCE.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer, and
replaced by the output data.

This operation is invalid for intercommunicators.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

194 CHAPTER 5. COLLECTIVE COMMUNICATION

5.11.2 Exclusive Scan

MPI_EXSCAN(sendbuf, recvbuf, count, datatype, op, comm)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-

teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

int MPI_Exscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

If comm is an intracommunicator, MPI_EXSCAN is used to perform a prefix reduction
on data distributed across the group. The value in recvbuf on the process with rank 0 is
undefined, and recvbuf is not signficant on process 0. The value in recvbuf on the process
with rank 1 is defined as the value in sendbuf on the process with rank 0. For processes
with rank i > 1, the operation returns, in the receive buffer of the process with rank i, the
reduction of the values in the send buffers of processes with ranks 0, . . . , i−1 (inclusive). The
routine is called by all group members using the same arguments for count, datatype, op and
comm, except that for user-defined operations, the same rules apply as for MPI_REDUCE.
The type of operations supported, their semantics, and the constraints on send and receive
buffers, are as for MPI_REDUCE.

The “in place” option for intracommunicators is specified by passing MPI_IN_PLACE in
the sendbuf argument. In this case, the input data is taken from the receive buffer, and
replaced by the output data. The receive buffer on rank 0 is not changed by this operation.

This operation is invalid for intercommunicators.

Rationale. The exclusive scan is more general than the inclusive scan. Any inclusive
scan operation can be achieved by using the exclusive scan and then locally combining
the local contribution. Note that for non-invertable operations such as MPI_MAX, the
exclusive scan cannot be computed with the inclusive scan. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.11. SCAN 195

5.11.3 Example using MPI_SCAN

The example in this section uses an intracommunicator.

Example 5.23
This example uses a user-defined operation to produce a segmented scan. A segmented

scan takes, as input, a set of values and a set of logicals, and the logicals delineate the
various segments of the scan. For example:

values v1 v2 v3 v4 v5 v6 v7 v8
logicals 0 0 1 1 1 0 0 1
result v1 v1 + v2 v3 v3 + v4 v3 + v4 + v5 v6 v6 + v7 v8

The operator that produces this effect is(
u
i

)
◦
(
v
j

)
=

(
w
j

)
,

where

w =

{
u+ v if i = j
v if i 6= j

.

Note that this is a non-commutative operator. C code that implements it is given
below.

typedef struct {

double val;

int log;

} SegScanPair;

/* the user-defined function

*/

void segScan(SegScanPair *in, SegScanPair *inout, int *len,

MPI_Datatype *dptr)

{

int i;

SegScanPair c;

for (i=0; i< *len; ++i) {

if (in->log == inout->log)

c.val = in->val + inout->val;

else

c.val = inout->val;

c.log = inout->log;

*inout = c;

in++; inout++;

}

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

196 CHAPTER 5. COLLECTIVE COMMUNICATION

Note that the inout argument to the user-defined function corresponds to the right-
hand operand of the operator. When using this operator, we must be careful to specify that
it is non-commutative, as in the following.

int i,base;

SegScanPair a, answer;

MPI_Op myOp;

MPI_Datatype type[2] = {MPI_DOUBLE, MPI_INT};

MPI_Aint disp[2];

int blocklen[2] = { 1, 1};

MPI_Datatype sspair;

/* explain to MPI how type SegScanPair is defined

*/

MPI_Get_address(&a, disp);

MPI_Get_address(&a.log, disp+1);

base = disp[0];

for (i=0; i<2; ++i) disp[i] -= base;

MPI_Type_create_struct(2, blocklen, disp, type, &sspair);

MPI_Type_commit(&sspair);

/* create the segmented-scan user-op

*/

MPI_Op_create(segScan, 0, &myOp);

...

MPI_Scan(&a, &answer, 1, sspair, myOp, comm);

5.12 Nonblocking Collective Operations

As described in Section 3.7, performance of many applications can be improved by over-
lapping communication and computation, and many systems enable this. Nonblocking
collective operations combine the potential benefits of nonblocking point-to-point opera-
tions, to exploit overlap and to avoid synchronization, with the optimized implementation
and message scheduling provided by collective operations [30, 34]. One way of doing this
would be to perform a blocking collective operation in a separate thread. An alternative
mechanism that often leads to better performance (e.g., avoids context switching, scheduler
overheads, and thread management) is to use nonblocking collective communication [32].

The nonblocking collective communication model is similar to the model used for non-
blocking point-to-point communication. A nonblocking call initiates a collective operation,
which must be completed in a separate completion call. Once initiated, the operation
may progress independently of any computation or other communication at participating
processes. In this manner, nonblocking collective operations can mitigate possible synchro-
nizing effects of collective operations by running them in the “background.” In addition to
enabling communication-computation overlap, nonblocking collective operations can per-
form collective operations on overlapping communicators, which would lead to deadlocks
with blocking operations. Their semantic advantages can also be useful in combination with
point-to-point communication.

As in the nonblocking point-to-point case, all calls are local and return immediately,
irrespective of the status of other processes. The call initiates the operation, which indicates

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 197

that the system may start to copy data out of the send buffer and into the receive buffer.
Once initiated, all associated send buffers and buffers associated with input arguments (such
as arrays of counts, displacements, or datatypes in the vector versions of the collectives)
should not be modified, and all associated receive buffers should not be accessed, until the
collective operation completes. The call returns a request handle, which must be passed to
a completion call.

All completion calls (e.g., MPI_WAIT) described in Section 3.7.3 are supported for
nonblocking collective operations. Similarly to the blocking case, nonblocking collective
operations are considered to be complete when the local part of the operation is finished,
i.e., for the caller, the semantics of the operation are guaranteed and all buffers can be
safely accessed and modified. Completion does not indicate that other processes have
completed or even started the operation (unless otherwise implied by the description of
the operation). Completion of a particular nonblocking collective operation also does not
indicate completion of any other posted nonblocking collective (or send-receive) operations,
whether they are posted before or after the completed operation.

Advice to users. Users should be aware that implementations are allowed, but
not required (with exception of MPI_IBARRIER), to synchronize processes during the
completion of a nonblocking collective operation. (End of advice to users.)

Upon returning from a completion call in which a nonblocking collective operation
completes, the MPI_ERROR field in the associated status object is set appropriately, see
Section 3.2.5 on page 30. The values of the MPI_SOURCE and MPI_TAG fields are undefined.
It is valid to mix different request types (i.e., any combination of collective requests, I/O
requests, generalized requests, or point-to-point requests) in functions that enable multiple
completions (e.g., MPI_WAITALL). It is erroneous to call MPI_REQUEST_FREE or
MPI_CANCEL for a request associated with a nonblocking collective operation. Nonblocking
collective requests are not persistent.

Rationale. Freeing an active nonblocking collective request could cause similar
problems as discussed for point-to-point requests (see Section 3.7.3). Cancelling a
request is not supported because the semantics of this operation are not well-defined.
(End of rationale.)

Multiple nonblocking collective operations can be outstanding on a single communi-
cator. If the nonblocking call causes some system resource to be exhausted, then it will
fail and generate an MPI exception. Quality implementations of MPI should ensure that
this happens only in pathological cases. That is, an MPI implementation should be able to
support a large number of pending nonblocking operations.

Unlike point-to-point operations, nonblocking collective operations do not match with
blocking collective operations, and collective operations do not have a tag argument. All
processes must call collective operations (blocking and nonblocking) in the same order
per communicator. In particular, once a process calls a collective operation, all other
processes in the communicator must eventually call the same collective operation, and no
other collective operation with the same communicator in between. This is consistent with
the ordering rules for blocking collective operations in threaded environments.

Rationale. Matching blocking and nonblocking collective operations is not allowed
because the implementation might use different communication algorithms for the two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

198 CHAPTER 5. COLLECTIVE COMMUNICATION

cases. Blocking collective operations may be optimized for minimal time to comple-
tion, while nonblocking collective operations may balance time to completion with
CPU overhead and asynchronous progression.

The use of tags for collective operations can prevent certain hardware optimizations.
(End of rationale.)

Advice to users. If program semantics require matching blocking and nonblocking
collective operations, then a nonblocking collective operation can be initiated and
immediately completed with a blocking wait to emulate blocking behavior. (End of
advice to users.)

In terms of data movements, each nonblocking collective operation has the same effect
as its blocking counterpart for intracommunicators and intercommunicators after comple-
tion. Likewise, upon completion, nonblocking collective reduction operations have the same
effect as their blocking counterparts, and the same restrictions and recommendations on
reduction orders apply.

The use of the “in place” option is allowed exactly as described for the corresponding
blocking collective operations. When using the “in place” option, message buffers function
as both send and receive buffers. Such buffers should not be modified or accessed until the
operation completes.

Progression rules for nonblocking collective operations are similar to progression of
nonblocking point-to-point operations, refer to Section 3.7.4.

Advice to implementors. Nonblocking collective operations can be implemented with
local execution schedules [33] using nonblocking point-to-point communication and a
reserved tag-space. (End of advice to implementors.)

5.12.1 Nonblocking Barrier Synchronization

MPI_IBARRIER(comm , request)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)

MPI_Ibarrier(comm, request, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IBARRIER(COMM, REQUEST, IERROR)

INTEGER COMM, REQUEST, IERROR

MPI_IBARRIER is a nonblocking version of MPI_BARRIER. By calling MPI_IBARRIER,
a process notifies that it has reached the barrier. The call returns immediately, indepen-
dent of whether other processes have called MPI_IBARRIER. The usual barrier semantics

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 199

are enforced at the corresponding completion operation (test or wait), which in the intra-
communicator case will complete only after all other processes in the communicator have
called MPI_IBARRIER. In the intercommunicator case, it will complete when all processes
in the remote group have called MPI_IBARRIER.

Advice to users. A nonblocking barrier can be used to hide latency. Moving indepen-
dent computations between the MPI_IBARRIER and the subsequent completion call
can overlap the barrier latency and therefore shorten possible waiting times. The se-
mantic properties are also useful when mixing collective operations and point-to-point
messages. (End of advice to users.)

5.12.2 Nonblocking Broadcast

MPI_IBCAST(buffer, count, datatype, root, comm, request)

INOUT buffer starting address of buffer (choice)

IN count number of entries in buffer (non-negative integer)

IN datatype data type of buffer (handle)

IN root rank of broadcast root (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm, MPI_Request *request)

MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_BCAST (see Section 5.4).

Example using MPI_IBCAST

The example in this section uses an intracommunicator.

Example 5.24
Start a broadcast of 100 ints from process 0 to every process in the group, perform some

computation on independent data, and then complete the outstanding broadcast operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

200 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Comm comm;

int array1[100], array2[100];

int root=0;

MPI_Request req;

...

MPI_Ibcast(array1, 100, MPI_INT, root, comm, &req);

compute(array2, 100);

MPI_Wait(&req, MPI_STATUS_IGNORE);

5.12.3 Nonblocking Gather

MPI_IGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN recvcount number of elements for any single receive (non-negative

integer, significant only at root)

IN recvtype data type of recv buffer elements (significant only at

root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Igather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, MPI_Request *request)

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 201

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,

IERROR

This call starts a nonblocking variant of MPI_GATHER (see Section 5.5).

MPI_IGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, root,
comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN recvcounts non-negative integer array (of length group size) con-

taining the number of elements that are received from

each process (significant only at root)

IN displs integer array (of length group size). Entry i specifies

the displacement relative to recvbuf at which to place

the incoming data from process i (significant only at

root)

IN recvtype data type of recv buffer elements (significant only at

root) (handle)

IN root rank of receiving process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Igatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, root

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

202 CHAPTER 5. COLLECTIVE COMMUNICATION

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_GATHERV (see Section 5.5).

5.12.4 Nonblocking Scatter

MPI_ISCATTER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, root, comm,
request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcount number of elements sent to each process (non-negative

integer, significant only at root)

IN sendtype data type of send buffer elements (significant only at

root) (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-

teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iscatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, MPI_Request *request)

MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,

IERROR

This call starts a nonblocking variant of MPI_SCATTER (see Section 5.6).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 203

MPI_ISCATTERV(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount, recvtype, root,
comm, request)

IN sendbuf address of send buffer (choice, significant only at root)

IN sendcounts non-negative integer array (of length group size) spec-

ifying the number of elements to send to each rank

IN displs integer array (of length group size). Entry i specifies

the displacement (relative to sendbuf) from which to

take the outgoing data to process i

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-

teger)

IN recvtype data type of receive buffer elements (handle)

IN root rank of sending process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iscatterv(const void* sendbuf, const int sendcounts[], const

int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,

recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)

INTEGER, INTENT(IN) :: recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_SCATTERV (see Section 5.6).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

204 CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.5 Nonblocking Gather-to-all

MPI_IALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm,
request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iallgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLGATHER (see Section 5.7).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 205

MPI_IALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs, recvtype, comm,
request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-

ger)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) con-

taining the number of elements that are received from

each process

IN displs integer array (of length group size). Entry i specifies

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iallgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Request* request)

MPI_Iallgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLGATHERV (see Section 5.7).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

206 CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.6 Nonblocking All-to-All Scatter/Gather

MPI_IALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each process (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcount number of elements received from any process (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ialltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ialltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLTOALL (see Section 5.8).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 207

MPI_IALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts, rdispls,
recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length group size) spec-

ifying the number of elements to send to each rank

IN sdispls integer array (of length group size). Entry j specifies

the displacement (relative to sendbuf) from which to

take the outgoing data destined for process j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf address of receive buffer (choice)

IN recvcounts non-negative integer array (of length group size) spec-

ifying the number of elements that can be received

from each rank

IN rdispls integer array (of length group size). Entry i specifies

the displacement (relative to recvbuf) at which to place

the incoming data from process i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ialltoallv(const void* sendbuf, const int sendcounts[], const

int sdispls[], MPI_Datatype sendtype, void* recvbuf, const

int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

MPI_Comm comm, MPI_Request *request)

MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLTOALLV (see Section 5.8).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

208 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_IALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts, rdispls,
recvtypes, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts integer array (of length group size) specifying the num-

ber of elements to send to each rank (array of non-

negative integers)

IN sdispls integer array (of length group size). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for process j

(array of integers)

IN sendtypes array of datatypes (of length group size). Entry j spec-

ifies the type of data to send to process j (array of

handles)

OUT recvbuf address of receive buffer (choice)

IN recvcounts integer array (of length group size) specifying the num-

ber of elements that can be received from each rank

(array of non-negative integers)

IN rdispls integer array (of length group size). Entry i specifies

the displacement in bytes (relative to recvbuf) at which

to place the incoming data from process i (array of

integers)

IN recvtypes array of datatypes (of length group size). Entry i spec-

ifies the type of data received from process i (array of

handles)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ialltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const MPI_Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const

MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Request *request)

MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 209

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLTOALLW (see Section 5.8).

5.12.7 Nonblocking Reduce

MPI_IREDUCE(sendbuf, recvbuf, count, datatype, op, root, comm, request)

IN sendbuf address of send buffer (choice)

OUT recvbuf address of receive buffer (choice, significant only at

root)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype data type of elements of send buffer (handle)

IN op reduce operation (handle)

IN root rank of root process (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ireduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,

MPI_Request *request)

MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_REDUCE (see Section 5.9.1).

Advice to implementors. The implementation is explicitly allowed to use different
algorithms for blocking and nonblocking reduction operations that might change the
order of evaluation of the operations. However, as for MPI_REDUCE, it is strongly
recommended that MPI_IREDUCE be implemented so that the same result be obtained

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

210 CHAPTER 5. COLLECTIVE COMMUNICATION

whenever the function is applied on the same arguments, appearing in the same order.
Note that this may prevent optimizations that take advantage of the physical location
of processes. (End of advice to implementors.)

Advice to users. For operations which are not truly associative, the result delivered
upon completion of the nonblocking reduction may not exactly equal the result deliv-
ered by the blocking reduction, even when specifying the same arguments in the same
order. (End of advice to users.)

5.12.8 Nonblocking All-Reduce

MPI_IALLREDUCE(sendbuf, recvbuf, count, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in send buffer (non-negative inte-

ger)

IN datatype data type of elements of send buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iallreduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_ALLREDUCE (see Section 5.9.6).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 211

5.12.9 Nonblocking Reduce-Scatter with Equal Blocks

MPI_IREDUCE_SCATTER_BLOCK(sendbuf, recvbuf, recvcount, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount element count per block (non-negative integer)

IN datatype data type of elements of send and receive buffers (han-

dle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ireduce_scatter_block(const void* sendbuf, void* recvbuf,

int recvcount, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm, MPI_Request *request)

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: recvcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,

REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_REDUCE_SCATTER_BLOCK (see Sec-
tion 5.10.1).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

212 CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.10 Nonblocking Reduce-Scatter

MPI_IREDUCE_SCATTER(sendbuf, recvbuf, recvcounts, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array specifying the number of

elements in result distributed to each process. Array

must be identical on all calling processes.

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ireduce_scatter(const void* sendbuf, void* recvbuf, const

int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm, MPI_Request *request)

MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_REDUCE_SCATTER (see Section 5.10.2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.12. NONBLOCKING COLLECTIVE OPERATIONS 213

5.12.11 Nonblocking Inclusive Scan

MPI_ISCAN(sendbuf, recvbuf, count, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-

teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Iscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_SCAN (see Section 5.11).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

214 CHAPTER 5. COLLECTIVE COMMUNICATION

5.12.12 Nonblocking Exclusive Scan

MPI_IEXSCAN(sendbuf, recvbuf, count, datatype, op, comm, request)

IN sendbuf starting address of send buffer (choice)

OUT recvbuf starting address of receive buffer (choice)

IN count number of elements in input buffer (non-negative in-

teger)

IN datatype data type of elements of input buffer (handle)

IN op operation (handle)

IN comm intracommunicator (handle)

OUT request communication request (handle)

int MPI_Iexscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

MPI_Iexscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_EXSCAN (see Section 5.11.2).

5.13 Correctness

A correct, portable program must invoke collective communications so that deadlock will not
occur, whether collective communications are synchronizing or not. The following examples
illustrate dangerous use of collective routines on intracommunicators.

Example 5.25
The following is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.13. CORRECTNESS 215

switch(rank) {

case 0:

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Bcast(buf2, count, type, 1, comm);

break;

case 1:

MPI_Bcast(buf2, count, type, 1, comm);

MPI_Bcast(buf1, count, type, 0, comm);

break;

}

We assume that the group of comm is {0,1}. Two processes execute two broadcast
operations in reverse order. If the operation is synchronizing then a deadlock will occur.

Collective operations must be executed in the same order at all members of the com-
munication group.

Example 5.26
The following is erroneous.

switch(rank) {

case 0:

MPI_Bcast(buf1, count, type, 0, comm0);

MPI_Bcast(buf2, count, type, 2, comm2);

break;

case 1:

MPI_Bcast(buf1, count, type, 1, comm1);

MPI_Bcast(buf2, count, type, 0, comm0);

break;

case 2:

MPI_Bcast(buf1, count, type, 2, comm2);

MPI_Bcast(buf2, count, type, 1, comm1);

break;

}

Assume that the group of comm0 is {0,1}, of comm1 is {1, 2} and of comm2 is {2,0}. If
the broadcast is a synchronizing operation, then there is a cyclic dependency: the broadcast
in comm2 completes only after the broadcast in comm0; the broadcast in comm0 completes
only after the broadcast in comm1; and the broadcast in comm1 completes only after the
broadcast in comm2. Thus, the code will deadlock.

Collective operations must be executed in an order so that no cyclic dependencies occur.
Nonblocking collective operations can alleviate this issue.

Example 5.27
The following is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

216 CHAPTER 5. COLLECTIVE COMMUNICATION

switch(rank) {

case 0:

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Send(buf2, count, type, 1, tag, comm);

break;

case 1:

MPI_Recv(buf2, count, type, 0, tag, comm, status);

MPI_Bcast(buf1, count, type, 0, comm);

break;

}

Process zero executes a broadcast, followed by a blocking send operation. Process one
first executes a blocking receive that matches the send, followed by broadcast call that
matches the broadcast of process zero. This program may deadlock. The broadcast call on
process zero may block until process one executes the matching broadcast call, so that the
send is not executed. Process one will definitely block on the receive and so, in this case,
never executes the broadcast.

The relative order of execution of collective operations and point-to-point operations
should be such, so that even if the collective operations and the point-to-point operations
are synchronizing, no deadlock will occur.

Example 5.28
An unsafe, non-deterministic program.

switch(rank) {

case 0:

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Send(buf2, count, type, 1, tag, comm);

break;

case 1:

MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Recv(buf2, count, type, MPI_ANY_SOURCE, tag, comm, status);

break;

case 2:

MPI_Send(buf2, count, type, 1, tag, comm);

MPI_Bcast(buf1, count, type, 0, comm);

break;

}

All three processes participate in a broadcast. Process 0 sends a message to process
1 after the broadcast, and process 2 sends a message to process 1 before the broadcast.
Process 1 receives before and after the broadcast, with a wildcard source argument.

Two possible executions of this program, with different matchings of sends and receives,
are illustrated in Figure 5.12. Note that the second execution has the peculiar effect that
a send executed after the broadcast is received at another node before the broadcast. This
example illustrates the fact that one should not rely on collective communication functions
to have particular synchronization effects. A program that works correctly only when the
first execution occurs (only when broadcast is synchronizing) is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.13. CORRECTNESS 217

First Execution

Second Execution

0 1 2

recv

broadcast broadcast broadcast

send

recv

process:

send

match

match

broadcast

recv

recv send

broadcast

send

broadcast

match

match

Figure 5.12: A race condition causes non-deterministic matching of sends and receives. One
cannot rely on synchronization from a broadcast to make the program deterministic.

Finally, in multithreaded implementations, one can have more than one, concurrently
executing, collective communication call at a process. In these situations, it is the user’s re-
sponsibility to ensure that the same communicator is not used concurrently by two different
collective communication calls at the same process.

Advice to implementors. Assume that broadcast is implemented using point-to-point
MPI communication. Suppose the following two rules are followed.

1. All receives specify their source explicitly (no wildcards).

2. Each process sends all messages that pertain to one collective call before sending
any message that pertain to a subsequent collective call.

Then, messages belonging to successive broadcasts cannot be confused, as the order
of point-to-point messages is preserved.

It is the implementor’s responsibility to ensure that point-to-point messages are not
confused with collective messages. One way to accomplish this is, whenever a commu-
nicator is created, to also create a “hidden communicator” for collective communica-
tion. One could achieve a similar effect more cheaply, for example, by using a hidden
tag or context bit to indicate whether the communicator is used for point-to-point or
collective communication. (End of advice to implementors.)

Example 5.29
Blocking and nonblocking collective operations can be interleaved, i.e., a blocking collec-

tive operation can be posted even if there is a nonblocking collective operation outstanding.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

218 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Request req;

MPI_Ibarrier(comm, &req);

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Wait(&req, MPI_STATUS_IGNORE);

Each process starts a nonblocking barrier operation, participates in a blocking broad-
cast and then waits until every other process started the barrier operation. This ef-
fectively turns the broadcast into a synchronizing broadcast with possible communica-
tion/communication overlap (MPI_Bcast is allowed, but not required to synchronize).

Example 5.30
The starting order of collective operations on a particular communicator defines their

matching. The following example shows an erroneous matching of different collective oper-
ations on the same communicator.

MPI_Request req;

switch(rank) {

case 0:

/* erroneous matching */

MPI_Ibarrier(comm, &req);

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

case 1:

/* erroneous matching */

MPI_Bcast(buf1, count, type, 0, comm);

MPI_Ibarrier(comm, &req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

}

This ordering would match MPI_Ibarrier on rank 0 with MPI_Bcast on rank 1 which is
erroneous and the program behavior is undefined. However, if such an order is required, the
user must create different duplicate communicators and perform the operations on them.
If started with two processes, the following program would be correct:

MPI_Request req;

MPI_Comm dupcomm;

MPI_Comm_dup(comm, &dupcomm);

switch(rank) {

case 0:

MPI_Ibarrier(comm, &req);

MPI_Bcast(buf1, count, type, 0, dupcomm);

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

case 1:

MPI_Bcast(buf1, count, type, 0, dupcomm);

MPI_Ibarrier(comm, &req);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.13. CORRECTNESS 219

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

}

Advice to users. The use of different communicators offers some flexibility regarding
the matching of nonblocking collective operations. In this sense, communicators could
be used as an equivalent to tags. However, communicator construction might induce
overheads so that this should be used carefully. (End of advice to users.)

Example 5.31
Nonblocking collective operations can rely on the same progression rules as nonblocking

point-to-point messages. Thus, if started with two processes, the following program is a
valid MPI program and is guaranteed to terminate:

MPI_Request req;

switch(rank) {

case 0:

MPI_Ibarrier(comm, &req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

MPI_Send(buf, count, dtype, 1, tag, comm);

break;

case 1:

MPI_Ibarrier(comm, &req);

MPI_Recv(buf, count, dtype, 0, tag, comm, MPI_STATUS_IGNORE);

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

}

The MPI library must progress the barrier in the MPI_Recv call. Thus, the MPI_Wait
call in rank 0 will eventually complete, which enables the matching MPI_Send so all calls
eventually return.

Example 5.32
Blocking and nonblocking collective operations do not match. The following example

is erroneous.

MPI_Request req;

switch(rank) {

case 0:

/* erroneous false matching of Alltoall and Ialltoall */

MPI_Ialltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm, &req);

MPI_Wait(&req, MPI_STATUS_IGNORE);

break;

case 1:

/* erroneous false matching of Alltoall and Ialltoall */

MPI_Alltoall(sbuf, scnt, stype, rbuf, rcnt, rtype, comm);

break;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

220 CHAPTER 5. COLLECTIVE COMMUNICATION

Example 5.33
Collective and point-to-point requests can be mixed in functions that enable multiple

completions. If started with two processes, the following program is valid.

MPI_Request reqs[2];

switch(rank) {

case 0:

MPI_Ibarrier(comm, &reqs[0]);

MPI_Send(buf, count, dtype, 1, tag, comm);

MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);

break;

case 1:

MPI_Irecv(buf, count, dtype, 0, tag, comm, &reqs[0]);

MPI_Ibarrier(comm, &reqs[1]);

MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);

break;

}

The MPI_Waitall call returns only after the barrier and the receive completed.

Example 5.34
Multiple nonblocking collective operations can be outstanding on a single communicator

and match in order.

MPI_Request reqs[3];

compute(buf1);

MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);

compute(buf2);

MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);

compute(buf3);

MPI_Ibcast(buf3, count, type, 0, comm, &reqs[2]);

MPI_Waitall(3, reqs, MPI_STATUSES_IGNORE);

Advice to users. Pipelining and double-buffering techniques can efficiently be used
to overlap computation and communication. However, having too many outstanding
requests might have a negative impact on performance. (End of advice to users.)

Advice to implementors. The use of pipelining may generate many outstanding
requests. A high-quality hardware-supported implementation with limited resources
should be able to fall back to a software implementation if its resources are exhausted.
In this way, the implementation could limit the number of outstanding requests only
by the available memory. (End of advice to implementors.)

Example 5.35

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

5.13. CORRECTNESS 221

0 1

2

comm3 comm2

comm1

Figure 5.13: Example with overlapping communicators.

Nonblocking collective operations can also be used to enable simultaneous collective
operations on multiple overlapping communicators (see Figure 5.13). The following example
is started with three processes and three communicators. The first communicator comm1

includes ranks 0 and 1, comm2 includes ranks 1 and 2, and comm3 spans ranks 0 and 2. It is
not possible to perform a blocking collective operation on all communicators because there
exists no deadlock-free order to invoke them. However, nonblocking collective operations
can easily be used to achieve this task.

MPI_Request reqs[2];

switch(rank) {

case 0:

MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);

MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);

break;

case 1:

MPI_Iallreduce(sbuf1, rbuf1, count, dtype, MPI_SUM, comm1, &reqs[0]);

MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[1]);

break;

case 2:

MPI_Iallreduce(sbuf2, rbuf2, count, dtype, MPI_SUM, comm2, &reqs[0]);

MPI_Iallreduce(sbuf3, rbuf3, count, dtype, MPI_SUM, comm3, &reqs[1]);

break;

}

MPI_Waitall(2, reqs, MPI_STATUSES_IGNORE);

Advice to users. This method can be useful if overlapping neighboring regions (halo
or ghost zones) are used in collective operations. The sequence of the two calls in
each process is irrelevant because the two nonblocking operations are performed on
different communicators. (End of advice to users.)

Example 5.36
The progress of multiple outstanding nonblocking collective operations is completely

independent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

222 CHAPTER 5. COLLECTIVE COMMUNICATION

MPI_Request reqs[2];

compute(buf1);

MPI_Ibcast(buf1, count, type, 0, comm, &reqs[0]);

compute(buf2);

MPI_Ibcast(buf2, count, type, 0, comm, &reqs[1]);

MPI_Wait(&reqs[1], MPI_STATUS_IGNORE);

/* nothing is known about the status of the first bcast here */

MPI_Wait(&reqs[0], MPI_STATUS_IGNORE);

Finishing the second MPI_IBCAST is completely independent of the first one. This
means that it is not guaranteed that the first broadcast operation is finished or even started
after the second one is completed via reqs[1].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 6

Groups, Contexts, Communicators,
and Caching

6.1 Introduction

This chapter introduces MPI features that support the development of parallel libraries.
Parallel libraries are needed to encapsulate the distracting complications inherent in paral-
lel implementations of key algorithms. They help to ensure consistent correctness of such
procedures, and provide a “higher level” of portability than MPI itself can provide. As
such, libraries prevent each programmer from repeating the work of defining consistent
data structures, data layouts, and methods that implement key algorithms (such as matrix
operations). Since the best libraries come with several variations on parallel systems (dif-
ferent data layouts, different strategies depending on the size of the system or problem, or
type of floating point), this too needs to be hidden from the user.

We refer the reader to [55] and [3] for further information on writing libraries in MPI,
using the features described in this chapter.

6.1.1 Features Needed to Support Libraries

The key features needed to support the creation of robust parallel libraries are as follows:

• Safe communication space, that guarantees that libraries can communicate as they
need to, without conflicting with communication extraneous to the library,

• Group scope for collective operations, that allow libraries to avoid unnecessarily syn-
chronizing uninvolved processes (potentially running unrelated code),

• Abstract process naming to allow libraries to describe their communication in terms
suitable to their own data structures and algorithms,

• The ability to “adorn” a set of communicating processes with additional user-defined
attributes, such as extra collective operations. This mechanism should provide a
means for the user or library writer effectively to extend a message-passing notation.

In addition, a unified mechanism or object is needed for conveniently denoting communica-
tion context, the group of communicating processes, to house abstract process naming, and
to store adornments.

223

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

224 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

6.1.2 MPI’s Support for Libraries

The corresponding concepts that MPI provides, specifically to support robust libraries, are
as follows:

• Contexts of communication,

• Groups of processes,

• Virtual topologies,

• Attribute caching ,

• Communicators.

Communicators (see [21, 53, 57]) encapsulate all of these ideas in order to provide the
appropriate scope for all communication operations in MPI. Communicators are divided
into two kinds: intra-communicators for operations within a single group of processes and
inter-communicators for operations between two groups of processes.

Caching. Communicators (see below) provide a “caching” mechanism that allows one to
associate new attributes with communicators, on par with MPI built-in features. This can
be used by advanced users to adorn communicators further, and by MPI to implement
some communicator functions. For example, the virtual-topology functions described in
Chapter 7 are likely to be supported this way.

Groups. Groups define an ordered collection of processes, each with a rank, and it is this
group that defines the low-level names for inter-process communication (ranks are used for
sending and receiving). Thus, groups define a scope for process names in point-to-point
communication. In addition, groups define the scope of collective operations. Groups may
be manipulated separately from communicators in MPI, but only communicators can be
used in communication operations.

Intra-communicators. The most commonly used means for message passing in MPI is via
intra-communicators. Intra-communicators contain an instance of a group, contexts of
communication for both point-to-point and collective communication, and the ability to
include virtual topology and other attributes. These features work as follows:

• Contexts provide the ability to have separate safe “universes” of message-passing in
MPI. A context is akin to an additional tag that differentiates messages. The system
manages this differentiation process. The use of separate communication contexts
by distinct libraries (or distinct library invocations) insulates communication internal
to the library execution from external communication. This allows the invocation of
the library even if there are pending communications on “other” communicators, and
avoids the need to synchronize entry or exit into library code. Pending point-to-point
communications are also guaranteed not to interfere with collective communications
within a single communicator.

• Groups define the participants in the communication (see above) of a communicator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.1. INTRODUCTION 225

• A virtual topology defines a special mapping of the ranks in a group to and from a
topology. Special constructors for communicators are defined in Chapter 7 to provide
this feature. Intra-communicators as described in this chapter do not have topologies.

• Attributes define the local information that the user or library has added to a com-
municator for later reference.

Advice to users. The practice in many communication libraries is that there is a
unique, predefined communication universe that includes all processes available when
the parallel program is initiated; the processes are assigned consecutive ranks. Par-
ticipants in a point-to-point communication are identified by their rank; a collective
communication (such as broadcast) always involves all processes. This practice can be
followed in MPI by using the predefined communicator MPI_COMM_WORLD. Users
who are satisfied with this practice can plug in MPI_COMM_WORLD wherever a com-
municator argument is required, and can consequently disregard the rest of this chapter.
(End of advice to users.)

Inter-communicators. The discussion has dealt so far with intra-communication: commu-
nication within a group. MPI also supports inter-communication: communication between
two non-overlapping groups. When an application is built by composing several parallel
modules, it is convenient to allow one module to communicate with another using local
ranks for addressing within the second module. This is especially convenient in a client-
server computing paradigm, where either client or server are parallel. The support of inter-
communication also provides a mechanism for the extension of MPI to a dynamic model
where not all processes are preallocated at initialization time. In such a situation, it becomes
necessary to support communication across “universes.” Inter-communication is supported
by objects called inter-communicators. These objects bind two groups together with com-
munication contexts shared by both groups. For inter-communicators, these features work
as follows:

• Contexts provide the ability to have a separate safe “universe” of message-passing
between the two groups. A send in the local group is always a receive in the re-
mote group, and vice versa. The system manages this differentiation process. The
use of separate communication contexts by distinct libraries (or distinct library in-
vocations) insulates communication internal to the library execution from external
communication. This allows the invocation of the library even if there are pending
communications on “other” communicators, and avoids the need to synchronize entry
or exit into library code.

• A local and remote group specify the recipients and destinations for an inter-com-
municator.

• Virtual topology is undefined for an inter-communicator.

• As before, attributes cache defines the local information that the user or library has
added to a communicator for later reference.

MPI provides mechanisms for creating and manipulating inter-communicators. They
are used for point-to-point and collective communication in an related manner to intra-
communicators. Users who do not need inter-communication in their applications can safely

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

226 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

ignore this extension. Users who require inter-communication between overlapping groups
must layer this capability on top of MPI.

6.2 Basic Concepts

In this section, we turn to a more formal definition of the concepts introduced above.

6.2.1 Groups

A group is an ordered set of process identifiers (henceforth processes); processes are implementation-
dependent objects. Each process in a group is associated with an integer rank . Ranks are
contiguous and start from zero. Groups are represented by opaque group objects, and hence
cannot be directly transferred from one process to another. A group is used within a com-
municator to describe the participants in a communication “universe” and to rank such
participants (thus giving them unique names within that “universe” of communication).

There is a special pre-defined group: MPI_GROUP_EMPTY, which is a group with no
members. The predefined constant MPI_GROUP_NULL is the value used for invalid group
handles.

Advice to users. MPI_GROUP_EMPTY, which is a valid handle to an empty group,
should not be confused with MPI_GROUP_NULL, which in turn is an invalid handle.
The former may be used as an argument to group operations; the latter, which is
returned when a group is freed, is not a valid argument. (End of advice to users.)

Advice to implementors. A group may be represented by a virtual-to-real process-
address-translation table. Each communicator object (see below) would have a pointer
to such a table.

Simple implementations of MPI will enumerate groups, such as in a table. However,
more advanced data structures make sense in order to improve scalability and memory
usage with large numbers of processes. Such implementations are possible with MPI.
(End of advice to implementors.)

6.2.2 Contexts

A context is a property of communicators (defined next) that allows partitioning of the
communication space. A message sent in one context cannot be received in another context.
Furthermore, where permitted, collective operations are independent of pending point-to-
point operations. Contexts are not explicit MPI objects; they appear only as part of the
realization of communicators (below).

Advice to implementors. Distinct communicators in the same process have distinct
contexts. A context is essentially a system-managed tag (or tags) needed to make
a communicator safe for point-to-point and MPI-defined collective communication.
Safety means that collective and point-to-point communication within one commu-
nicator do not interfere, and that communication over distinct communicators don’t
interfere.

A possible implementation for a context is as a supplemental tag attached to messages
on send and matched on receive. Each intra-communicator stores the value of its two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.2. BASIC CONCEPTS 227

tags (one for point-to-point and one for collective communication). Communicator-
generating functions use a collective communication to agree on a new group-wide
unique context.

Analogously, in inter-communication, two context tags are stored per communicator,
one used by group A to send and group B to receive, and a second used by group B
to send and for group A to receive.

Since contexts are not explicit objects, other implementations are also possible. (End
of advice to implementors.)

6.2.3 Intra-Communicators

Intra-communicators bring together the concepts of group and context. To support
implementation-specific optimizations, and application topologies (defined in the next chap-
ter, Chapter 7), communicators may also “cache” additional information (see Section 6.7).
MPI communication operations reference communicators to determine the scope and the
“communication universe” in which a point-to-point or collective operation is to operate.

Each communicator contains a group of valid participants; this group always includes
the local process. The source and destination of a message is identified by process rank
within that group.

For collective communication, the intra-communicator specifies the set of processes that
participate in the collective operation (and their order, when significant). Thus, the commu-
nicator restricts the “spatial” scope of communication, and provides machine-independent
process addressing through ranks.

Intra-communicators are represented by opaque intra-communicator objects, and hence
cannot be directly transferred from one process to another.

6.2.4 Predefined Intra-Communicators

An initial intra-communicator MPI_COMM_WORLD of all processes the local process can
communicate with after initialization (itself included) is defined once MPI_INIT or
MPI_INIT_THREAD has been called. In addition, the communicator MPI_COMM_SELF is
provided, which includes only the process itself.

The predefined constant MPI_COMM_NULL is the value used for invalid communicator
handles.

In a static-process-model implementation of MPI, all processes that participate in the
computation are available after MPI is initialized. For this case, MPI_COMM_WORLD is a
communicator of all processes available for the computation; this communicator has the
same value in all processes. In an implementation of MPI where processes can dynami-
cally join an MPI execution, it may be the case that a process starts an MPI computation
without having access to all other processes. In such situations, MPI_COMM_WORLD is a
communicator incorporating all processes with which the joining process can immediately
communicate. Therefore, MPI_COMM_WORLD may simultaneously represent disjoint groups
in different processes.

All MPI implementations are required to provide the MPI_COMM_WORLD communi-
cator. It cannot be deallocated during the life of a process. The group corresponding to
this communicator does not appear as a pre-defined constant, but it may be accessed using
MPI_COMM_GROUP (see below). MPI does not specify the correspondence between the
process rank in MPI_COMM_WORLD and its (machine-dependent) absolute address. Neither

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

228 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

does MPI specify the function of the host process, if any. Other implementation-dependent,
predefined communicators may also be provided.

6.3 Group Management

This section describes the manipulation of process groups in MPI. These operations are
local and their execution does not require interprocess communication.

6.3.1 Group Accessors

MPI_GROUP_SIZE(group, size)

IN group group (handle)

OUT size number of processes in the group (integer)

int MPI_Group_size(MPI_Group group, int *size)

MPI_Group_size(group, size, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)

INTEGER GROUP, SIZE, IERROR

MPI_GROUP_RANK(group, rank)

IN group group (handle)

OUT rank rank of the calling process in group, or

MPI_UNDEFINED if the process is not a member (in-

teger)

int MPI_Group_rank(MPI_Group group, int *rank)

MPI_Group_rank(group, rank, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_RANK(GROUP, RANK, IERROR)

INTEGER GROUP, RANK, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. GROUP MANAGEMENT 229

MPI_GROUP_TRANSLATE_RANKS(group1, n, ranks1, group2, ranks2)

IN group1 group1 (handle)

IN n number of ranks in ranks1 and ranks2 arrays (integer)

IN ranks1 array of zero or more valid ranks in group1

IN group2 group2 (handle)

OUT ranks2 array of corresponding ranks in group2,

MPI_UNDEFINED when no correspondence exists.

int MPI_Group_translate_ranks(MPI_Group group1, int n, const int ranks1[],

MPI_Group group2, int ranks2[])

MPI_Group_translate_ranks(group1, n, ranks1, group2, ranks2, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

INTEGER, INTENT(IN) :: n, ranks1(n)

INTEGER, INTENT(OUT) :: ranks2(n)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)

INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

This function is important for determining the relative numbering of the same processes
in two different groups. For instance, if one knows the ranks of certain processes in the group
of MPI_COMM_WORLD, one might want to know their ranks in a subset of that group.

MPI_PROC_NULL is a valid rank for input to MPI_GROUP_TRANSLATE_RANKS, which
returns MPI_PROC_NULL as the translated rank.

MPI_GROUP_COMPARE(group1, group2, result)

IN group1 first group (handle)

IN group2 second group (handle)

OUT result result (integer)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

MPI_Group_compare(group1, group2, result, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

INTEGER, INTENT(OUT) :: result

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)

INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_IDENT results if the group members and group order is exactly the same in both groups.
This happens for instance if group1 and group2 are the same handle. MPI_SIMILAR results if
the group members are the same but the order is different. MPI_UNEQUAL results otherwise.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

230 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

6.3.2 Group Constructors

Group constructors are used to subset and superset existing groups. These constructors
construct new groups from existing groups. These are local operations, and distinct groups
may be defined on different processes; a process may also define a group that does not
include itself. Consistent definitions are required when groups are used as arguments in
communicator-building functions. MPI does not provide a mechanism to build a group
from scratch, but only from other, previously defined groups. The base group, upon which
all other groups are defined, is the group associated with the initial communicator
MPI_COMM_WORLD (accessible through the function MPI_COMM_GROUP).

Rationale. In what follows, there is no group duplication function analogous to
MPI_COMM_DUP, defined later in this chapter. There is no need for a group dupli-
cator. A group, once created, can have several references to it by making copies of
the handle. The following constructors address the need for subsets and supersets of
existing groups. (End of rationale.)

Advice to implementors. Each group constructor behaves as if it returned a new
group object. When this new group is a copy of an existing group, then one can
avoid creating such new objects, using a reference-count mechanism. (End of advice
to implementors.)

MPI_COMM_GROUP(comm, group)

IN comm communicator (handle)

OUT group group corresponding to comm (handle)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

MPI_Comm_group(comm, group, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_GROUP returns in group a handle to the group of comm.

MPI_GROUP_UNION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup union group (handle)

int MPI_Group_union(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. GROUP MANAGEMENT 231

MPI_Group_union(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup intersection group (handle)

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

MPI_Group_intersection(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_DIFFERENCE(group1, group2, newgroup)

IN group1 first group (handle)

IN group2 second group (handle)

OUT newgroup difference group (handle)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

MPI_Group_difference(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

The set-like operations are defined as follows:

union All elements of the first group (group1), followed by all elements of second group
(group2) not in the first group.

intersect all elements of the first group that are also in the second group, ordered as in
the first group.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

232 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

difference all elements of the first group that are not in the second group, ordered as in
the first group.

Note that for these operations the order of processes in the output group is determined
primarily by order in the first group (if possible) and then, if necessary, by order in the
second group. Neither union nor intersection are commutative, but both are associative.

The new group can be empty, that is, equal to MPI_GROUP_EMPTY.

MPI_GROUP_INCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (and size of

newgroup) (integer)

IN ranks ranks of processes in group to appear in

newgroup (array of integers)

OUT newgroup new group derived from above, in the order defined by

ranks (handle)

int MPI_Group_incl(MPI_Group group, int n, const int ranks[],

MPI_Group *newgroup)

MPI_Group_incl(group, n, ranks, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranks(n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

The function MPI_GROUP_INCL creates a group newgroup that consists of the
n processes in group with ranks ranks[0],. . ., ranks[n-1]; the process with rank i in newgroup
is the process with rank ranks[i] in group. Each of the n elements of ranks must be a valid
rank in group and all elements must be distinct, or else the program is erroneous. If n = 0,
then newgroup is MPI_GROUP_EMPTY. This function can, for instance, be used to reorder
the elements of a group. See also MPI_GROUP_COMPARE.

MPI_GROUP_EXCL(group, n, ranks, newgroup)

IN group group (handle)

IN n number of elements in array ranks (integer)

IN ranks array of integer ranks in group not to appear in

newgroup

OUT newgroup new group derived from above, preserving the order

defined by group (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.3. GROUP MANAGEMENT 233

int MPI_Group_excl(MPI_Group group, int n, const int ranks[],

MPI_Group *newgroup)

MPI_Group_excl(group, n, ranks, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranks(n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

The function MPI_GROUP_EXCL creates a group of processes newgroup that is obtained
by deleting from group those processes with ranks ranks[0] ,. . . ranks[n-1]. The ordering of
processes in newgroup is identical to the ordering in group. Each of the n elements of ranks
must be a valid rank in group and all elements must be distinct; otherwise, the program is
erroneous. If n = 0, then newgroup is identical to group.

MPI_GROUP_RANGE_INCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of triplets in array ranges (integer)

IN ranges a one-dimensional array of integer triplets, of the form

(first rank, last rank, stride) indicating ranks in group

of processes to be included in newgroup

OUT newgroup new group derived from above, in the order defined by

ranges (handle)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

MPI_Group_range_incl(group, n, ranges, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranges(3,n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

If ranges consists of the triplets

(first1, last1, stride1), . . . , (firstn, lastn, striden)

then newgroup consists of the sequence of processes in group with ranks

first1, first1 + stride1, . . . , first1 +

⌊
last1 − first1

stride1

⌋
stride1, . . . ,

firstn, firstn + striden, . . . , firstn +

⌊
lastn − firstn

striden

⌋
striden.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

234 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Each computed rank must be a valid rank in group and all computed ranks must be
distinct, or else the program is erroneous. Note that we may have firsti > lasti, and stridei
may be negative, but cannot be zero.

The functionality of this routine is specified to be equivalent to expanding the array
of ranges to an array of the included ranks and passing the resulting array of ranks and
other arguments to MPI_GROUP_INCL. A call to MPI_GROUP_INCL is equivalent to a call
to MPI_GROUP_RANGE_INCL with each rank i in ranks replaced by the triplet (i,i,1) in the
argument ranges.

MPI_GROUP_RANGE_EXCL(group, n, ranges, newgroup)

IN group group (handle)

IN n number of elements in array ranges (integer)

IN ranges a one-dimensional array of integer triplets of the form

(first rank, last rank, stride), indicating the ranks in

group of processes to be excluded from the output

group newgroup.

OUT newgroup new group derived from above, preserving the order

in group (handle)

int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

MPI_Group_range_excl(group, n, ranges, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranges(3,n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

Each computed rank must be a valid rank in group and all computed ranks must be distinct,
or else the program is erroneous.

The functionality of this routine is specified to be equivalent to expanding the array of
ranges to an array of the excluded ranks and passing the resulting array of ranks and other
arguments to MPI_GROUP_EXCL. A call to MPI_GROUP_EXCL is equivalent to a call to
MPI_GROUP_RANGE_EXCL with each rank i in ranks replaced by the triplet (i,i,1) in the
argument ranges.

Advice to users. The range operations do not explicitly enumerate ranks, and
therefore are more scalable if implemented efficiently. Hence, we recommend MPI
programmers to use them whenenever possible, as high-quality implementations will
take advantage of this fact. (End of advice to users.)

Advice to implementors. The range operations should be implemented, if possible,
without enumerating the group members, in order to obtain better scalability (time
and space). (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 235

6.3.3 Group Destructors

MPI_GROUP_FREE(group)

INOUT group group (handle)

int MPI_Group_free(MPI_Group *group)

MPI_Group_free(group, ierror)

TYPE(MPI_Group), INTENT(INOUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GROUP_FREE(GROUP, IERROR)

INTEGER GROUP, IERROR

This operation marks a group object for deallocation. The handle group is set to
MPI_GROUP_NULL by the call. Any on-going operation using this group will complete
normally.

Advice to implementors. One can keep a reference count that is incremented for each
call to MPI_COMM_GROUP, MPI_COMM_CREATE, MPI_COMM_DUP, and
MPI_COMM_IDUP, and decremented for each call to MPI_GROUP_FREE or
MPI_COMM_FREE; the group object is ultimately deallocated when the reference
count drops to zero. (End of advice to implementors.)

6.4 Communicator Management

This section describes the manipulation of communicators in MPI. Operations that access
communicators are local and their execution does not require interprocess communication.
Operations that create communicators are collective and may require interprocess commu-
nication.

Advice to implementors. High-quality implementations should amortize the over-
heads associated with the creation of communicators (for the same group, or subsets
thereof) over several calls, by allocating multiple contexts with one collective commu-
nication. (End of advice to implementors.)

6.4.1 Communicator Accessors

The following are all local operations.

MPI_COMM_SIZE(comm, size)

IN comm communicator (handle)

OUT size number of processes in the group of comm (integer)

int MPI_Comm_size(MPI_Comm comm, int *size)

MPI_Comm_size(comm, size, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

236 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the size using MPI_GROUP_SIZE, and
then freeing the temporary group via MPI_GROUP_FREE. However, this function is
so commonly used that this shortcut was introduced. (End of rationale.)

Advice to users. This function indicates the number of processes involved in a
communicator. For MPI_COMM_WORLD, it indicates the total number of processes
available unless the number of processes has been changed by using the functions
described in Chapter 10; note that the number of processes in MPI_COMM_WORLD

does not change during the life of an MPI program.

This call is often used with the next call to determine the amount of concurrency
available for a specific library or program. The following call, MPI_COMM_RANK
indicates the rank of the process that calls it in the range from 0 . . .size−1, where size
is the return value of MPI_COMM_SIZE.(End of advice to users.)

MPI_COMM_RANK(comm, rank)

IN comm communicator (handle)

OUT rank rank of the calling process in group of comm (integer)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

MPI_Comm_rank(comm, rank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

Rationale. This function is equivalent to accessing the communicator’s group with
MPI_COMM_GROUP (see above), computing the rank using MPI_GROUP_RANK,
and then freeing the temporary group via MPI_GROUP_FREE. However, this function
is so commonly used that this shortcut was introduced. (End of rationale.)

Advice to users. This function gives the rank of the process in the particular commu-
nicator’s group. It is useful, as noted above, in conjunction with MPI_COMM_SIZE.

Many programs will be written with the master-slave model, where one process (such
as the rank-zero process) will play a supervisory role, and the other processes will
serve as compute nodes. In this framework, the two preceding calls are useful for

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 237

determining the roles of the various processes of a communicator. (End of advice to
users.)

MPI_COMM_COMPARE(comm1, comm2, result)

IN comm1 first communicator (handle)

IN comm2 second communicator (handle)

OUT result result (integer)

int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

MPI_Comm_compare(comm1, comm2, result, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm1, comm2

INTEGER, INTENT(OUT) :: result

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)

INTEGER COMM1, COMM2, RESULT, IERROR

MPI_IDENT results if and only if comm1 and comm2 are handles for the same object (identical
groups and same contexts). MPI_CONGRUENT results if the underlying groups are identical
in constituents and rank order; these communicators differ only by context. MPI_SIMILAR

results if the group members of both communicators are the same but the rank order differs.
MPI_UNEQUAL results otherwise.

6.4.2 Communicator Constructors

The following are collective functions that are invoked by all processes in the group or
groups associated with comm, with the exception of MPI_COMM_CREATE_GROUP, which
is invoked only by the processes in the group of the new communicator being constructed.

Rationale. Note that there is a chicken-and-egg aspect to MPI in that a communicator
is needed to create a new communicator. The base communicator for all MPI com-
municators is predefined outside of MPI, and is MPI_COMM_WORLD. This model was
arrived at after considerable debate, and was chosen to increase “safety” of programs
written in MPI. (End of rationale.)

This chapter presents the following communicator construction routines:
MPI_COMM_CREATE, MPI_COMM_DUP, MPI_COMM_IDUP,
MPI_COMM_DUP_WITH_INFO, and MPI_COMM_SPLIT can be used to create both intra-
communicators and intercommunicators; MPI_COMM_CREATE_GROUP and
MPI_INTERCOMM_MERGE (see Section 6.6.2) can be used to create intracommunicators;
and MPI_INTERCOMM_CREATE (see Section 6.6.2) can be used to create intercommuni-
cators.

An intracommunicator involves a single group while an intercommunicator involves
two groups. Where the following discussions address intercommunicator semantics, the
two groups in an intercommunicator are called the left and right groups. A process in an
intercommunicator is a member of either the left or the right group. From the point of view

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

238 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

of that process, the group that the process is a member of is called the local group; the
other group (relative to that process) is the remote group. The left and right group labels
give us a way to describe the two groups in an intercommunicator that is not relative to
any particular process (as the local and remote groups are).

MPI_COMM_DUP(comm, newcomm)

IN comm communicator (handle)

OUT newcomm copy of comm (handle)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

MPI_Comm_dup(comm, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

MPI_COMM_DUP duplicates the existing communicator comm with associated key
values, topology information, and info hints. For each key value, the respective copy callback
function determines the attribute value associated with this key in the new communicator;
one particular action that a copy callback may take is to delete the attribute from the new
communicator. Returns in newcomm a new communicator with the same group or groups,
same topology, same info hints, any copied cached information, but a new context (see
Section 6.7.1).

Advice to users. This operation is used to provide a parallel library with a duplicate
communication space that has the same properties as the original communicator. This
includes any attributes (see below), topologies (see Chapter 7), and associated info
hints (see Section 6.4.4). This call is valid even if there are pending point-to-point
communications involving the communicator comm. A typical call might involve a
MPI_COMM_DUP at the beginning of the parallel call, and an MPI_COMM_FREE of
that duplicated communicator at the end of the call. Other models of communicator
management are also possible.

This call applies to both intra- and inter-communicators. (End of advice to users.)

Advice to implementors. One need not actually copy the group information, but only
add a new reference and increment the reference count. Copy on write can be used
for the cached information.(End of advice to implementors.)

MPI_COMM_DUP_WITH_INFO(comm, info, newcomm)

IN comm communicator (handle)

IN info info object (handle)

OUT newcomm copy of comm (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 239

int MPI_Comm_dup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm)

MPI_Comm_dup_with_info(comm, info, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_DUP_WITH_INFO(COMM, INFO, NEWCOMM, IERROR)

INTEGER COMM, INFO, NEWCOMM, IERROR

MPI_COMM_DUP_WITH_INFO behaves exactly as MPI_COMM_DUP except that the
info hints associated with the communicator comm are not duplicated in newcomm. The
hints provided by the argument info are associated with the output communicator newcomm
instead.

Rationale. It is expected that some hints will only be valid at communicator creation
time. However, for legacy reasons, most communicator creation calls do not provide
an info argument. One may associate info hints with a duplicate of any communicator
at creation time through a call to MPI_COMM_DUP_WITH_INFO. (End of rationale.)

MPI_COMM_IDUP(comm, newcomm, request)

IN comm communicator (handle)

OUT newcomm copy of comm (handle)

OUT request communication request (handle)

int MPI_Comm_idup(MPI_Comm comm, MPI_Comm *newcomm, MPI_Request *request)

MPI_Comm_idup(comm, newcomm, request, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_IDUP(COMM, NEWCOMM, REQUEST, IERROR)

INTEGER COMM, NEWCOMM, REQUEST, IERROR

MPI_COMM_IDUP is a nonblocking variant of MPI_COMM_DUP. The semantics of
MPI_COMM_IDUP are as if MPI_COMM_DUP was executed at the time that
MPI_COMM_IDUP is called. For example, attributes changed after MPI_COMM_IDUP will
not be copied to the new communicator. All restrictions and assumptions for nonblock-
ing collective operations (see Section 5.12) apply to MPI_COMM_IDUP and the returned
request.

It is erroneous to use the communicator newcomm as an input argument to other MPI
functions before the MPI_COMM_IDUP operation completes.

Rationale. This functionality is crucial for the development of purely nonblocking
libraries (see [36]). (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

240 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_CREATE(comm, group, newcomm)

IN comm communicator (handle)

IN group group, which is a subset of the group of comm (handle)

OUT newcomm new communicator (handle)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

MPI_Comm_create(comm, group, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(IN) :: group

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

If comm is an intracommunicator, this function returns a new communicator
newcomm with communication group defined by the group argument. No cached information
propagates from comm to newcomm. Each process must call MPI_COMM_CREATE with
a group argument that is a subgroup of the group associated with comm; this could be
MPI_GROUP_EMPTY. The processes may specify different values for the group argument.
If a process calls with a non-empty group then all processes in that group must call the
function with the same group as argument, that is the same processes in the same order.
Otherwise, the call is erroneous. This implies that the set of groups specified across the
processes must be disjoint. If the calling process is a member of the group given as group
argument, then newcomm is a communicator with group as its associated group. In the case
that a process calls with a group to which it does not belong, e.g., MPI_GROUP_EMPTY,
then MPI_COMM_NULL is returned as newcomm. The function is collective and must be
called by all processes in the group of comm.

Rationale. The interface supports the original mechanism from MPI-1.1, which re-
quired the same group in all processes of comm. It was extended in MPI-2.2 to allow
the use of disjoint subgroups in order to allow implementations to eliminate unnec-
essary communication that MPI_COMM_SPLIT would incur when the user already
knows the membership of the disjoint subgroups. (End of rationale.)

Rationale. The requirement that the entire group of comm participate in the call
stems from the following considerations:

• It allows the implementation to layer MPI_COMM_CREATE on top of regular
collective communications.

• It provides additional safety, in particular in the case where partially overlapping
groups are used to create new communicators.

• It permits implementations to sometimes avoid communication related to context
creation.

(End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 241

Advice to users. MPI_COMM_CREATE provides a means to subset a group of pro-
cesses for the purpose of separate MIMD computation, with separate communication
space. newcomm, which emerges from MPI_COMM_CREATE, can be used in subse-
quent calls to MPI_COMM_CREATE (or other communicator constructors) to further
subdivide a computation into parallel sub-computations. A more general service is
provided by MPI_COMM_SPLIT, below. (End of advice to users.)

Advice to implementors. When calling MPI_COMM_DUP, all processes call with the
same group (the group associated with the communicator). When calling
MPI_COMM_CREATE, the processes provide the same group or disjoint subgroups.
For both calls, it is theoretically possible to agree on a group-wide unique context
with no communication. However, local execution of these functions requires use
of a larger context name space and reduces error checking. Implementations may
strike various compromises between these conflicting goals, such as bulk allocation of
multiple contexts in one collective operation.

Important: If new communicators are created without synchronizing the processes
involved then the communication system must be able to cope with messages arriving
in a context that has not yet been allocated at the receiving process. (End of advice
to implementors.)

If comm is an intercommunicator, then the output communicator is also an intercommun-
icator where the local group consists only of those processes contained in group (see Fig-
ure 6.1). The group argument should only contain those processes in the local group of
the input intercommunicator that are to be a part of newcomm. All processes in the same
local group of comm must specify the same value for group, i.e., the same members in the
same order. If either group does not specify at least one process in the local group of the
intercommunicator, or if the calling process is not included in the group, MPI_COMM_NULL

is returned.

Rationale. In the case where either the left or right group is empty, a null communi-
cator is returned instead of an intercommunicator with MPI_GROUP_EMPTY because
the side with the empty group must return MPI_COMM_NULL. (End of rationale.)

Example 6.1 The following example illustrates how the first node in the left side of an
intercommunicator could be joined with all members on the right side of an intercommun-
icator to form a new intercommunicator.

MPI_Comm inter_comm, new_inter_comm;

MPI_Group local_group, group;

int rank = 0; /* rank on left side to include in

new inter-comm */

/* Construct the original intercommunicator: "inter_comm" */

...

/* Construct the group of processes to be in new

intercommunicator */

if (/* I’m on the left side of the intercommunicator */) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

242 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

0 1

3

4

2

1

2

3

0

5

4

1

0

0

1

2

INTER-COMMUNICATOR CREATE

Before

After

Figure 6.1: Intercommunicator creation using MPI_COMM_CREATE extended to intercom-
municators. The input groups are those in the grey circle.

MPI_Comm_group (inter_comm, &local_group);

MPI_Group_incl (local_group, 1, &rank, &group);

MPI_Group_free (&local_group);

}

else

MPI_Comm_group (inter_comm, &group);

MPI_Comm_create (inter_comm, group, &new_inter_comm);

MPI_Group_free(&group);

MPI_COMM_CREATE_GROUP(comm, group, tag, newcomm)

IN comm intracommunicator (handle)

IN group group, which is a subset of the group of comm (handle)

IN tag tag (integer)

OUT newcomm new communicator (handle)

int MPI_Comm_create_group(MPI_Comm comm, MPI_Group group, int tag,

MPI_Comm *newcomm)

MPI_Comm_create_group(comm, group, tag, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 243

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: tag

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CREATE_GROUP(COMM, GROUP, TAG, NEWCOMM, IERROR)

INTEGER COMM, GROUP, TAG, NEWCOMM, IERROR

MPI_COMM_CREATE_GROUP is similar to MPI_COMM_CREATE; however,
MPI_COMM_CREATE must be called by all processes in the group of
comm, whereas MPI_COMM_CREATE_GROUP must be called by all processes in group,
which is a subgroup of the group of comm. In addition, MPI_COMM_CREATE_GROUP
requires that comm is an intracommunicator. MPI_COMM_CREATE_GROUP returns a new
intracommunicator, newcomm, for which the group argument defines the communication
group. No cached information propagates from comm to newcomm. Each process must
provide a group argument that is a subgroup of the group associated with comm; this
could be MPI_GROUP_EMPTY. If a non-empty group is specified, then all processes in that
group must call the function, and each of these processes must provide the same arguments,
including a group that contains the same members with the same ordering. Otherwise
the call is erroneous. If the calling process is a member of the group given as the group
argument, then newcomm is a communicator with group as its associated group. If the
calling process is not a member of group, e.g., group is MPI_GROUP_EMPTY, then the call
is a local operation and MPI_COMM_NULL is returned as newcomm.

Rationale. Functionality similar to MPI_COMM_CREATE_GROUP can be imple-
mented through repeated MPI_INTERCOMM_CREATE and
MPI_INTERCOMM_MERGE calls that start with the MPI_COMM_SELF communica-
tors at each process in group and build up an intracommunicator with group
group [16]. Such an algorithm requires the creation of many intermediate communi-
cators; MPI_COMM_CREATE_GROUP can provide a more efficient implementation
that avoids this overhead. (End of rationale.)

Advice to users. An intercommunicator can be created collectively over processes in
the union of the local and remote groups by creating the local communicator using
MPI_COMM_CREATE_GROUP and using that communicator as the local communi-
cator argument to MPI_INTERCOMM_CREATE. (End of advice to users.)

The tag argument does not conflict with tags used in point-to-point communication and
is not permitted to be a wildcard. If multiple threads at a given process perform concurrent
MPI_COMM_CREATE_GROUP operations, the user must distinguish these operations by
providing different tag or comm arguments.

Advice to users. MPI_COMM_CREATE may provide lower overhead than
MPI_COMM_CREATE_GROUP because it can take advantage of collective communi-
cation on comm when constructing newcomm. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

244 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_SPLIT(comm, color, key, newcomm)

IN comm communicator (handle)

IN color control of subset assignment (integer)

IN key control of rank assigment (integer)

OUT newcomm new communicator (handle)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

MPI_Comm_split(comm, color, key, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: color, key

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

This function partitions the group associated with comm into disjoint subgroups, one for
each value of color. Each subgroup contains all processes of the same color. Within each
subgroup, the processes are ranked in the order defined by the value of the argument
key, with ties broken according to their rank in the old group. A new communicator is
created for each subgroup and returned in newcomm. A process may supply the color value
MPI_UNDEFINED, in which case newcomm returns MPI_COMM_NULL. This is a collective
call, but each process is permitted to provide different values for color and key.

With an intracommunicator comm, a call to MPI_COMM_CREATE(comm, group, new-
comm) is equivalent to a call to MPI_COMM_SPLIT(comm, color, key, newcomm), where
processes that are members of their group argument provide color = number of the group
(based on a unique numbering of all disjoint groups) and key = rank in group, and all
processes that are not members of their group argument provide color = MPI_UNDEFINED.

The value of color must be non-negative or MPI_UNDEFINED.

Advice to users. This is an extremely powerful mechanism for dividing a single
communicating group of processes into k subgroups, with k chosen implicitly by the
user (by the number of colors asserted over all the processes). Each resulting com-
municator will be non-overlapping. Such a division could be useful for defining a
hierarchy of computations, such as for multigrid, or linear algebra. For intracommu-
nicators, MPI_COMM_SPLIT provides similar capability as MPI_COMM_CREATE to
split a communicating group into disjoint subgroups. MPI_COMM_SPLIT is useful
when some processes do not have complete information of the other members in their
group, but all processes know (the color of) the group to which they belong. In this
case, the MPI implementation discovers the other group members via communication.
MPI_COMM_CREATE is useful when all processes have complete information of the
members of their group. In this case, MPI can avoid the extra communication required
to discover group membership. MPI_COMM_CREATE_GROUP is useful when all pro-
cesses in a given group have complete information of the members of their group and
synchronization with processes outside the group can be avoided.

Multiple calls to MPI_COMM_SPLIT can be used to overcome the requirement that
any call have no overlap of the resulting communicators (each process is of only one

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 245

color per call). In this way, multiple overlapping communication structures can be
created. Creative use of the color and key in such splitting operations is encouraged.

Note that, for a fixed color, the keys need not be unique. It is MPI_COMM_SPLIT’s
responsibility to sort processes in ascending order according to this key, and to break
ties in a consistent way. If all the keys are specified in the same way, then all the
processes in a given color will have the relative rank order as they did in their parent
group.

Essentially, making the key value zero for all processes of a given color means that one
does not really care about the rank-order of the processes in the new communicator.
(End of advice to users.)

Rationale. color is restricted to be non-negative, so as not to confict with the value
assigned to MPI_UNDEFINED. (End of rationale.)

The result of MPI_COMM_SPLIT on an intercommunicator is that those processes on the
left with the same color as those processes on the right combine to create a new intercom-
municator. The key argument describes the relative rank of processes on each side of the
intercommunicator (see Figure 6.2). For those colors that are specified only on one side of
the intercommunicator, MPI_COMM_NULL is returned. MPI_COMM_NULL is also returned
to those processes that specify MPI_UNDEFINED as the color.

Advice to users. For intercommunicators, MPI_COMM_SPLIT is more general than
MPI_COMM_CREATE. A single call to MPI_COMM_SPLIT can create a set of disjoint
intercommunicators, while a call to MPI_COMM_CREATE creates only one. (End of
advice to users.)

Example 6.2 (Parallel client-server model). The following client code illustrates how clients
on the left side of an intercommunicator could be assigned to a single server from a pool of
servers on the right side of an intercommunicator.

/* Client code */

MPI_Comm multiple_server_comm;

MPI_Comm single_server_comm;

int color, rank, num_servers;

/* Create intercommunicator with clients and servers:

multiple_server_comm */

...

/* Find out the number of servers available */

MPI_Comm_remote_size (multiple_server_comm, &num_servers);

/* Determine my color */

MPI_Comm_rank (multiple_server_comm, &rank);

color = rank % num_servers;

/* Split the intercommunicator */

MPI_Comm_split (multiple_server_comm, color, rank,

&single_server_comm);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

246 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

1(1,0)

0(0)

1(3)
0(1)

1(0)

Rank in the original group

Color = 0

Color = 1

Color = 2

0(4)
0(1)

0(2)1(3)
0(2)

0(0,0)

3(0,1)
2(2,0)

Color

Key

0(0,1)

4(1,0)

1(0,0)

3(2,1)

2(2,0)

Input Intercommunicator (comm)

Disjoint output communicators (newcomm)

(one per color)

Figure 6.2: Intercommunicator construction achieved by splitting an existing intercommun-
icator with MPI_COMM_SPLIT extended to intercommunicators.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 247

The following is the corresponding server code:

/* Server code */

MPI_Comm multiple_client_comm;

MPI_Comm single_server_comm;

int rank;

/* Create intercommunicator with clients and servers:

multiple_client_comm */

...

/* Split the intercommunicator for a single server per group

of clients */

MPI_Comm_rank (multiple_client_comm, &rank);

MPI_Comm_split (multiple_client_comm, rank, 0,

&single_server_comm);

MPI_COMM_SPLIT_TYPE(comm, split_type, key, info, newcomm)

IN comm communicator (handle)

IN split_type type of processes to be grouped together (integer)

IN key control of rank assignment (integer)

IN info info argument (handle)

OUT newcomm new communicator (handle)

int MPI_Comm_split_type(MPI_Comm comm, int split_type, int key,

MPI_Info info, MPI_Comm *newcomm)

MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: split_type, key

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR)

INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

This function partitions the group associated with comm into disjoint subgroups, based on
the type specified by split_type. Each subgroup contains all processes of the same type.
Within each subgroup, the processes are ranked in the order defined by the value of the
argument key, with ties broken according to their rank in the old group. A new commu-
nicator is created for each subgroup and returned in newcomm. This is a collective call;
all processes must provide the same split_type, but each process is permitted to provide
different values for key. An exception to this rule is that a process may supply the type
value MPI_UNDEFINED, in which case newcomm returns MPI_COMM_NULL.

The following type is predefined by MPI:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

248 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_TYPE_SHARED — this type splits the communicator into subcommunicators,
each of which can create a shared memory region.

Advice to implementors. Implementations can define their own types, or use the
info argument, to assist in creating communicators that help expose platform-specific
information to the application. (End of advice to implementors.)

6.4.3 Communicator Destructors

MPI_COMM_FREE(comm)

INOUT comm communicator to be destroyed (handle)

int MPI_Comm_free(MPI_Comm *comm)

MPI_Comm_free(comm, ierror)

TYPE(MPI_Comm), INTENT(INOUT) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

This collective operation marks the communication object for deallocation. The handle
is set to MPI_COMM_NULL. Any pending operations that use this communicator will com-
plete normally; the object is actually deallocated only if there are no other active references
to it. This call applies to intra- and inter-communicators. The delete callback functions for
all cached attributes (see Section 6.7) are called in arbitrary order.

Advice to implementors. A reference-count mechanism may be used: the reference
count is incremented by each call to MPI_COMM_DUP or MPI_COMM_IDUP, and
decremented by each call to MPI_COMM_FREE. The object is ultimately deallocated
when the count reaches zero.

Though collective, it is anticipated that this operation will normally be implemented
to be local, though a debugging version of an MPI library might choose to synchronize.
(End of advice to implementors.)

6.4.4 Communicator Info

Hints specified via info (see Chapter 9) allow a user to provide information to direct opti-
mization. Providing hints may enable an implementation to deliver increased performance
or minimize use of system resources. However, hints do not change the semantics of any MPI
interfaces. In other words, an implementation is free to ignore all hints. Hints are specified
on a per communicator basis, in MPI_COMM_DUP_WITH_INFO, MPI_COMM_SET_INFO,
MPI_COMM_SPLIT_TYPE, MPI_DIST_GRAPH_CREATE_ADJACENT, and
MPI_DIST_GRAPH_CREATE, via the opaque info object. When an info object that speci-
fies a subset of valid hints is passed to MPI_COMM_SET_INFO, there will be no effect on
previously set or defaulted hints that the info does not specify.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.4. COMMUNICATOR MANAGEMENT 249

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

Info hints are not propagated by MPI from one communicator to another except when
the communicator is duplicated using MPI_COMM_DUP or MPI_COMM_IDUP. In this
case, all hints associated with the original communicator are also applied to the duplicated
communicator.

MPI_COMM_SET_INFO(comm, info)

INOUT comm communicator (handle)

IN info info object (handle)

int MPI_Comm_set_info(MPI_Comm comm, MPI_Info info)

MPI_Comm_set_info(comm, info, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SET_INFO(COMM, INFO, IERROR)

INTEGER COMM, INFO, IERROR

MPI_COMM_SET_INFO sets new values for the hints of the communicator associated
with comm. MPI_COMM_SET_INFO is a collective routine. The info object may be different
on each process, but any info entries that an implementation requires to be the same on all
processes must appear with the same value in each process’s info object.

Advice to users. Some info items that an implementation can use when it creates
a communicator cannot easily be changed once the communicator has been created.
Thus, an implementation may ignore hints issued in this call that it would have
accepted in a creation call. (End of advice to users.)

MPI_COMM_GET_INFO(comm, info_used)

IN comm communicator object (handle)

OUT info_used new info object (handle)

int MPI_Comm_get_info(MPI_Comm comm, MPI_Info *info_used)

MPI_Comm_get_info(comm, info_used, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

250 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_GET_INFO(COMM, INFO_USED, IERROR)

INTEGER COMM, INFO_USED, IERROR

MPI_COMM_GET_INFO returns a new info object containing the hints of the commu-
nicator associated with comm. The current setting of all hints actually used by the system
related to this communicator is returned in info_used. If no such hints exist, a handle
to a newly created info object is returned that contains no key/value pair. The user is
responsible for freeing info_used via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently
active for this communicator. This set of hints may be greater or smaller than the
set of hints specified when the communicator was created, as the system may not
recognize some hints set by the user, and may recognize other hints that the user has
not set. (End of advice to users.)

6.5 Motivating Examples

6.5.1 Current Practice #1

Example #1a:

int main(int argc, char *argv[])

{

int me, size;

...

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &me);

MPI_Comm_size (MPI_COMM_WORLD, &size);

(void)printf ("Process %d size %d\n", me, size);

...

MPI_Finalize();

return 0;

}

Example #1a is a do-nothing program that initializes itself, and refers to the “all” commu-
nicator, and prints a message. It terminates itself too. This example does not imply that
MPI supports printf-like communication itself.
Example #1b (supposing that size is even):

int main(int argc, char *argv[])

{

int me, size;

int SOME_TAG = 0;

...

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Comm_size(MPI_COMM_WORLD, &size); /* local */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. MOTIVATING EXAMPLES 251

if((me % 2) == 0)

{

/* send unless highest-numbered process */

if((me + 1) < size)

MPI_Send(..., me + 1, SOME_TAG, MPI_COMM_WORLD);

}

else

MPI_Recv(..., me - 1, SOME_TAG, MPI_COMM_WORLD, &status);

...

MPI_Finalize();

return 0;

}

Example #1b schematically illustrates message exchanges between “even” and “odd” pro-
cesses in the “all” communicator.

6.5.2 Current Practice #2

int main(int argc, char *argv[])

{

int me, count;

void *data;

...

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &me);

if(me == 0)

{

/* get input, create buffer ‘‘data’’ */

...

}

MPI_Bcast(data, count, MPI_BYTE, 0, MPI_COMM_WORLD);

...

MPI_Finalize();

return 0;

}

This example illustrates the use of a collective communication.

6.5.3 (Approximate) Current Practice #3

int main(int argc, char *argv[])

{

int me, count, count2;

void *send_buf, *recv_buf, *send_buf2, *recv_buf2;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

252 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_Group MPI_GROUP_WORLD, grprem;

MPI_Comm commslave;

static int ranks[] = {0};

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Comm_rank(MPI_COMM_WORLD, &me); /* local */

MPI_Group_excl(MPI_GROUP_WORLD, 1, ranks, &grprem); /* local */

MPI_Comm_create(MPI_COMM_WORLD, grprem, &commslave);

if(me != 0)

{

/* compute on slave */

...

MPI_Reduce(send_buf,recv_buf,count, MPI_INT, MPI_SUM, 1, commslave);

...

MPI_Comm_free(&commslave);

}

/* zero falls through immediately to this reduce, others do later... */

MPI_Reduce(send_buf2, recv_buf2, count2,

MPI_INT, MPI_SUM, 0, MPI_COMM_WORLD);

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Group_free(&grprem);

MPI_Finalize();

return 0;

}

This example illustrates how a group consisting of all but the zeroth process of the “all”
group is created, and then how a communicator is formed (commslave) for that new group.
The new communicator is used in a collective call, and all processes execute a collective call
in the MPI_COMM_WORLD context. This example illustrates how the two communicators
(that inherently possess distinct contexts) protect communication. That is, communication
in MPI_COMM_WORLD is insulated from communication in commslave, and vice versa.

In summary, “group safety” is achieved via communicators because distinct contexts
within communicators are enforced to be unique on any process.

6.5.4 Example #4

The following example is meant to illustrate “safety” between point-to-point and collective
communication. MPI guarantees that a single communicator can do safe point-to-point and
collective communication.

#define TAG_ARBITRARY 12345

#define SOME_COUNT 50

int main(int argc, char *argv[])

{

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. MOTIVATING EXAMPLES 253

int me;

MPI_Request request[2];

MPI_Status status[2];

MPI_Group MPI_GROUP_WORLD, subgroup;

int ranks[] = {2, 4, 6, 8};

MPI_Comm the_comm;

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, 4, ranks, &subgroup); /* local */

MPI_Group_rank(subgroup, &me); /* local */

MPI_Comm_create(MPI_COMM_WORLD, subgroup, &the_comm);

if(me != MPI_UNDEFINED)

{

MPI_Irecv(buff1, count, MPI_DOUBLE, MPI_ANY_SOURCE, TAG_ARBITRARY,

the_comm, request);

MPI_Isend(buff2, count, MPI_DOUBLE, (me+1)%4, TAG_ARBITRARY,

the_comm, request+1);

for(i = 0; i < SOME_COUNT; i++)

MPI_Reduce(..., the_comm);

MPI_Waitall(2, request, status);

MPI_Comm_free(&the_comm);

}

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Group_free(&subgroup);

MPI_Finalize();

return 0;

}

6.5.5 Library Example #1

The main program:

int main(int argc, char *argv[])

{

int done = 0;

user_lib_t *libh_a, *libh_b;

void *dataset1, *dataset2;

...

MPI_Init(&argc, &argv);

...

init_user_lib(MPI_COMM_WORLD, &libh_a);

init_user_lib(MPI_COMM_WORLD, &libh_b);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

254 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

...

user_start_op(libh_a, dataset1);

user_start_op(libh_b, dataset2);

...

while(!done)

{

/* work */

...

MPI_Reduce(..., MPI_COMM_WORLD);

...

/* see if done */

...

}

user_end_op(libh_a);

user_end_op(libh_b);

uninit_user_lib(libh_a);

uninit_user_lib(libh_b);

MPI_Finalize();

return 0;

}

The user library initialization code:

void init_user_lib(MPI_Comm comm, user_lib_t **handle)

{

user_lib_t *save;

user_lib_initsave(&save); /* local */

MPI_Comm_dup(comm, &(save -> comm));

/* other inits */

...

*handle = save;

}

User start-up code:

void user_start_op(user_lib_t *handle, void *data)

{

MPI_Irecv(..., handle->comm, &(handle -> irecv_handle));

MPI_Isend(..., handle->comm, &(handle -> isend_handle));

}

User communication clean-up code:

void user_end_op(user_lib_t *handle)

{

MPI_Status status;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.5. MOTIVATING EXAMPLES 255

MPI_Wait(& handle -> isend_handle, &status);

MPI_Wait(& handle -> irecv_handle, &status);

}

User object clean-up code:

void uninit_user_lib(user_lib_t *handle)

{

MPI_Comm_free(&(handle -> comm));

free(handle);

}

6.5.6 Library Example #2

The main program:

int main(int argc, char *argv[])

{

int ma, mb;

MPI_Group MPI_GROUP_WORLD, group_a, group_b;

MPI_Comm comm_a, comm_b;

static int list_a[] = {0, 1};

#if defined(EXAMPLE_2B) || defined(EXAMPLE_2C)

static int list_b[] = {0, 2 ,3};

#else/* EXAMPLE_2A */

static int list_b[] = {0, 2};

#endif

int size_list_a = sizeof(list_a)/sizeof(int);

int size_list_b = sizeof(list_b)/sizeof(int);

...

MPI_Init(&argc, &argv);

MPI_Comm_group(MPI_COMM_WORLD, &MPI_GROUP_WORLD);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_a, list_a, &group_a);

MPI_Group_incl(MPI_GROUP_WORLD, size_list_b, list_b, &group_b);

MPI_Comm_create(MPI_COMM_WORLD, group_a, &comm_a);

MPI_Comm_create(MPI_COMM_WORLD, group_b, &comm_b);

if(comm_a != MPI_COMM_NULL)

MPI_Comm_rank(comm_a, &ma);

if(comm_b != MPI_COMM_NULL)

MPI_Comm_rank(comm_b, &mb);

if(comm_a != MPI_COMM_NULL)

lib_call(comm_a);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

256 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

if(comm_b != MPI_COMM_NULL)

{

lib_call(comm_b);

lib_call(comm_b);

}

if(comm_a != MPI_COMM_NULL)

MPI_Comm_free(&comm_a);

if(comm_b != MPI_COMM_NULL)

MPI_Comm_free(&comm_b);

MPI_Group_free(&group_a);

MPI_Group_free(&group_b);

MPI_Group_free(&MPI_GROUP_WORLD);

MPI_Finalize();

return 0;

}

The library:

void lib_call(MPI_Comm comm)

{

int me, done = 0;

MPI_Status status;

MPI_Comm_rank(comm, &me);

if(me == 0)

while(!done)

{

MPI_Recv(..., MPI_ANY_SOURCE, MPI_ANY_TAG, comm, &status);

...

}

else

{

/* work */

MPI_Send(..., 0, ARBITRARY_TAG, comm);

....

}

#ifdef EXAMPLE_2C

/* include (resp, exclude) for safety (resp, no safety): */

MPI_Barrier(comm);

#endif

}

The above example is really three examples, depending on whether or not one includes rank
3 in list_b, and whether or not a synchronize is included in lib_call. This example illustrates
that, despite contexts, subsequent calls to lib_call with the same context need not be safe
from one another (colloquially, “back-masking”). Safety is realized if the MPI_Barrier is
added. What this demonstrates is that libraries have to be written carefully, even with
contexts. When rank 3 is excluded, then the synchronize is not needed to get safety from
back-masking.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.6. INTER-COMMUNICATION 257

Algorithms like “reduce” and “allreduce” have strong enough source selectivity prop-
erties so that they are inherently okay (no back-masking), provided that MPI provides basic
guarantees. So are multiple calls to a typical tree-broadcast algorithm with the same root
or different roots (see [57]). Here we rely on two guarantees of MPI: pairwise ordering of
messages between processes in the same context, and source selectivity — deleting either
feature removes the guarantee that back-masking cannot be required.

Algorithms that try to do non-deterministic broadcasts or other calls that include wild-
card operations will not generally have the good properties of the deterministic implemen-
tations of “reduce,” “allreduce,” and “broadcast.” Such algorithms would have to utilize
the monotonically increasing tags (within a communicator scope) to keep things straight.

All of the foregoing is a supposition of “collective calls” implemented with point-to-
point operations. MPI implementations may or may not implement collective calls using
point-to-point operations. These algorithms are used to illustrate the issues of correctness
and safety, independent of how MPI implements its collective calls. See also Section 6.9.

6.6 Inter-Communication

This section introduces the concept of inter-communication and describes the portions of
MPI that support it. It describes support for writing programs that contain user-level
servers.

All communication described thus far has involved communication between processes
that are members of the same group. This type of communication is called “intra-commun-
ication” and the communicator used is called an “intra-communicator,” as we have noted
earlier in the chapter.

In modular and multi-disciplinary applications, different process groups execute distinct
modules and processes within different modules communicate with one another in a pipeline
or a more general module graph. In these applications, the most natural way for a process
to specify a target process is by the rank of the target process within the target group. In
applications that contain internal user-level servers, each server may be a process group that
provides services to one or more clients, and each client may be a process group that uses
the services of one or more servers. It is again most natural to specify the target process
by rank within the target group in these applications. This type of communication is called
“inter-communication” and the communicator used is called an “inter-communicator,” as
introduced earlier.

An inter-communication is a point-to-point communication between processes in differ-
ent groups. The group containing a process that initiates an inter-communication operation
is called the “local group,” that is, the sender in a send and the receiver in a receive. The
group containing the target process is called the “remote group,” that is, the receiver in a
send and the sender in a receive. As in intra-communication, the target process is specified
using a (communicator, rank) pair. Unlike intra-communication, the rank is relative to a
second, remote group.

All inter-communicator constructors are blocking except for MPI_COMM_IDUP and
require that the local and remote groups be disjoint.

Advice to users. The groups must be disjoint for several reasons. Primarily, this
is the intent of the intercommunicators — to provide a communicator for commu-
nication between disjoint groups. This is reflected in the definition of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

258 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_INTERCOMM_MERGE, which allows the user to control the ranking of the pro-
cesses in the created intracommunicator; this ranking makes little sense if the groups
are not disjoint. In addition, the natural extension of collective operations to inter-
communicators makes the most sense when the groups are disjoint. (End of advice to
users.)

Here is a summary of the properties of inter-communication and inter-communicators:

• The syntax of point-to-point and collective communication is the same for both inter-
and intra-communication. The same communicator can be used both for send and for
receive operations.

• A target process is addressed by its rank in the remote group, both for sends and for
receives.

• Communications using an inter-communicator are guaranteed not to conflict with any
communications that use a different communicator.

• A communicator will provide either intra- or inter-communication, never both.

The routine MPI_COMM_TEST_INTER may be used to determine if a communicator is an
inter- or intra-communicator. Inter-communicators can be used as arguments to some of the
other communicator access routines. Inter-communicators cannot be used as input to some
of the constructor routines for intra-communicators (for instance, MPI_CART_CREATE).

Advice to implementors. For the purpose of point-to-point communication, commu-
nicators can be represented in each process by a tuple consisting of:

group

send_context

receive_context

source

For inter-communicators, group describes the remote group, and source is the rank of
the process in the local group. For intra-communicators, group is the communicator
group (remote=local), source is the rank of the process in this group, and send context
and receive context are identical. A group can be represented by a rank-to-absolute-
address translation table.

The inter-communicator cannot be discussed sensibly without considering processes in
both the local and remote groups. Imagine a process P in group P, which has an inter-
communicator CP , and a process Q in group Q, which has an inter-communicator
CQ. Then

• CP .group describes the group Q and CQ.group describes the group P.

• CP .send_context = CQ.receive_context and the context is unique in Q;
CP .receive_context = CQ.send_context and this context is unique in P.

• CP .source is rank of P in P and CQ.source is rank of Q in Q.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.6. INTER-COMMUNICATION 259

Assume that P sends a message to Q using the inter-communicator. Then P uses
the group table to find the absolute address of Q; source and send_context are
appended to the message.

Assume that Q posts a receive with an explicit source argument using the inter-
communicator. Then Q matches receive_context to the message context and source
argument to the message source.

The same algorithm is appropriate for intra-communicators as well.

In order to support inter-communicator accessors and constructors, it is necessary to
supplement this model with additional structures, that store information about the
local communication group, and additional safe contexts. (End of advice to imple-
mentors.)

6.6.1 Inter-communicator Accessors

MPI_COMM_TEST_INTER(comm, flag)

IN comm communicator (handle)

OUT flag (logical)

int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

MPI_Comm_test_inter(comm, flag, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

This local routine allows the calling process to determine if a communicator is an inter-
communicator or an intra-communicator. It returns true if it is an inter-communicator,
otherwise false.

When an inter-communicator is used as an input argument to the communicator ac-
cessors described above under intra-communication, the following table describes behavior.

MPI_COMM_SIZE returns the size of the local group.
MPI_COMM_GROUP returns the local group.
MPI_COMM_RANK returns the rank in the local group

Table 6.1: MPI_COMM_* Function Behavior (in Inter-Communication Mode)

Furthermore, the operation MPI_COMM_COMPARE is valid for inter-communicators. Both
communicators must be either intra- or inter-communicators, or else MPI_UNEQUAL results.
Both corresponding local and remote groups must compare correctly to get the results
MPI_CONGRUENT or MPI_SIMILAR. In particular, it is possible for MPI_SIMILAR to result
because either the local or remote groups were similar but not identical.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

260 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

The following accessors provide consistent access to the remote group of an inter-
communicator. The following are all local operations.

MPI_COMM_REMOTE_SIZE(comm, size)

IN comm inter-communicator (handle)

OUT size number of processes in the remote group of comm

(integer)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

MPI_Comm_remote_size(comm, size, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_COMM_REMOTE_GROUP(comm, group)

IN comm inter-communicator (handle)

OUT group remote group corresponding to comm (handle)

int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

MPI_Comm_remote_group(comm, group, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

Rationale. Symmetric access to both the local and remote groups of an inter-
communicator is important, so this function, as well as MPI_COMM_REMOTE_SIZE
have been provided. (End of rationale.)

6.6.2 Inter-communicator Operations

This section introduces four blocking inter-communicator operations.
MPI_INTERCOMM_CREATE is used to bind two intra-communicators into an inter-com-
municator; the function MPI_INTERCOMM_MERGE creates an intra-communicator by merg-
ing the local and remote groups of an inter-communicator. The functions MPI_COMM_DUP
and MPI_COMM_FREE, introduced previously, duplicate and free an inter-communicator,
respectively.

Overlap of local and remote groups that are bound into an inter-communicator is
prohibited. If there is overlap, then the program is erroneous and is likely to deadlock. (If

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.6. INTER-COMMUNICATION 261

a process is multithreaded, and MPI calls block only a thread, rather than a process, then
“dual membership” can be supported. It is then the user’s responsibility to make sure that
calls on behalf of the two “roles” of a process are executed by two independent threads.)

The function MPI_INTERCOMM_CREATE can be used to create an inter-communicator
from two existing intra-communicators, in the following situation: At least one selected
member from each group (the “group leader”) has the ability to communicate with the
selected member from the other group; that is, a “peer” communicator exists to which both
leaders belong, and each leader knows the rank of the other leader in this peer communicator.
Furthermore, members of each group know the rank of their leader.

Construction of an inter-communicator from two intra-communicators requires separate
collective operations in the local group and in the remote group, as well as a point-to-point
communication between a process in the local group and a process in the remote group.

In standard MPI implementations (with static process allocation at initialization), the
MPI_COMM_WORLD communicator (or preferably a dedicated duplicate thereof) can be this
peer communicator. For applications that have used spawn or join, it may be necessary to
first create an intracommunicator to be used as peer.

The application topology functions described in Chapter 7 do not apply to inter-
communicators. Users that require this capability should utilize
MPI_INTERCOMM_MERGE to build an intra-communicator, then apply the graph or carte-
sian topology capabilities to that intra-communicator, creating an appropriate topology-
oriented intra-communicator. Alternatively, it may be reasonable to devise one’s own ap-
plication topology mechanisms for this case, without loss of generality.

MPI_INTERCOMM_CREATE(local_comm, local_leader, peer_comm, remote_leader, tag,
newintercomm)

IN local_comm local intra-communicator (handle)

IN local_leader rank of local group leader in local_comm (integer)

IN peer_comm “peer” communicator; significant only at the

local_leader (handle)

IN remote_leader rank of remote group leader in peer_comm; significant

only at the local_leader (integer)

IN tag tag (integer)

OUT newintercomm new inter-communicator (handle)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader, int tag,

MPI_Comm *newintercomm)

MPI_Intercomm_create(local_comm, local_leader, peer_comm, remote_leader,

tag, newintercomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: local_comm, peer_comm

INTEGER, INTENT(IN) :: local_leader, remote_leader, tag

TYPE(MPI_Comm), INTENT(OUT) :: newintercomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

262 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,

TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,

NEWINTERCOMM, IERROR

This call creates an inter-communicator. It is collective over the union of the local and
remote groups. Processes should provide identical local_comm and local_leader arguments
within each group. Wildcards are not permitted for remote_leader, local_leader, and tag.

MPI_INTERCOMM_MERGE(intercomm, high, newintracomm)

IN intercomm Inter-Communicator (handle)

IN high (logical)

OUT newintracomm new intra-communicator (handle)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,

MPI_Comm *newintracomm)

MPI_Intercomm_merge(intercomm, high, newintracomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: intercomm

LOGICAL, INTENT(IN) :: high

TYPE(MPI_Comm), INTENT(OUT) :: newintracomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)

INTEGER INTERCOMM, NEWINTRACOMM, IERROR

LOGICAL HIGH

This function creates an intra-communicator from the union of the two groups that are
associated with intercomm. All processes should provide the same high value within each
of the two groups. If processes in one group provided the value high = false and processes
in the other group provided the value high = true then the union orders the “low” group
before the “high” group. If all processes provided the same high argument then the order
of the union is arbitrary. This call is blocking and collective within the union of the two
groups.

The error handler on the new intercommunicator in each process is inherited from
the communicator that contributes the local group. Note that this can result in different
processes in the same communicator having different error handlers.

Advice to implementors. The implementation of MPI_INTERCOMM_MERGE,
MPI_COMM_FREE, and MPI_COMM_DUP are similar to the implementation of
MPI_INTERCOMM_CREATE, except that contexts private to the input inter-com-
municator are used for communication between group leaders rather than contexts
inside a bridge communicator. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.6. INTER-COMMUNICATION 263

Group 0 Group 1 Group 2

Figure 6.3: Three-group pipeline

6.6.3 Inter-Communication Examples

Example 1: Three-Group “Pipeline”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Therefore, group 0 requires
one inter-communicator, group 1 requires two inter-communicators, and group 2 requires 1
inter-communicator.

int main(int argc, char *argv[])

{

MPI_Comm myComm; /* intra-communicator of local sub-group */

MPI_Comm myFirstComm; /* inter-communicator */

MPI_Comm mySecondComm; /* second inter-communicator (group 1 only) */

int membershipKey;

int rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* User code must generate membershipKey in the range [0, 1, 2] */

membershipKey = rank % 3;

/* Build intra-communicator for local sub-group */

MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */

if (membershipKey == 0)

{ /* Group 0 communicates with group 1. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);

}

else if (membershipKey == 1)

{ /* Group 1 communicates with groups 0 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);

}

else if (membershipKey == 2)

{ /* Group 2 communicates with group 1. */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

264 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

Group 0 Group 1 Group 2

Figure 6.4: Three-group ring

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &myFirstComm);

}

/* Do work ... */

switch(membershipKey) /* free communicators appropriately */

{

case 1:

MPI_Comm_free(&mySecondComm);

case 0:

case 2:

MPI_Comm_free(&myFirstComm);

break;

}

MPI_Finalize();

return 0;

}

Example 2: Three-Group “Ring”

Groups 0 and 1 communicate. Groups 1 and 2 communicate. Groups 0 and 2 communicate.
Therefore, each requires two inter-communicators.

int main(int argc, char *argv[])

{

MPI_Comm myComm; /* intra-communicator of local sub-group */

MPI_Comm myFirstComm; /* inter-communicators */

MPI_Comm mySecondComm;

int membershipKey;

int rank;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

...

/* User code must generate membershipKey in the range [0, 1, 2] */

membershipKey = rank % 3;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 265

/* Build intra-communicator for local sub-group */

MPI_Comm_split(MPI_COMM_WORLD, membershipKey, rank, &myComm);

/* Build inter-communicators. Tags are hard-coded. */

if (membershipKey == 0)

{ /* Group 0 communicates with groups 1 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

2, &mySecondComm);

}

else if (membershipKey == 1)

{ /* Group 1 communicates with groups 0 and 2. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

1, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 2,

12, &mySecondComm);

}

else if (membershipKey == 2)

{ /* Group 2 communicates with groups 0 and 1. */

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 0,

2, &myFirstComm);

MPI_Intercomm_create(myComm, 0, MPI_COMM_WORLD, 1,

12, &mySecondComm);

}

/* Do some work ... */

/* Then free communicators before terminating... */

MPI_Comm_free(&myFirstComm);

MPI_Comm_free(&mySecondComm);

MPI_Comm_free(&myComm);

MPI_Finalize();

return 0;

}

6.7 Caching

MPI provides a “caching” facility that allows an application to attach arbitrary pieces of
information, called attributes, to three kinds of MPI objects, communicators, windows, and
datatypes. More precisely, the caching facility allows a portable library to do the following:

• pass information between calls by associating it with an MPI intra- or inter-commun-
icator, window, or datatype,

• quickly retrieve that information, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

266 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

• be guaranteed that out-of-date information is never retrieved, even if the object is
freed and its handle subsequently reused by MPI.

The caching capabilities, in some form, are required by built-in MPI routines such as
collective communication and application topology. Defining an interface to these capa-
bilities as part of the MPI standard is valuable because it permits routines like collective
communication and application topologies to be implemented as portable code, and also
because it makes MPI more extensible by allowing user-written routines to use standard
MPI calling sequences.

Advice to users. The communicator MPI_COMM_SELF is a suitable choice for post-
ing process-local attributes, via this attribute-caching mechanism. (End of advice to
users.)

Rationale. In one extreme one can allow caching on all opaque handles. The other
extreme is to only allow it on communicators. Caching has a cost associated with it
and should only be allowed when it is clearly needed and the increased cost is modest.
This is the reason that windows and datatypes were added but not other handles.
(End of rationale.)

One difficulty is the potential for size differences between Fortran integers and C
pointers. For this reason, the Fortran versions of these routines use integers of kind
MPI_ADDRESS_KIND.

Advice to implementors. High-quality implementations should raise an error when
a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL is used with an
object of the wrong type with a call to MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR,
MPI_YYY_DELETE_ATTR, or MPI_YYY_FREE_KEYVAL. To do so, it is necessary to
maintain, with each keyval, information on the type of the associated user function.
(End of advice to implementors.)

6.7.1 Functionality

Attributes can be attached to communicators, windows, and datatypes. Attributes are local
to the process and specific to the communicator to which they are attached. Attributes are
not propagated by MPI from one communicator to another except when the communicator
is duplicated using MPI_COMM_DUP or MPI_COMM_IDUP (and even then the application
must give specific permission through callback functions for the attribute to be copied).

Advice to users. Attributes in C are of type void *. Typically, such an attribute will
be a pointer to a structure that contains further information, or a handle to an MPI
object. In Fortran, attributes are of type INTEGER. Such attribute can be a handle to
an MPI object, or just an integer-valued attribute. (End of advice to users.)

Advice to implementors. Attributes are scalar values, equal in size to, or larger than
a C-language pointer. Attributes can always hold an MPI handle. (End of advice to
implementors.)

The caching interface defined here requires that attributes be stored by MPI opaquely
within a communicator, window, and datatype. Accessor functions include the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 267

• obtain a key value (used to identify an attribute); the user specifies “callback” func-
tions by which MPI informs the application when the communicator is destroyed or
copied.

• store and retrieve the value of an attribute;

Advice to implementors. Caching and callback functions are only called synchronously,
in response to explicit application requests. This avoids problems that result from re-
peated crossings between user and system space. (This synchronous calling rule is a
general property of MPI.)

The choice of key values is under control of MPI. This allows MPI to optimize its
implementation of attribute sets. It also avoids conflict between independent modules
caching information on the same communicators.

A much smaller interface, consisting of just a callback facility, would allow the entire
caching facility to be implemented by portable code. However, with the minimal call-
back interface, some form of table searching is implied by the need to handle arbitrary
communicators. In contrast, the more complete interface defined here permits rapid
access to attributes through the use of pointers in communicators (to find the attribute
table) and cleverly chosen key values (to retrieve individual attributes). In light of the
efficiency “hit” inherent in the minimal interface, the more complete interface defined
here is seen to be superior. (End of advice to implementors.)

MPI provides the following services related to caching. They are all process local.

6.7.2 Communicators

Functions for caching on communicators are:

MPI_COMM_CREATE_KEYVAL(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,
extra_state)

IN comm_copy_attr_fn copy callback function for comm_keyval (function)

IN comm_delete_attr_fn delete callback function for comm_keyval (function)

OUT comm_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,

MPI_Comm_delete_attr_function *comm_delete_attr_fn,

int *comm_keyval, void *extra_state)

MPI_Comm_create_keyval(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,

extra_state, ierror)

PROCEDURE(MPI_Comm_copy_attr_function) :: comm_copy_attr_fn

PROCEDURE(MPI_Comm_delete_attr_function) :: comm_delete_attr_fn

INTEGER, INTENT(OUT) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

268 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN

INTEGER COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

Generates a new attribute key. Keys are locally unique in a process, and opaque to
user, though they are explicitly stored in integers. Once allocated, the key value can be
used to associate attributes and access them on any locally defined communicator.
The C callback functions are:
typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm, int comm_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Comm_delete_attr_function(MPI_Comm comm, int comm_keyval,

void *attribute_val, void *extra_state);

which are the same as the MPI-1.1 calls but with a new name. The old names are deprecated.
With the mpi_f08 module, the Fortran callback functions are:
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_copy_attr_function(oldcomm, comm_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

attribute_val_out

LOGICAL :: flag

and
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_delete_attr_function(comm, comm_keyval,

attribute_val, extra_state, ierror)

TYPE(MPI_Comm) :: comm

INTEGER :: comm_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

With the mpi module and mpif.h, the Fortran callback functions are:
SUBROUTINE COMM_COPY_ATTR_FUNCTION(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE COMM_DELETE_ATTR_FUNCTION(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 269

The comm_copy_attr_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP or MPI_COMM_IDUP. comm_copy_attr_fn should be of type
MPI_Comm_copy_attr_function. The copy callback function is invoked for each key value in
oldcomm in arbitrary order. Each call to the copy callback is made with a key value and its
corresponding attribute. If it returns flag = 0 or .FALSE., then the attribute is deleted in the
duplicated communicator. Otherwise (flag = 1 or .TRUE.), the new attribute value is set to
the value returned in attribute_val_out. The function returns MPI_SUCCESS on success and
an error code on failure (in which case MPI_COMM_DUP or MPI_COMM_IDUP will fail).

The argument comm_copy_attr_fn may be specified as MPI_COMM_NULL_COPY_FN
or MPI_COMM_DUP_FN from either C or Fortran. MPI_COMM_NULL_COPY_FN is a
function that does nothing other than returning flag = 0 or .FALSE. (depending on whether
the keyval was created with a C or Fortran binding to MPI_COMM_CREATE_KEYVAL) and
MPI_SUCCESS. MPI_COMM_DUP_FN is a simple-minded copy function that sets flag = 1 or
.TRUE., returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS.
These replace the MPI-1 predefined callbacks MPI_NULL_COPY_FN and MPI_DUP_FN,
whose use is deprecated.

Advice to users. Even though both formal arguments attribute_val_in and
attribute_val_out are of type void *, their usage differs. The C copy function is passed
by MPI in attribute_val_in the value of the attribute, and in attribute_val_out the
address of the attribute, so as to allow the function to return the (new) attribute
value. The use of type void * for both is to avoid messy type casts.

A valid copy function is one that completely duplicates the information by making
a full duplicate copy of the data structures implied by an attribute; another might
just make another reference to that data structure, while using a reference-count
mechanism. Other types of attributes might not copy at all (they might be specific
to oldcomm only). (End of advice to users.)

Advice to implementors. A C interface should be assumed for copy and delete
functions associated with key values created in C; a Fortran calling interface should
be assumed for key values created in Fortran. (End of advice to implementors.)

Analogous to comm_copy_attr_fn is a callback deletion function, defined as follows.
The comm_delete_attr_fn function is invoked when a communicator is deleted by
MPI_COMM_FREE or when a call is made explicitly to MPI_COMM_DELETE_ATTR.
comm_delete_attr_fn should be of type MPI_Comm_delete_attr_function.

This function is called by MPI_COMM_FREE, MPI_COMM_DELETE_ATTR, and
MPI_COMM_SET_ATTR to do whatever is needed to remove an attribute. The function
returns MPI_SUCCESS on success and an error code on failure (in which case
MPI_COMM_FREE will fail).

The argument comm_delete_attr_fn may be specified as
MPI_COMM_NULL_DELETE_FN from either C or Fortran.
MPI_COMM_NULL_DELETE_FN is a function that does nothing, other than returning
MPI_SUCCESS. MPI_COMM_NULL_DELETE_FN replaces MPI_NULL_DELETE_FN, whose
use is deprecated.

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_COMM_FREE),
is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

270 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

The special key value MPI_KEYVAL_INVALID is never returned by
MPI_COMM_CREATE_KEYVAL. Therefore, it can be used for static initialization of key
values.

Advice to implementors. The predefined Fortran functions
MPI_COMM_NULL_COPY_FN, MPI_COMM_DUP_FN, and
MPI_COMM_NULL_DELETE_FN are defined in the mpi module (and mpif.h) and
the mpi_f08 module with the same name, but with different interfaces. Each function
can coexist twice with the same name in the same MPI library, one routine as an
implicit interface outside of the mpi module, i.e., declared as EXTERNAL, and the other
routine within mpi_f08 declared with CONTAINS. These routines have different link
names, which are also different to the link names used for the routines used in C.
(End of advice to implementors.)

Advice to users. Callbacks, including the predefined Fortran functions
MPI_COMM_NULL_COPY_FN, MPI_COMM_DUP_FN, and
MPI_COMM_NULL_DELETE_FN should not be passed from one application routine
that uses the mpi_f08 module to another application routine that uses the mpi module
or mpif.h, and vice versa; see also the advice to users on page 654. (End of advice to
users.)

MPI_COMM_FREE_KEYVAL(comm_keyval)

INOUT comm_keyval key value (integer)

int MPI_Comm_free_keyval(int *comm_keyval)

MPI_Comm_free_keyval(comm_keyval, ierror)

INTEGER, INTENT(INOUT) :: comm_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)

INTEGER COMM_KEYVAL, IERROR

Frees an extant attribute key. This function sets the value of keyval to
MPI_KEYVAL_INVALID. Note that it is not erroneous to free an attribute key that is in use,
because the actual free does not transpire until after all references (in other communicators
on the process) to the key have been freed. These references need to be explictly freed by the
program, either via calls to MPI_COMM_DELETE_ATTR that free one attribute instance,
or by calls to MPI_COMM_FREE that free all attribute instances associated with the freed
communicator.

MPI_COMM_SET_ATTR(comm, comm_keyval, attribute_val)

INOUT comm communicator from which attribute will be attached

(handle)

IN comm_keyval key value (integer)

IN attribute_val attribute value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 271

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

MPI_Comm_set_attr(comm, comm_keyval, attribute_val, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

This function stores the stipulated attribute value attribute_val for subsequent retrieval
by MPI_COMM_GET_ATTR. If the value is already present, then the outcome is as if
MPI_COMM_DELETE_ATTR was first called to delete the previous value (and the callback
function comm_delete_attr_fn was executed), and a new value was next stored. The call
is erroneous if there is no key with value keyval; in particular MPI_KEYVAL_INVALID is an
erroneous key value. The call will fail if the comm_delete_attr_fn function returned an error
code other than MPI_SUCCESS.

MPI_COMM_GET_ATTR(comm, comm_keyval, attribute_val, flag)

IN comm communicator to which the attribute is attached (han-

dle)

IN comm_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,

int *flag)

MPI_Comm_get_attr(comm, comm_keyval, attribute_val, flag, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

Retrieves attribute value by key. The call is erroneous if there is no key with value
keyval. On the other hand, the call is correct if the key value exists, but no attribute is
attached on comm for that key; in such case, the call returns flag = false. In particular
MPI_KEYVAL_INVALID is an erroneous key value.

Advice to users. The call to MPI_Comm_set_attr passes in attribute_val the value of
the attribute; the call to MPI_Comm_get_attr passes in attribute_val the address of the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

272 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

location where the attribute value is to be returned. Thus, if the attribute value itself is
a pointer of type void*, then the actual attribute_val parameter to MPI_Comm_set_attr
will be of type void* and the actual attribute_val parameter to MPI_Comm_get_attr
will be of type void**. (End of advice to users.)

Rationale. The use of a formal parameter attribute_val of type void* (rather than
void**) avoids the messy type casting that would be needed if the attribute value is
declared with a type other than void*. (End of rationale.)

MPI_COMM_DELETE_ATTR(comm, comm_keyval)

INOUT comm communicator from which the attribute is deleted (han-

dle)

IN comm_keyval key value (integer)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

MPI_Comm_delete_attr(comm, comm_keyval, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

Delete attribute from cache by key. This function invokes the attribute delete function
comm_delete_attr_fn specified when the keyval was created. The call will fail if the
comm_delete_attr_fn function returns an error code other than MPI_SUCCESS.

Whenever a communicator is replicated using the function MPI_COMM_DUP or
MPI_COMM_IDUP, all call-back copy functions for attributes that are currently set are
invoked (in arbitrary order). Whenever a communicator is deleted using the function
MPI_COMM_FREE all callback delete functions for attributes that are currently set are
invoked.

6.7.3 Windows

The functions for caching on windows are:

MPI_WIN_CREATE_KEYVAL(win_copy_attr_fn, win_delete_attr_fn, win_keyval, extra_state)

IN win_copy_attr_fn copy callback function for win_keyval (function)

IN win_delete_attr_fn delete callback function for win_keyval (function)

OUT win_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,

MPI_Win_delete_attr_function *win_delete_attr_fn,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 273

int *win_keyval, void *extra_state)

MPI_Win_create_keyval(win_copy_attr_fn, win_delete_attr_fn, win_keyval,

extra_state, ierror)

PROCEDURE(MPI_Win_copy_attr_function) :: win_copy_attr_fn

PROCEDURE(MPI_Win_delete_attr_function) :: win_delete_attr_fn

INTEGER, INTENT(OUT) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN

INTEGER WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The argument win_copy_attr_fn may be specified as MPI_WIN_NULL_COPY_FN or
MPI_WIN_DUP_FN from either C or Fortran. MPI_WIN_NULL_COPY_FN is a function
that does nothing other than returning flag = 0 and MPI_SUCCESS. MPI_WIN_DUP_FN is
a simple-minded copy function that sets flag = 1, returns the value of attribute_val_in in
attribute_val_out, and returns MPI_SUCCESS.

The argument win_delete_attr_fn may be specified as MPI_WIN_NULL_DELETE_FN
from either C or Fortran. MPI_WIN_NULL_DELETE_FN is a function that does nothing,
other than returning MPI_SUCCESS.
The C callback functions are:
typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

With the mpi_f08 module, the Fortran callback functions are:
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_copy_attr_function(oldwin, win_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

attribute_val_out

LOGICAL :: flag

and
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_delete_attr_function(win, win_keyval, attribute_val,

extra_state, ierror)

TYPE(MPI_Win) :: win

INTEGER :: win_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

274 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

With the mpi module and mpif.h, the Fortran callback functions are:
SUBROUTINE WIN_COPY_ATTR_FUNCTION(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE WIN_DELETE_ATTR_FUNCTION(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_WIN_FREE), is
erroneous.

MPI_WIN_FREE_KEYVAL(win_keyval)

INOUT win_keyval key value (integer)

int MPI_Win_free_keyval(int *win_keyval)

MPI_Win_free_keyval(win_keyval, ierror)

INTEGER, INTENT(INOUT) :: win_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)

INTEGER WIN_KEYVAL, IERROR

MPI_WIN_SET_ATTR(win, win_keyval, attribute_val)

INOUT win window to which attribute will be attached (handle)

IN win_keyval key value (integer)

IN attribute_val attribute value

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

MPI_Win_set_attr(win, win_keyval, attribute_val, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 275

MPI_WIN_GET_ATTR(win, win_keyval, attribute_val, flag)

IN win window to which the attribute is attached (handle)

IN win_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,

int *flag)

MPI_Win_get_attr(win, win_keyval, attribute_val, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_WIN_DELETE_ATTR(win, win_keyval)

INOUT win window from which the attribute is deleted (handle)

IN win_keyval key value (integer)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

MPI_Win_delete_attr(win, win_keyval, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

6.7.4 Datatypes

The new functions for caching on datatypes are:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

276 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_TYPE_CREATE_KEYVAL(type_copy_attr_fn, type_delete_attr_fn, type_keyval,
extra_state)

IN type_copy_attr_fn copy callback function for type_keyval (function)

IN type_delete_attr_fn delete callback function for type_keyval (function)

OUT type_keyval key value for future access (integer)

IN extra_state extra state for callback functions

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,

MPI_Type_delete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state)

MPI_Type_create_keyval(type_copy_attr_fn, type_delete_attr_fn, type_keyval,

extra_state, ierror)

PROCEDURE(MPI_Type_copy_attr_function) :: type_copy_attr_fn

PROCEDURE(MPI_Type_delete_attr_function) :: type_delete_attr_fn

INTEGER, INTENT(OUT) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN

INTEGER TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The argument type_copy_attr_fn may be specified as MPI_TYPE_NULL_COPY_FN or
MPI_TYPE_DUP_FN from either C or Fortran. MPI_TYPE_NULL_COPY_FN is a function
that does nothing other than returning flag = 0 and MPI_SUCCESS. MPI_TYPE_DUP_FN
is a simple-minded copy function that sets flag = 1, returns the value of attribute_val_in in
attribute_val_out, and returns MPI_SUCCESS.

The argument type_delete_attr_fn may be specified as MPI_TYPE_NULL_DELETE_FN
from either C or Fortran. MPI_TYPE_NULL_DELETE_FN is a function that does nothing,
other than returning MPI_SUCCESS.
The C callback functions are:
typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

and
typedef int MPI_Type_delete_attr_function(MPI_Datatype datatype,

int type_keyval, void *attribute_val, void *extra_state);

With the mpi_f08 module, the Fortran callback functions are:
ABSTRACT INTERFACE

SUBROUTINE MPI_Type_copy_attr_function(oldtype, type_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval, ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 277

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

attribute_val_out

LOGICAL :: flag

and
ABSTRACT INTERFACE

SUBROUTINE MPI_Type_delete_attr_function(datatype, type_keyval,

attribute_val, extra_state, ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER :: type_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

With the mpi module and mpif.h, the Fortran callback functions are:
SUBROUTINE TYPE_COPY_ATTR_FUNCTION(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

and
SUBROUTINE TYPE_DELETE_ATTR_FUNCTION(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

If an attribute copy function or attribute delete function returns other than
MPI_SUCCESS, then the call that caused it to be invoked (for example, MPI_TYPE_FREE),
is erroneous.

MPI_TYPE_FREE_KEYVAL(type_keyval)

INOUT type_keyval key value (integer)

int MPI_Type_free_keyval(int *type_keyval)

MPI_Type_free_keyval(type_keyval, ierror)

INTEGER, INTENT(INOUT) :: type_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)

INTEGER TYPE_KEYVAL, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

278 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_TYPE_SET_ATTR(datatype, type_keyval, attribute_val)

INOUT datatype datatype to which attribute will be attached (handle)

IN type_keyval key value (integer)

IN attribute_val attribute value

int MPI_Type_set_attr(MPI_Datatype datatype, int type_keyval,

void *attribute_val)

MPI_Type_set_attr(datatype, type_keyval, attribute_val, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_GET_ATTR(datatype, type_keyval, attribute_val, flag)

IN datatype datatype to which the attribute is attached (handle)

IN type_keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag false if no attribute is associated with the key (logical)

int MPI_Type_get_attr(MPI_Datatype datatype, int type_keyval, void

*attribute_val, int *flag)

MPI_Type_get_attr(datatype, type_keyval, attribute_val, flag, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_TYPE_DELETE_ATTR(datatype, type_keyval)

INOUT datatype datatype from which the attribute is deleted (handle)

IN type_keyval key value (integer)

int MPI_Type_delete_attr(MPI_Datatype datatype, int type_keyval)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.7. CACHING 279

MPI_Type_delete_attr(datatype, type_keyval, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_DELETE_ATTR(DATATYPE, TYPE_KEYVAL, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

6.7.5 Error Class for Invalid Keyval

Key values for attributes are system-allocated, by
MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL. Only such values can be passed to the func-
tions that use key values as input arguments. In order to signal that an erroneous key value
has been passed to one of these functions, there is a new MPI error class: MPI_ERR_KEYVAL.
It can be returned by MPI_ATTR_PUT, MPI_ATTR_GET, MPI_ATTR_DELETE,
MPI_KEYVAL_FREE, MPI_{TYPE,COMM,WIN}_DELETE_ATTR,
MPI_{TYPE,COMM,WIN}_SET_ATTR, MPI_{TYPE,COMM,WIN}_GET_ATTR,
MPI_{TYPE,COMM,WIN}_FREE_KEYVAL, MPI_COMM_DUP, MPI_COMM_IDUP,
MPI_COMM_DISCONNECT, and MPI_COMM_FREE. The last four are included because
keyval is an argument to the copy and delete functions for attributes.

6.7.6 Attributes Example

Advice to users. This example shows how to write a collective communication
operation that uses caching to be more efficient after the first call. (End of advice to
users.)

/* key for this module’s stuff: */

static int gop_key = MPI_KEYVAL_INVALID;

typedef struct

{

int ref_count; /* reference count */

/* other stuff, whatever else we want */

} gop_stuff_type;

void Efficient_Collective_Op (MPI_Comm comm, ...)

{

gop_stuff_type *gop_stuff;

MPI_Group group;

int foundflag;

MPI_Comm_group(comm, &group);

if (gop_key == MPI_KEYVAL_INVALID) /* get a key on first call ever */

{

if (! MPI_Comm_create_keyval(gop_stuff_copier,

gop_stuff_destructor,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

280 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

&gop_key, (void *)0));

/* get the key while assigning its copy and delete callback

behavior. */

MPI_Abort (comm, 99);

}

MPI_Comm_get_attr (comm, gop_key, &gop_stuff, &foundflag);

if (foundflag)

{ /* This module has executed in this group before.

We will use the cached information */

}

else

{ /* This is a group that we have not yet cached anything in.

We will now do so.

*/

/* First, allocate storage for the stuff we want,

and initialize the reference count */

gop_stuff = (gop_stuff_type *) malloc (sizeof(gop_stuff_type));

if (gop_stuff == NULL) { /* abort on out-of-memory error */ }

gop_stuff -> ref_count = 1;

/* Second, fill in *gop_stuff with whatever we want.

This part isn’t shown here */

/* Third, store gop_stuff as the attribute value */

MPI_Comm_set_attr (comm, gop_key, gop_stuff);

}

/* Then, in any case, use contents of *gop_stuff

to do the global op ... */

}

/* The following routine is called by MPI when a group is freed */

int gop_stuff_destructor (MPI_Comm comm, int keyval, void *gop_stuffP,

void *extra)

{

gop_stuff_type *gop_stuff = (gop_stuff_type *)gop_stuffP;

if (keyval != gop_key) { /* abort -- programming error */ }

/* The group’s being freed removes one reference to gop_stuff */

gop_stuff -> ref_count -= 1;

/* If no references remain, then free the storage */

if (gop_stuff -> ref_count == 0) {

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.8. NAMING OBJECTS 281

free((void *)gop_stuff);

}

return MPI_SUCCESS;

}

/* The following routine is called by MPI when a group is copied */

int gop_stuff_copier (MPI_Comm comm, int keyval, void *extra,

void *gop_stuff_inP, void *gop_stuff_outP, int *flag)

{

gop_stuff_type *gop_stuff_in = (gop_stuff_type *)gop_stuff_inP;

gop_stuff_type **gop_stuff_out = (gop_stuff_type **)gop_stuff_outP;

if (keyval != gop_key) { /* abort -- programming error */ }

/* The new group adds one reference to this gop_stuff */

gop_stuff_in -> ref_count += 1;

*gop_stuff_out = gop_stuff_in;

return MPI_SUCCESS;

}

6.8 Naming Objects

There are many occasions on which it would be useful to allow a user to associate a printable
identifier with an MPI communicator, window, or datatype, for instance error reporting,
debugging, and profiling. The names attached to opaque objects do not propagate when
the object is duplicated or copied by MPI routines. For communicators this can be achieved
using the following two functions.

MPI_COMM_SET_NAME (comm, comm_name)

INOUT comm communicator whose identifier is to be set (handle)

IN comm_name the character string which is remembered as the name

(string)

int MPI_Comm_set_name(MPI_Comm comm, const char *comm_name)

MPI_Comm_set_name(comm, comm_name, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=*), INTENT(IN) :: comm_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_SET_NAME allows a user to associate a name string with a communicator.
The character string which is passed to MPI_COMM_SET_NAME will be saved inside the
MPI library (so it can be freed by the caller immediately after the call, or allocated on the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

282 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

stack). Leading spaces in name are significant but trailing ones are not.
MPI_COMM_SET_NAME is a local (non-collective) operation, which only affects the

name of the communicator as seen in the process which made the MPI_COMM_SET_NAME
call. There is no requirement that the same (or any) name be assigned to a communicator
in every process where it exists.

Advice to users. Since MPI_COMM_SET_NAME is provided to help debug code, it
is sensible to give the same name to a communicator in all of the processes where it
exists, to avoid confusion. (End of advice to users.)

The length of the name which can be stored is limited to the value of
MPI_MAX_OBJECT_NAME in Fortran and MPI_MAX_OBJECT_NAME-1 in C to allow for the
null terminator. Attempts to put names longer than this will result in truncation of the
name. MPI_MAX_OBJECT_NAME must have a value of at least 64.

Advice to users. Under circumstances of store exhaustion an attempt to put a name
of any length could fail, therefore the value of MPI_MAX_OBJECT_NAME should be
viewed only as a strict upper bound on the name length, not a guarantee that setting
names of less than this length will always succeed. (End of advice to users.)

Advice to implementors. Implementations which pre-allocate a fixed size space for a
name should use the length of that allocation as the value of MPI_MAX_OBJECT_NAME.
Implementations which allocate space for the name from the heap should still define
MPI_MAX_OBJECT_NAME to be a relatively small value, since the user has to allocate
space for a string of up to this size when calling MPI_COMM_GET_NAME. (End of
advice to implementors.)

MPI_COMM_GET_NAME (comm, comm_name, resultlen)

IN comm communicator whose name is to be returned (handle)

OUT comm_name the name previously stored on the communicator, or

an empty string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

MPI_Comm_get_name(comm, comm_name, resultlen, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: comm_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_GET_NAME returns the last name which has previously been associated
with the given communicator. The name may be set and retrieved from any language. The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.8. NAMING OBJECTS 283

same name will be returned independent of the language used. name should be allocated
so that it can hold a resulting string of length MPI_MAX_OBJECT_NAME characters.
MPI_COMM_GET_NAME returns a copy of the set name in name.

In C, a null character is additionally stored at name[resultlen]. The value of resultlen
cannot be larger than MPI_MAX_OBJECT_NAME-1. In Fortran, name is padded on the
right with blank characters. The value of resultlen cannot be larger than
MPI_MAX_OBJECT_NAME.

If the user has not associated a name with a communicator, or an error occurs,
MPI_COMM_GET_NAME will return an empty string (all spaces in Fortran, "" in C). The
three predefined communicators will have predefined names associated with them. Thus,
the names of MPI_COMM_WORLD, MPI_COMM_SELF, and the communicator returned by
MPI_COMM_GET_PARENT (if not MPI_COMM_NULL) will have the default of
MPI_COMM_WORLD, MPI_COMM_SELF, and MPI_COMM_PARENT. The fact that the system
may have chosen to give a default name to a communicator does not prevent the user from
setting a name on the same communicator; doing this removes the old name and assigns
the new one.

Rationale. We provide separate functions for setting and getting the name of a com-
municator, rather than simply providing a predefined attribute key for the following
reasons:

• It is not, in general, possible to store a string as an attribute from Fortran.

• It is not easy to set up the delete function for a string attribute unless it is known
to have been allocated from the heap.

• To make the attribute key useful additional code to call strdup is necessary. If
this is not standardized then users have to write it. This is extra unneeded work
which we can easily eliminate.

• The Fortran binding is not trivial to write (it will depend on details of the
Fortran compilation system), and will not be portable. Therefore it should be in
the library rather than in user code.

(End of rationale.)

Advice to users. The above definition means that it is safe simply to print the string
returned by MPI_COMM_GET_NAME, as it is always a valid string even if there was
no name.

Note that associating a name with a communicator has no effect on the semantics of
an MPI program, and will (necessarily) increase the store requirement of the program,
since the names must be saved. Therefore there is no requirement that users use these
functions to associate names with communicators. However debugging and profiling
MPI applications may be made easier if names are associated with communicators,
since the debugger or profiler should then be able to present information in a less
cryptic manner. (End of advice to users.)

The following functions are used for setting and getting names of datatypes. The
constant MPI_MAX_OBJECT_NAME also applies to these names.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

284 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

MPI_TYPE_SET_NAME (datatype, type_name)

INOUT datatype datatype whose identifier is to be set (handle)

IN type_name the character string which is remembered as the name

(string)

int MPI_Type_set_name(MPI_Datatype datatype, const char *type_name)

MPI_Type_set_name(datatype, type_name, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

CHARACTER(LEN=*), INTENT(IN) :: type_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_SET_NAME(DATATYPE, TYPE_NAME, IERROR)

INTEGER DATATYPE, IERROR

CHARACTER*(*) TYPE_NAME

MPI_TYPE_GET_NAME (datatype, type_name, resultlen)

IN datatype datatype whose name is to be returned (handle)

OUT type_name the name previously stored on the datatype, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Type_get_name(MPI_Datatype datatype, char *type_name, int

*resultlen)

MPI_Type_get_name(datatype, type_name, resultlen, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: type_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_GET_NAME(DATATYPE, TYPE_NAME, RESULTLEN, IERROR)

INTEGER DATATYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE_NAME

Named predefined datatypes have the default names of the datatype name. For exam-
ple, MPI_WCHAR has the default name of MPI_WCHAR.

The following functions are used for setting and getting names of windows. The con-
stant MPI_MAX_OBJECT_NAME also applies to these names.

MPI_WIN_SET_NAME (win, win_name)

INOUT win window whose identifier is to be set (handle)

IN win_name the character string which is remembered as the name

(string)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.9. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 285

int MPI_Win_set_name(MPI_Win win, const char *win_name)

MPI_Win_set_name(win, win_name, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

CHARACTER(LEN=*), INTENT(IN) :: win_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN_NAME

MPI_WIN_GET_NAME (win, win_name, resultlen)

IN win window whose name is to be returned (handle)

OUT win_name the name previously stored on the window, or a empty

string if no such name exists (string)

OUT resultlen length of returned name (integer)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

MPI_Win_get_name(win, win_name, resultlen, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: win_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN_NAME

6.9 Formalizing the Loosely Synchronous Model

In this section, we make further statements about the loosely synchronous model, with
particular attention to intra-communication.

6.9.1 Basic Statements

When a caller passes a communicator (that contains a context and group) to a callee, that
communicator must be free of side effects throughout execution of the subprogram: there
should be no active operations on that communicator that might involve the process. This
provides one model in which libraries can be written, and work “safely.” For libraries
so designated, the callee has permission to do whatever communication it likes with the
communicator, and under the above guarantee knows that no other communications will
interfere. Since we permit good implementations to create new communicators without
synchronization (such as by preallocated contexts on communicators), this does not impose
a significant overhead.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

286 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

This form of safety is analogous to other common computer-science usages, such as
passing a descriptor of an array to a library routine. The library routine has every right to
expect such a descriptor to be valid and modifiable.

6.9.2 Models of Execution

In the loosely synchronous model, transfer of control to a parallel procedure is effected by
having each executing process invoke the procedure. The invocation is a collective operation:
it is executed by all processes in the execution group, and invocations are similarly ordered
at all processes. However, the invocation need not be synchronized.

We say that a parallel procedure is active in a process if the process belongs to a group
that may collectively execute the procedure, and some member of that group is currently
executing the procedure code. If a parallel procedure is active in a process, then this process
may be receiving messages pertaining to this procedure, even if it does not currently execute
the code of this procedure.

Static Communicator Allocation

This covers the case where, at any point in time, at most one invocation of a parallel
procedure can be active at any process, and the group of executing processes is fixed. For
example, all invocations of parallel procedures involve all processes, processes are single-
threaded, and there are no recursive invocations.

In such a case, a communicator can be statically allocated to each procedure. The
static allocation can be done in a preamble, as part of initialization code. If the parallel
procedures can be organized into libraries, so that only one procedure of each library can
be concurrently active in each processor, then it is sufficient to allocate one communicator
per library.

Dynamic Communicator Allocation

Calls of parallel procedures are well-nested if a new parallel procedure is always invoked in
a subset of a group executing the same parallel procedure. Thus, processes that execute
the same parallel procedure have the same execution stack.

In such a case, a new communicator needs to be dynamically allocated for each new
invocation of a parallel procedure. The allocation is done by the caller. A new communicator
can be generated by a call to MPI_COMM_DUP, if the callee execution group is identical to
the caller execution group, or by a call to MPI_COMM_SPLIT if the caller execution group
is split into several subgroups executing distinct parallel routines. The new communicator
is passed as an argument to the invoked routine.

The need for generating a new communicator at each invocation can be alleviated or
avoided altogether in some cases: If the execution group is not split, then one can allocate
a stack of communicators in a preamble, and next manage the stack in a way that mimics
the stack of recursive calls.

One can also take advantage of the well-ordering property of communication to avoid
confusing caller and callee communication, even if both use the same communicator. To do
so, one needs to abide by the following two rules:

• messages sent before a procedure call (or before a return from the procedure) are also
received before the matching call (or return) at the receiving end;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6.9. FORMALIZING THE LOOSELY SYNCHRONOUS MODEL 287

• messages are always selected by source (no use is made of MPI_ANY_SOURCE).

The General Case

In the general case, there may be multiple concurrently active invocations of the same
parallel procedure within the same group; invocations may not be well-nested. A new
communicator needs to be created for each invocation. It is the user’s responsibility to make
sure that, should two distinct parallel procedures be invoked concurrently on overlapping
sets of processes, communicator creation is properly coordinated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

288 CHAPTER 6. GROUPS, CONTEXTS, COMMUNICATORS, AND CACHING

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 7

Process Topologies

7.1 Introduction

This chapter discusses the MPI topology mechanism. A topology is an extra, optional
attribute that one can give to an intra-communicator; topologies cannot be added to inter-
communicators. A topology can provide a convenient naming mechanism for the processes
of a group (within a communicator), and additionally, may assist the runtime system in
mapping the processes onto hardware.

As stated in Chapter 6, a process group in MPI is a collection of n processes. Each
process in the group is assigned a rank between 0 and n-1. In many parallel applications
a linear ranking of processes does not adequately reflect the logical communication pattern
of the processes (which is usually determined by the underlying problem geometry and
the numerical algorithm used). Often the processes are arranged in topological patterns
such as two- or three-dimensional grids. More generally, the logical process arrangement is
described by a graph. In this chapter we will refer to this logical process arrangement as
the “virtual topology.”

A clear distinction must be made between the virtual process topology and the topology
of the underlying, physical hardware. The virtual topology can be exploited by the system
in the assignment of processes to physical processors, if this helps to improve the commu-
nication performance on a given machine. How this mapping is done, however, is outside
the scope of MPI. The description of the virtual topology, on the other hand, depends only
on the application, and is machine-independent. The functions that are described in this
chapter deal with machine-independent mapping and communication on virtual process
topologies.

Rationale. Though physical mapping is not discussed, the existence of the virtual
topology information may be used as advice by the runtime system. There are well-
known techniques for mapping grid/torus structures to hardware topologies such as
hypercubes or grids. For more complicated graph structures good heuristics often
yield nearly optimal results [44]. On the other hand, if there is no way for the user
to specify the logical process arrangement as a “virtual topology,” a random mapping
is most likely to result. On some machines, this will lead to unnecessary contention
in the interconnection network. Some details about predicted and measured perfor-
mance improvements that result from good process-to-processor mapping on modern
wormhole-routing architectures can be found in [11, 12].

289

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

290 CHAPTER 7. PROCESS TOPOLOGIES

Besides possible performance benefits, the virtual topology can function as a conve-
nient, process-naming structure, with significant benefits for program readability and
notational power in message-passing programming. (End of rationale.)

7.2 Virtual Topologies

The communication pattern of a set of processes can be represented by a graph. The
nodes represent processes, and the edges connect processes that communicate with each
other. MPI provides message-passing between any pair of processes in a group. There
is no requirement for opening a channel explicitly. Therefore, a “missing link” in the
user-defined process graph does not prevent the corresponding processes from exchanging
messages. It means rather that this connection is neglected in the virtual topology. This
strategy implies that the topology gives no convenient way of naming this pathway of
communication. Another possible consequence is that an automatic mapping tool (if one
exists for the runtime environment) will not take account of this edge when mapping.

Specifying the virtual topology in terms of a graph is sufficient for all applications.
However, in many applications the graph structure is regular, and the detailed set-up of the
graph would be inconvenient for the user and might be less efficient at run time. A large frac-
tion of all parallel applications use process topologies like rings, two- or higher-dimensional
grids, or tori. These structures are completely defined by the number of dimensions and
the numbers of processes in each coordinate direction. Also, the mapping of grids and tori
is generally an easier problem than that of general graphs. Thus, it is desirable to address
these cases explicitly.

Process coordinates in a Cartesian structure begin their numbering at 0. Row-major
numbering is always used for the processes in a Cartesian structure. This means that, for
example, the relation between group rank and coordinates for four processes in a (2 × 2)
grid is as follows.

coord (0,0): rank 0
coord (0,1): rank 1
coord (1,0): rank 2
coord (1,1): rank 3

7.3 Embedding in MPI

The support for virtual topologies as defined in this chapter is consistent with other parts of
MPI, and, whenever possible, makes use of functions that are defined elsewhere. Topology
information is associated with communicators. It is added to communicators using the
caching mechanism described in Chapter 6.

7.4 Overview of the Functions

MPI supports three topology types: Cartesian, graph, and distributed graph. The function
MPI_CART_CREATE is used to create Cartesian topologies, the function
MPI_GRAPH_CREATE is used to create graph topologies, and the functions
MPI_DIST_GRAPH_CREATE_ADJACENT and MPI_DIST_GRAPH_CREATE are used to cre-
ate distributed graph topologies. These topology creation functions are collective. As with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.4. OVERVIEW OF THE FUNCTIONS 291

other collective calls, the program must be written to work correctly, whether the call
synchronizes or not.

The topology creation functions take as input an existing communicator
comm_old, which defines the set of processes on which the topology is to be mapped. For
MPI_GRAPH_CREATE and MPI_CART_CREATE, all input arguments must have identical
values on all processes of the group of comm_old. When calling MPI_GRAPH_CREATE,
each process specifies all nodes and edges in the graph. In contrast, the functions
MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE are used to spec-
ify the graph in a distributed fashion, whereby each process only specifies a subset of the
edges in the graph such that the entire graph structure is defined collectively across the set of
processes. Therefore the processes provide different values for the arguments specifying the
graph. However, all processes must give the same value for reorder and the info argument.
In all cases, a new communicator comm_topol is created that carries the topological struc-
ture as cached information (see Chapter 6). In analogy to function MPI_COMM_CREATE,
no cached information propagates from comm_old to comm_topol.

MPI_CART_CREATE can be used to describe Cartesian structures of arbitrary dimen-
sion. For each coordinate direction one specifies whether the process structure is periodic or
not. Note that an n-dimensional hypercube is an n-dimensional torus with 2 processes per
coordinate direction. Thus, special support for hypercube structures is not necessary. The
local auxiliary function MPI_DIMS_CREATE can be used to compute a balanced distribution
of processes among a given number of dimensions.

Rationale. Similar functions are contained in EXPRESS [13] and PARMACS. (End
of rationale.)

MPI defines functions to query a communicator for topology information. The function
MPI_TOPO_TEST is used to query for the type of topology associated with a communicator.
Depending on the topology type, different information can be extracted. For a graph
topology, the functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET return the values
that were specified in the call to MPI_GRAPH_CREATE. Additionally, the functions
MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS can be used to obtain
the neighbors of an arbitrary node in the graph. For a distributed graph topology, the
functions MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS
can be used to obtain the neighbors of the calling process. For a Cartesian topology, the
functions MPI_CARTDIM_GET and MPI_CART_GET return the values that were specified
in the call to MPI_CART_CREATE. Additionally, the functions MPI_CART_RANK and
MPI_CART_COORDS translate Cartesian coordinates into a group rank, and vice-versa.
The function MPI_CART_SHIFT provides the information needed to communicate with
neighbors along a Cartesian dimension. All of these query functions are local.

For Cartesian topologies, the function MPI_CART_SUB can be used to extract a Carte-
sian subspace (analogous to MPI_COMM_SPLIT). This function is collective over the input
communicator’s group.

The two additional functions, MPI_GRAPH_MAP and MPI_CART_MAP, are, in gen-
eral, not called by the user directly. However, together with the communicator manipulation
functions presented in Chapter 6, they are sufficient to implement all other topology func-
tions. Section 7.5.8 outlines such an implementation.

The neighborhood collective communication routines MPI_NEIGHBOR_ALLGATHER,
MPI_NEIGHBOR_ALLGATHERV, MPI_NEIGHBOR_ALLTOALL,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

292 CHAPTER 7. PROCESS TOPOLOGIES

MPI_NEIGHBOR_ALLTOALLV, and MPI_NEIGHBOR_ALLTOALLW communicate with the
nearest neighbors on the topology associated with the communicator. The nonblocking
variants are MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, and
MPI_INEIGHBOR_ALLTOALLW.

7.5 Topology Constructors

7.5.1 Cartesian Constructor

MPI_CART_CREATE(comm_old, ndims, dims, periods, reorder, comm_cart)

IN comm_old input communicator (handle)

IN ndims number of dimensions of Cartesian grid (integer)

IN dims integer array of size ndims specifying the number of

processes in each dimension

IN periods logical array of size ndims specifying whether the grid

is periodic (true) or not (false) in each dimension

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm_cart communicator with new Cartesian topology (handle)

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[], const

int periods[], int reorder, MPI_Comm *comm_cart)

MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims), reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_cart

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

MPI_CART_CREATE returns a handle to a new communicator to which the Cartesian
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder
the processes (possibly so as to choose a good embedding of the virtual topology onto
the physical machine). If the total size of the Cartesian grid is smaller than the size of
the group of comm_old, then some processes are returned MPI_COMM_NULL, in analogy to
MPI_COMM_SPLIT.

If ndims is zero then a zero-dimensional Cartesian topology is created. The call is
erroneous if it specifies a grid that is larger than the group size or if ndims is negative.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 293

7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE

For Cartesian topologies, the function MPI_DIMS_CREATE helps the user select a balanced
distribution of processes per coordinate direction, depending on the number of processes
in the group to be balanced and optional constraints that can be specified by the user.
One use is to partition all the processes (the size of MPI_COMM_WORLD’s group) into an
n-dimensional topology.

MPI_DIMS_CREATE(nnodes, ndims, dims)

IN nnodes number of nodes in a grid (integer)

IN ndims number of Cartesian dimensions (integer)

INOUT dims integer array of size ndims specifying the number of

nodes in each dimension

int MPI_Dims_create(int nnodes, int ndims, int dims[])

MPI_Dims_create(nnodes, ndims, dims, ierror)

INTEGER, INTENT(IN) :: nnodes, ndims

INTEGER, INTENT(INOUT) :: dims(ndims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR

The entries in the array dims are set to describe a Cartesian grid with ndims dimensions
and a total of nnodes nodes. The dimensions are set to be as close to each other as possible,
using an appropriate divisibility algorithm. The caller may further constrain the operation
of this routine by specifying elements of array dims. If dims[i] is set to a positive number,
the routine will not modify the number of nodes in dimension i; only those entries where
dims[i] = 0 are modified by the call.

Negative input values of dims[i] are erroneous. An error will occur if nnodes is not a
multiple of ∏

i,dims[i]6=0

dims[i].

For dims[i] set by the call, dims[i] will be ordered in non-increasing order. Array dims
is suitable for use as input to routine MPI_CART_CREATE. MPI_DIMS_CREATE is local.

Example 7.1
dims function call dims
before call on return

(0,0) MPI_DIMS_CREATE(6, 2, dims) (3,2)
(0,0) MPI_DIMS_CREATE(7, 2, dims) (7,1)
(0,3,0) MPI_DIMS_CREATE(6, 3, dims) (2,3,1)
(0,3,0) MPI_DIMS_CREATE(7, 3, dims) erroneous call

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

294 CHAPTER 7. PROCESS TOPOLOGIES

7.5.3 Graph Constructor

MPI_GRAPH_CREATE(comm_old, nnodes, index, edges, reorder, comm_graph)

IN comm_old input communicator (handle)

IN nnodes number of nodes in graph (integer)

IN index array of integers describing node degrees (see below)

IN edges array of integers describing graph edges (see below)

IN reorder ranking may be reordered (true) or not (false) (logical)

OUT comm_graph communicator with graph topology added (handle)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int index[],

const int edges[], int reorder, MPI_Comm *comm_graph)

MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph,

ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,

IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER

MPI_GRAPH_CREATE returns a handle to a new communicator to which the graph
topology information is attached. If reorder = false then the rank of each process in the
new group is identical to its rank in the old group. Otherwise, the function may reorder the
processes. If the size, nnodes, of the graph is smaller than the size of the group of comm_old,
then some processes are returned MPI_COMM_NULL, in analogy to MPI_CART_CREATE
and MPI_COMM_SPLIT. If the graph is empty, i.e., nnodes == 0, then MPI_COMM_NULL

is returned in all processes. The call is erroneous if it specifies a graph that is larger than
the group size of the input communicator.

The three parameters nnodes, index and edges define the graph structure. nnodes is the
number of nodes of the graph. The nodes are numbered from 0 to nnodes-1. The i-th entry
of array index stores the total number of neighbors of the first i graph nodes. The lists of
neighbors of nodes 0, 1, . . . , nnodes-1 are stored in consecutive locations in array edges.
The array edges is a flattened representation of the edge lists. The total number of entries
in index is nnodes and the total number of entries in edges is equal to the number of graph
edges.

The definitions of the arguments nnodes, index, and edges are illustrated with the
following simple example.

Example 7.2
Assume there are four processes 0, 1, 2, 3 with the following adjacency matrix:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 295

process neighbors

0 1, 3
1 0
2 3
3 0, 2

Then, the input arguments are:

nnodes = 4
index = 2, 3, 4, 6
edges = 1, 3, 0, 3, 0, 2

Thus, in C, index[0] is the degree of node zero, and index[i] - index[i-1] is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges[j], for 0 ≤ j ≤ index[0]− 1 and the list of neighbors of node i, i > 0, is stored in
edges[j], index[i-1] ≤ j ≤ index[i]− 1.

In Fortran, index(1) is the degree of node zero, and index(i+1) - index(i) is the
degree of node i, i=1, ..., nnodes-1; the list of neighbors of node zero is stored in
edges(j), for 1 ≤ j ≤ index(1) and the list of neighbors of node i, i > 0, is stored in
edges(j), index(i)+1 ≤ j ≤ index(i+1).

A single process is allowed to be defined multiple times in the list of neighbors of a
process (i.e., there may be multiple edges between two processes). A process is also allowed
to be a neighbor to itself (i.e., a self loop in the graph). The adjacency matrix is allowed
to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-symmetric
adjacency matrix are not defined. The definition of a node-neighbor edge does not
imply a direction of the communication. (End of advice to users.)

Advice to implementors. The following topology information is likely to be stored
with a communicator:

• Type of topology (Cartesian/graph),

• For a Cartesian topology:

1. ndims (number of dimensions),

2. dims (numbers of processes per coordinate direction),

3. periods (periodicity information),

4. own_position (own position in grid, could also be computed from rank and
dims)

• For a graph topology:

1. index,

2. edges,

which are the vectors defining the graph structure.

For a graph structure the number of nodes is equal to the number of processes in
the group. Therefore, the number of nodes does not have to be stored explicitly.
An additional zero entry at the start of array index simplifies access to the topology
information. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

296 CHAPTER 7. PROCESS TOPOLOGIES

7.5.4 Distributed Graph Constructor

MPI_GRAPH_CREATE requires that each process passes the full (global) communication
graph to the call. This limits the scalability of this constructor. With the distributed graph
interface, the communication graph is specified in a fully distributed fashion. Each process
specifies only the part of the communication graph of which it is aware. Typically, this
could be the set of processes from which the process will eventually receive or get data,
or the set of processes to which the process will send or put data, or some combination of
such edges. Two different interfaces can be used to create a distributed graph topology.
MPI_DIST_GRAPH_CREATE_ADJACENT creates a distributed graph communicator with
each process specifying each of its incoming and outgoing (adjacent) edges in the logical
communication graph and thus requires minimal communication during creation.
MPI_DIST_GRAPH_CREATE provides full flexibility such that any process can indicate that
communication will occur between any pair of processes in the graph.

To provide better possibilities for optimization by the MPI library, the distributed
graph constructors permit weighted communication edges and take an info argument that
can further influence process reordering or other optimizations performed by the MPI library.
For example, hints can be provided on how edge weights are to be interpreted, the quality
of the reordering, and/or the time permitted for the MPI library to process the graph.

MPI_DIST_GRAPH_CREATE_ADJACENT(comm_old, indegree, sources, sourceweights, out-
degree, destinations, destweights, info, reorder, comm_dist_graph)

IN comm_old input communicator (handle)

IN indegree size of sources and sourceweights arrays (non-negative

integer)

IN sources ranks of processes for which the calling process is a

destination (array of non-negative integers)

IN sourceweights weights of the edges into the calling process (array of

non-negative integers)

IN outdegree size of destinations and destweights arrays (non-negative

integer)

IN destinations ranks of processes for which the calling process is a

source (array of non-negative integers)

IN destweights weights of the edges out of the calling process (array

of non-negative integers)

IN info hints on optimization and interpretation of weights

(handle)

IN reorder the ranks may be reordered (true) or not (false) (logi-

cal)

OUT comm_dist_graph communicator with distributed graph topology (han-

dle)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree, const

int sources[], const int sourceweights[], int outdegree, const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 297

int destinations[], const int destweights[], MPI_Info info,

int reorder, MPI_Comm *comm_dist_graph)

MPI_Dist_graph_create_adjacent(comm_old, indegree, sources, sourceweights,

outdegree, destinations, destweights, info, reorder,

comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: indegree, sources(indegree), outdegree,

destinations(outdegree)

INTEGER, INTENT(IN) :: sourceweights(*), destweights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,

OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,

COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT returns a handle to a new communicator
to which the distributed graph topology information is attached. Each process passes all
information about its incoming and outgoing edges in the virtual distributed graph topology.
The calling processes must ensure that each edge of the graph is described in the source
and in the destination process with the same weights. If there are multiple edges for a given
(source,dest) pair, then the sequence of the weights of these edges does not matter. The
complete communication topology is the combination of all edges shown in the sources arrays
of all processes in comm_old, which must be identical to the combination of all edges shown
in the destinations arrays. Source and destination ranks must be process ranks of comm_old.
This allows a fully distributed specification of the communication graph. Isolated processes
(i.e., processes with no outgoing or incoming edges, that is, processes that have specified
indegree and outdegree as zero and thus do not occur as source or destination rank in the
graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE_ADJACENT is collective.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply
the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have
the same (effectively no) weight. It is erroneous to supply MPI_UNWEIGHTED for some
but not all processes of comm_old. If the graph is weighted but indegree or outdegree is
zero, then MPI_WEIGHTS_EMPTY or any arbitrary array may be passed to sourceweights

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

298 CHAPTER 7. PROCESS TOPOLOGIES

or destweights respectively. Note that MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are
not special weight values; rather they are special values for the total array argument. In
Fortran, MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are objects like MPI_BOTTOM (not
usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while
constructing a weighted graph, one should not pass NULL because the value of
MPI_UNWEIGHTED may be equal to NULL. The value of this argument would then
be indistinguishable from MPI_UNWEIGHTED to the implementation. In this case
MPI_WEIGHTS_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI_UNWEIGHTED not be imple-
mented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI_UNWEIGHTED may still be imple-
mented as NULL. See Annex B.1. (End of rationale.)

The meaning of the info and reorder arguments is defined in the description of the
following routine.

MPI_DIST_GRAPH_CREATE(comm_old, n, sources, degrees, destinations, weights, info, re-
order, comm_dist_graph)

IN comm_old input communicator (handle)

IN n number of source nodes for which this process specifies

edges (non-negative integer)

IN sources array containing the n source nodes for which this pro-

cess specifies edges (array of non-negative integers)

IN degrees array specifying the number of destinations for each

source node in the source node array (array of non-

negative integers)

IN destinations destination nodes for the source nodes in the source

node array (array of non-negative integers)

IN weights weights for source to destination edges (array of non-

negative integers)

IN info hints on optimization and interpretation of weights

(handle)

IN reorder the process may be reordered (true) or not (false) (log-

ical)

OUT comm_dist_graph communicator with distributed graph topology added

(handle)

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int sources[],

const int degrees[], const int destinations[], const

int weights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 299

MPI_Dist_graph_create(comm_old, n, sources, degrees, destinations, weights,

info, reorder, comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: n, sources(n), degrees(n), destinations(*)

INTEGER, INTENT(IN) :: weights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,

INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),

WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE returns a handle to a new communicator to which the
distributed graph topology information is attached. Concretely, each process calls the con-
structor with a set of directed (source,destination) communication edges as described below.
Every process passes an array of n source nodes in the sources array. For each source node, a
non-negative number of destination nodes is specified in the degrees array. The destination
nodes are stored in the corresponding consecutive segment of the destinations array. More
precisely, if the i-th node in sources is s, this specifies degrees[i] edges (s,d) with d of the
j-th such edge stored in destinations[degrees[0]+. . .+degrees[i-1]+j]. The weight of this edge
is stored in weights[degrees[0]+. . .+degrees[i-1]+j]. Both the sources and the destinations
arrays may contain the same node more than once, and the order in which nodes are listed
as destinations or sources is not significant. Similarly, different processes may specify edges
with the same source and destination nodes. Source and destination nodes must be pro-
cess ranks of comm_old. Different processes may specify different numbers of source and
destination nodes, as well as different source to destination edges. This allows a fully dis-
tributed specification of the communication graph. Isolated processes (i.e., processes with
no outgoing or incoming edges, that is, processes that do not occur as source or destination
node in the graph specification) are allowed.

The call creates a new communicator comm_dist_graph of distributed graph topology
type to which topology information has been attached. The number of processes in
comm_dist_graph is identical to the number of processes in comm_old. The call to
MPI_DIST_GRAPH_CREATE is collective.

If reorder = false, all processes will have the same rank in comm_dist_graph as in
comm_old. If reorder = true then the MPI library is free to remap to other processes (of
comm_old) in order to improve communication on the edges of the communication graph.
The weight associated with each edge is a hint to the MPI library about the amount or
intensity of communication on that edge, and may be used to compute a “best” reordering.

Weights are specified as non-negative integers and can be used to influence the process
remapping strategy and other internal MPI optimizations. For instance, approximate count
arguments of later communication calls along specific edges could be used as their edge
weights. Multiplicity of edges can likewise indicate more intense communication between
pairs of processes. However, the exact meaning of edge weights is not specified by the MPI
standard and is left to the implementation. In C or Fortran, an application can supply

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

300 CHAPTER 7. PROCESS TOPOLOGIES

the special value MPI_UNWEIGHTED for the weight array to indicate that all edges have the
same (effectively no) weight. It is erroneous to supply MPI_UNWEIGHTED for some but not
all processes of comm_old. If the graph is weighted but n = 0, then MPI_WEIGHTS_EMPTY

or any arbitrary array may be passed to weights. Note that MPI_UNWEIGHTED and
MPI_WEIGHTS_EMPTY are not special weight values; rather they are special values for the
total array argument. In Fortran, MPI_UNWEIGHTED and MPI_WEIGHTS_EMPTY are objects
like MPI_BOTTOM (not usable for initialization or assignment). See Section 2.5.4.

Advice to users. In the case of an empty weights array argument passed while
constructing a weighted graph, one should not pass NULL because the value of
MPI_UNWEIGHTED may be equal to NULL. The value of this argument would then
be indistinguishable from MPI_UNWEIGHTED to the implementation. In this case
MPI_WEIGHTS_EMPTY should be used instead. (End of advice to users.)

Advice to implementors. It is recommended that MPI_UNWEIGHTED not be imple-
mented as NULL. (End of advice to implementors.)

Rationale. To ensure backward compatibility, MPI_UNWEIGHTED may still be imple-
mented as NULL. See Annex B.1. (End of rationale.)

The meaning of the weights argument can be influenced by the info argument. Info
arguments can be used to guide the mapping; possible options include minimizing the
maximum number of edges between processes on different SMP nodes, or minimizing the
sum of all such edges. An MPI implementation is not obliged to follow specific hints, and it
is valid for an MPI implementation not to do any reordering. An MPI implementation may
specify more info key-value pairs. All processes must specify the same set of key-value info
pairs.

Advice to implementors. MPI implementations must document any additionally
supported key-value info pairs. MPI_INFO_NULL is always valid, and may indicate the
default creation of the distributed graph topology to the MPI library.

An implementation does not explicitly need to construct the topology from its dis-
tributed parts. However, all processes can construct the full topology from the dis-
tributed specification and use this in a call to MPI_GRAPH_CREATE to create the
topology. This may serve as a reference implementation of the functionality, and
may be acceptable for small communicators. However, a scalable high-quality im-
plementation would save the topology graph in a distributed way. (End of advice to
implementors.)

Example 7.3 As for Example 7.2, assume there are four processes 0, 1, 2, 3 with the
following adjacency matrix and unit edge weights:

process neighbors

0 1, 3
1 0
2 3
3 0, 2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 301

With MPI_DIST_GRAPH_CREATE, this graph could be constructed in many different
ways. One way would be that each process specifies its outgoing edges. The arguments per
process would be:

process n sources degrees destinations weights

0 1 0 2 1,3 1,1
1 1 1 1 0 1
2 1 2 1 3 1
3 1 3 2 0,2 1,1

Another way would be to pass the whole graph on process 0, which could be done with
the following arguments per process:

process n sources degrees destinations weights

0 4 0,1,2,3 2,1,1,2 1,3,0,3,0,2 1,1,1,1,1,1
1 0 - - - -
2 0 - - - -
3 0 - - -

In both cases above, the application could supply MPI_UNWEIGHTED instead of explic-
itly providing identical weights.

MPI_DIST_GRAPH_CREATE_ADJACENT could be used to specify this graph using the
following arguments:

process indegree sources sourceweights outdegree destinations destweights

0 2 1,3 1,1 2 1,3 1,1
1 1 0 1 1 0 1
2 1 3 1 1 3 1
3 2 0,2 1,1 2 0,2 1,1

Example 7.4 A two-dimensional PxQ torus where all processes communicate along the
dimensions and along the diagonal edges. This cannot be modeled with Cartesian topologies,
but can easily be captured with MPI_DIST_GRAPH_CREATE as shown in the following
code. In this example, the communication along the dimensions is twice as heavy as the
communication along the diagonals:

/*

Input: dimensions P, Q

Condition: number of processes equal to P*Q; otherwise only

ranks smaller than P*Q participate

*/

int rank, x, y;

int sources[1], degrees[1];

int destinations[8], weights[8];

MPI_Comm comm_dist_graph;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

/* get x and y dimension */

y=rank/P; x=rank%P;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

302 CHAPTER 7. PROCESS TOPOLOGIES

/* get my communication partners along x dimension */

destinations[0] = P*y+(x+1)%P; weights[0] = 2;

destinations[1] = P*y+(P+x-1)%P; weights[1] = 2;

/* get my communication partners along y dimension */

destinations[2] = P*((y+1)%Q)+x; weights[2] = 2;

destinations[3] = P*((Q+y-1)%Q)+x; weights[3] = 2;

/* get my communication partners along diagonals */

destinations[4] = P*((y+1)%Q)+(x+1)%P; weights[4] = 1;

destinations[5] = P*((Q+y-1)%Q)+(x+1)%P; weights[5] = 1;

destinations[6] = P*((y+1)%Q)+(P+x-1)%P; weights[6] = 1;

destinations[7] = P*((Q+y-1)%Q)+(P+x-1)%P; weights[7] = 1;

sources[0] = rank;

degrees[0] = 8;

MPI_Dist_graph_create(MPI_COMM_WORLD, 1, sources, degrees, destinations,

weights, MPI_INFO_NULL, 1, &comm_dist_graph);

7.5.5 Topology Inquiry Functions

If a topology has been defined with one of the above functions, then the topology information
can be looked up using inquiry functions. They all are local calls.

MPI_TOPO_TEST(comm, status)

IN comm communicator (handle)

OUT status topology type of communicator comm (state)

int MPI_Topo_test(MPI_Comm comm, int *status)

MPI_Topo_test(comm, status, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR

The function MPI_TOPO_TEST returns the type of topology that is assigned to a
communicator.

The output value status is one of the following:

MPI_GRAPH graph topology
MPI_CART Cartesian topology
MPI_DIST_GRAPH distributed graph topology
MPI_UNDEFINED no topology

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 303

MPI_GRAPHDIMS_GET(comm, nnodes, nedges)

IN comm communicator for group with graph structure (handle)

OUT nnodes number of nodes in graph (integer) (same as number

of processes in the group)

OUT nedges number of edges in graph (integer)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

MPI_Graphdims_get(comm, nnodes, nedges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: nnodes, nedges

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)

INTEGER COMM, NNODES, NEDGES, IERROR

Functions MPI_GRAPHDIMS_GET and MPI_GRAPH_GET retrieve the graph-topology
information that was associated with a communicator by MPI_GRAPH_CREATE.

The information provided by MPI_GRAPHDIMS_GET can be used to dimension the
vectors index and edges correctly for the following call to MPI_GRAPH_GET.

MPI_GRAPH_GET(comm, maxindex, maxedges, index, edges)

IN comm communicator with graph structure (handle)

IN maxindex length of vector index in the calling program

(integer)

IN maxedges length of vector edges in the calling program

(integer)

OUT index array of integers containing the graph structure (for

details see the definition of MPI_GRAPH_CREATE)

OUT edges array of integers containing the graph structure

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int index[],

int edges[])

MPI_Graph_get(comm, maxindex, maxedges, index, edges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindex, maxedges

INTEGER, INTENT(OUT) :: index(maxindex), edges(maxedges)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)

INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

304 CHAPTER 7. PROCESS TOPOLOGIES

MPI_CARTDIM_GET(comm, ndims)

IN comm communicator with Cartesian structure (handle)

OUT ndims number of dimensions of the Cartesian structure (in-

teger)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

MPI_Cartdim_get(comm, ndims, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: ndims

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)

INTEGER COMM, NDIMS, IERROR

The functions MPI_CARTDIM_GET and MPI_CART_GET return the Cartesian topol-
ogy information that was associated with a communicator by MPI_CART_CREATE. If comm
is associated with a zero-dimensional Cartesian topology, MPI_CARTDIM_GET returns
ndims=0 and MPI_CART_GET will keep all output arguments unchanged.

MPI_CART_GET(comm, maxdims, dims, periods, coords)

IN comm communicator with Cartesian structure (handle)

IN maxdims length of vectors dims, periods, and

coords in the calling program (integer)

OUT dims number of processes for each Cartesian dimension (ar-

ray of integer)

OUT periods periodicity (true/false) for each Cartesian dimension

(array of logical)

OUT coords coordinates of calling process in Cartesian structure

(array of integer)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[],

int coords[])

MPI_Cart_get(comm, maxdims, dims, periods, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxdims

INTEGER, INTENT(OUT) :: dims(maxdims), coords(maxdims)

LOGICAL, INTENT(OUT) :: periods(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)

INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR

LOGICAL PERIODS(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 305

MPI_CART_RANK(comm, coords, rank)

IN comm communicator with Cartesian structure (handle)

IN coords integer array (of size ndims) specifying the Cartesian

coordinates of a process

OUT rank rank of specified process (integer)

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

MPI_Cart_rank(comm, coords, rank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: coords(*)

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR

For a process group with Cartesian structure, the function MPI_CART_RANK trans-
lates the logical process coordinates to process ranks as they are used by the point-to-point
routines.

For dimension i with periods(i) = true, if the coordinate, coords(i), is out of range, that
is, coords(i) < 0 or coords(i) ≥ dims(i), it is shifted back to the interval
0 ≤ coords(i) < dims(i) automatically. Out-of-range coordinates are erroneous for non-
periodic dimensions.

If comm is associated with a zero-dimensional Cartesian topology, coords is not signif-
icant and 0 is returned in rank.

MPI_CART_COORDS(comm, rank, maxdims, coords)

IN comm communicator with Cartesian structure (handle)

IN rank rank of a process within group of comm (integer)

IN maxdims length of vector coords in the calling program (integer)

OUT coords integer array (of size ndims) containing the Cartesian

coordinates of specified process (array of integers)

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxdims

INTEGER, INTENT(OUT) :: coords(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

The inverse mapping, rank-to-coordinates translation is provided by
MPI_CART_COORDS.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

306 CHAPTER 7. PROCESS TOPOLOGIES

If comm is associated with a zero-dimensional Cartesian topology,
coords will be unchanged.

MPI_GRAPH_NEIGHBORS_COUNT(comm, rank, nneighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

OUT nneighbors number of neighbors of specified process (integer)

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

MPI_Graph_neighbors_count(comm, rank, nneighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank

INTEGER, INTENT(OUT) :: nneighbors

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)

INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_GRAPH_NEIGHBORS(comm, rank, maxneighbors, neighbors)

IN comm communicator with graph topology (handle)

IN rank rank of process in group of comm (integer)

IN maxneighbors size of array neighbors (integer)

OUT neighbors ranks of processes that are neighbors to specified pro-

cess (array of integer)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,

int neighbors[])

MPI_Graph_neighbors(comm, rank, maxneighbors, neighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxneighbors

INTEGER, INTENT(OUT) :: neighbors(maxneighbors)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS provide adjacency
information for a graph topology. The returned count and array of neighbors for the queried
rank will both include all neighbors and reflect the same edge ordering as was specified by
the original call to MPI_GRAPH_CREATE. Specifically, MPI_GRAPH_NEIGHBORS_COUNT
and MPI_GRAPH_NEIGHBORS will return values based on the original index and edges array
passed to MPI_GRAPH_CREATE (assuming that index[-1] effectively equals zero):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 307

• The number of neighbors (nneighbors) returned from
MPI_GRAPH_NEIGHBORS_COUNT will be (index[rank] - index[rank-1]).

• The neighbors array returned from MPI_GRAPH_NEIGHBORS will be edges[index[rank-
1]] through edges[index[rank]-1].

Example 7.5
Assume there are four processes 0, 1, 2, 3 with the following adjacency matrix (note

that some neighbors are listed multiple times):

process neighbors

0 1, 1, 3
1 0, 0
2 3
3 0, 2, 2

Thus, the input arguments to MPI_GRAPH_CREATE are:

nnodes = 4
index = 3, 5, 6, 9
edges = 1, 1, 3, 0, 0, 3, 0, 2, 2

Therefore, calling MPI_GRAPH_NEIGHBORS_COUNT and MPI_GRAPH_NEIGHBORS
for each of the 4 processes will return:

Input rank Count Neighbors

0 3 1, 1, 3
1 2 0, 0
2 1 3
3 3 0, 2, 2

Example 7.6
Suppose that comm is a communicator with a shuffle-exchange topology. The group has

2n members. Each process is labeled by a1, . . . , an with ai ∈ {0, 1}, and has three neighbors:
exchange(a1, . . . , an) = a1, . . . , an−1, ān (ā = 1− a), shuffle(a1, . . . , an) = a2, . . . , an, a1, and
unshuffle(a1, . . . , an) = an, a1, . . . , an−1. The graph adjacency list is illustrated below for
n = 3.

node exchange shuffle unshuffle
neighbors(1) neighbors(2) neighbors(3)

0 (000) 1 0 0
1 (001) 0 2 4
2 (010) 3 4 1
3 (011) 2 6 5
4 (100) 5 1 2
5 (101) 4 3 6
6 (110) 7 5 3
7 (111) 6 7 7

Suppose that the communicator comm has this topology associated with it. The follow-
ing code fragment cycles through the three types of neighbors and performs an appropriate
permutation for each.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

308 CHAPTER 7. PROCESS TOPOLOGIES

C assume: each process has stored a real number A.

C extract neighborhood information

CALL MPI_COMM_RANK(comm, myrank, ierr)

CALL MPI_GRAPH_NEIGHBORS(comm, myrank, 3, neighbors, ierr)

C perform exchange permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(1), 0,

+ neighbors(1), 0, comm, status, ierr)

C perform shuffle permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(2), 0,

+ neighbors(3), 0, comm, status, ierr)

C perform unshuffle permutation

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, neighbors(3), 0,

+ neighbors(2), 0, comm, status, ierr)

MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS pro-
vide adjacency information for a distributed graph topology.

MPI_DIST_GRAPH_NEIGHBORS_COUNT(comm, indegree, outdegree, weighted)

IN comm communicator with distributed graph topology (han-

dle)

OUT indegree number of edges into this process (non-negative inte-

ger)

OUT outdegree number of edges out of this process (non-negative in-

teger)

OUT weighted false if MPI_UNWEIGHTED was supplied during cre-

ation, true otherwise (logical)

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,

int *outdegree, int *weighted)

MPI_Dist_graph_neighbors_count(comm, indegree, outdegree, weighted, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: indegree, outdegree

LOGICAL, INTENT(OUT) :: weighted

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)

INTEGER COMM, INDEGREE, OUTDEGREE, IERROR

LOGICAL WEIGHTED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 309

MPI_DIST_GRAPH_NEIGHBORS(comm, maxindegree, sources, sourceweights, maxoutdegree,
destinations, destweights)

IN comm communicator with distributed graph topology (han-

dle)

IN maxindegree size of sources and sourceweights arrays (non-negative

integer)

OUT sources processes for which the calling process is a destination

(array of non-negative integers)

OUT sourceweights weights of the edges into the calling process (array of

non-negative integers)

IN maxoutdegree size of destinations and destweights arrays

(non-negative integer)

OUT destinations processes for which the calling process is a source (ar-

ray of non-negative integers)

OUT destweights weights of the edges out of the calling process (array

of non-negative integers)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],

int sourceweights[], int maxoutdegree, int destinations[],

int destweights[])

MPI_Dist_graph_neighbors(comm, maxindegree, sources, sourceweights,

maxoutdegree, destinations, destweights, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindegree, maxoutdegree

INTEGER, INTENT(OUT) :: sources(maxindegree),

destinations(maxoutdegree)

INTEGER :: sourceweights(*), destweights(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,

MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), IERROR

These calls are local. The number of edges into and out of the process returned by
MPI_DIST_GRAPH_NEIGHBORS_COUNT are the total number of such edges given in the
call to MPI_DIST_GRAPH_CREATE_ADJACENT or MPI_DIST_GRAPH_CREATE (poten-
tially by processes other than the calling process in the case of
MPI_DIST_GRAPH_CREATE). Multiply defined edges are all counted and returned by
MPI_DIST_GRAPH_NEIGHBORS in some order. If MPI_UNWEIGHTED is supplied for
sourceweights or destweights or both, or if MPI_UNWEIGHTED was supplied during the con-
struction of the graph then no weight information is returned in that array or those arrays.
If the communicator was created with MPI_DIST_GRAPH_CREATE_ADJACENT then for
each rank in comm, the order of the values in sources and destinations is identical to the in-
put that was used by the process with the same rank in comm_old in the creation call. If the
communicator was created with MPI_DIST_GRAPH_CREATE then the only requirement on

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

310 CHAPTER 7. PROCESS TOPOLOGIES

the order of values in sources and destinations is that two calls to the routine with same input
argument comm will return the same sequence of edges. If maxindegree or maxoutdegree is
smaller than the numbers returned by MPI_DIST_GRAPH_NEIGHBOR_COUNT, then only
the first part of the full list is returned.

Advice to implementors. Since the query calls are defined to be local, each process
needs to store the list of its neighbors with incoming and outgoing edges. Communica-
tion is required at the collective MPI_DIST_GRAPH_CREATE call in order to compute
the neighbor lists for each process from the distributed graph specification. (End of
advice to implementors.)

7.5.6 Cartesian Shift Coordinates

If the process topology is a Cartesian structure, an MPI_SENDRECV operation is likely to
be used along a coordinate direction to perform a shift of data. As input, MPI_SENDRECV
takes the rank of a source process for the receive, and the rank of a destination process for the
send. If the function MPI_CART_SHIFT is called for a Cartesian process group, it provides
the calling process with the above identifiers, which then can be passed to MPI_SENDRECV.
The user specifies the coordinate direction and the size of the step (positive or negative).
The function is local.

MPI_CART_SHIFT(comm, direction, disp, rank_source, rank_dest)

IN comm communicator with Cartesian structure (handle)

IN direction coordinate dimension of shift (integer)

IN disp displacement (> 0: upwards shift, < 0: downwards

shift) (integer)

OUT rank_source rank of source process (integer)

OUT rank_dest rank of destination process (integer)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: direction, disp

INTEGER, INTENT(OUT) :: rank_source, rank_dest

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

The direction argument indicates the coordinate dimension to be traversed by the shift.
The dimensions are numbered from 0 to ndims-1, where ndims is the number of dimensions.

Depending on the periodicity of the Cartesian group in the specified coordinate direc-
tion, MPI_CART_SHIFT provides the identifiers for a circular or an end-off shift. In the case
of an end-off shift, the value MPI_PROC_NULL may be returned in rank_source or rank_dest,
indicating that the source or the destination for the shift is out of range.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 311

It is erroneous to call MPI_CART_SHIFT with a direction that is either negative or
greater than or equal to the number of dimensions in the Cartesian communicator. This
implies that it is erroneous to call MPI_CART_SHIFT with a comm that is associated with
a zero-dimensional Cartesian topology.

Example 7.7
The communicator, comm, has a two-dimensional, periodic, Cartesian topology associ-

ated with it. A two-dimensional array of REALs is stored one element per process, in variable
A. One wishes to skew this array, by shifting column i (vertically, i.e., along the column)
by i steps.

....

C find process rank

CALL MPI_COMM_RANK(comm, rank, ierr)

C find Cartesian coordinates

CALL MPI_CART_COORDS(comm, rank, maxdims, coords, ierr)

C compute shift source and destination

CALL MPI_CART_SHIFT(comm, 0, coords(2), source, dest, ierr)

C skew array

CALL MPI_SENDRECV_REPLACE(A, 1, MPI_REAL, dest, 0, source, 0, comm,

+ status, ierr)

Advice to users. In Fortran, the dimension indicated by DIRECTION = i has DIMS(i+1)

nodes, where DIMS is the array that was used to create the grid. In C, the dimension
indicated by direction = i is the dimension specified by dims[i]. (End of advice to users.)

7.5.7 Partitioning of Cartesian Structures

MPI_CART_SUB(comm, remain_dims, newcomm)

IN comm communicator with Cartesian structure (handle)

IN remain_dims the i-th entry of remain_dims specifies whether the

i-th dimension is kept in the subgrid (true) or is drop-

ped (false) (logical vector)

OUT newcomm communicator containing the subgrid that includes

the calling process (handle)

int MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *newcomm)

MPI_Cart_sub(comm, remain_dims, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(IN) :: remain_dims(*)

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

LOGICAL REMAIN_DIMS(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

312 CHAPTER 7. PROCESS TOPOLOGIES

If a Cartesian topology has been created with MPI_CART_CREATE, the function
MPI_CART_SUB can be used to partition the communicator group into subgroups that
form lower-dimensional Cartesian subgrids, and to build for each subgroup a communicator
with the associated subgrid Cartesian topology. If all entries in remain_dims are false or
comm is already associated with a zero-dimensional Cartesian topology then newcomm is
associated with a zero-dimensional Cartesian topology. (This function is closely related to
MPI_COMM_SPLIT.)

Example 7.8
Assume that MPI_CART_CREATE(. . ., comm) has defined a (2 × 3 × 4) grid. Let

remain_dims = (true, false, true). Then a call to,

MPI_CART_SUB(comm, remain_dims, comm_new),

will create three communicators each with eight processes in a 2 × 4 Cartesian topology.
If remain_dims = (false, false, true) then the call to MPI_CART_SUB(comm, remain_dims,
comm_new) will create six non-overlapping communicators, each with four processes, in a
one-dimensional Cartesian topology.

7.5.8 Low-Level Topology Functions

The two additional functions introduced in this section can be used to implement all other
topology functions. In general they will not be called by the user directly, unless he or she
is creating additional virtual topology capability other than that provided by MPI. The two
calls are both local.

MPI_CART_MAP(comm, ndims, dims, periods, newrank)

IN comm input communicator (handle)

IN ndims number of dimensions of Cartesian structure (integer)

IN dims integer array of size ndims specifying the number of

processes in each coordinate direction

IN periods logical array of size ndims specifying the periodicity

specification in each coordinate direction

OUT newrank reordered rank of the calling process;

MPI_UNDEFINED if calling process does not belong

to grid (integer)

int MPI_Cart_map(MPI_Comm comm, int ndims, const int dims[], const

int periods[], int *newrank)

MPI_Cart_map(comm, ndims, dims, periods, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.5. TOPOLOGY CONSTRUCTORS 313

INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR

LOGICAL PERIODS(*)

MPI_CART_MAP computes an “optimal” placement for the calling process on the phys-
ical machine. A possible implementation of this function is to always return the rank of the
calling process, that is, not to perform any reordering.

Advice to implementors. The function MPI_CART_CREATE(comm, ndims, dims,
periods, reorder, comm_cart), with reorder = true can be implemented by calling
MPI_CART_MAP(comm, ndims, dims, periods, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_cart), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank. If ndims
is zero then a zero-dimensional Cartesian topology is created.

The function MPI_CART_SUB(comm, remain_dims, comm_new) can be implemented
by a call to MPI_COMM_SPLIT(comm, color, key, comm_new), using a single number
encoding of the lost dimensions as color and a single number encoding of the preserved
dimensions as key.

All other Cartesian topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

The corresponding function for graph structures is as follows.

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank)

IN comm input communicator (handle)

IN nnodes number of graph nodes (integer)

IN index integer array specifying the graph structure, see

MPI_GRAPH_CREATE

IN edges integer array specifying the graph structure

OUT newrank reordered rank of the calling process;

MPI_UNDEFINED if the calling process does not be-

long to graph (integer)

int MPI_Graph_map(MPI_Comm comm, int nnodes, const int index[], const

int edges[], int *newrank)

MPI_Graph_map(comm, nnodes, index, edges, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

Advice to implementors. The function MPI_GRAPH_CREATE(comm, nnodes, index,
edges, reorder, comm_graph), with reorder = true can be implemented by calling

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

314 CHAPTER 7. PROCESS TOPOLOGIES

MPI_GRAPH_MAP(comm, nnodes, index, edges, newrank), then calling
MPI_COMM_SPLIT(comm, color, key, comm_graph), with color = 0 if newrank 6=
MPI_UNDEFINED, color = MPI_UNDEFINED otherwise, and key = newrank.

All other graph topology functions can be implemented locally, using the topology
information that is cached with the communicator. (End of advice to implementors.)

7.6 Neighborhood Collective Communication on Process Topologies

MPI process topologies specify a communication graph, but they implement no commu-
nication function themselves. Many applications require sparse nearest neighbor commu-
nications that can be expressed as graph topologies. We now describe several collective
operations that perform communication along the edges of a process topology. All of these
functions are collective; i.e., they must be called by all processes in the specified commu-
nicator. See Section 5 for an overview of other dense (global) collective communication
operations and the semantics of collective operations.

If the graph was created with MPI_DIST_GRAPH_CREATE_ADJACENT with sources
and destinations containing 0, . . ., n-1, where n is the number of processes in the group
of comm_old (i.e., the graph is fully connected and also includes an edge from each node
to itself), then the sparse neighborhood communication routine performs the same data
exchange as the corresponding dense (fully-connected) collective operation. In the case of a
Cartesian communicator, only nearest neighbor communication is provided, corresponding
to rank_source and rank_dest in MPI_CART_SHIFT with input disp=1.

Rationale. Neighborhood collective communications enable communication on a
process topology. This high-level specification of data exchange among neighboring
processes enables optimizations in the MPI library because the communication pattern
is known statically (the topology). Thus, the implementation can compute optimized
message schedules during creation of the topology [35]. This functionality can signif-
icantly simplify the implementation of neighbor exchanges [31]. (End of rationale.)

For a distributed graph topology, created with MPI_DIST_GRAPH_CREATE, the se-
quence of neighbors in the send and receive buffers at each process is defined as the se-
quence returned by MPI_DIST_GRAPH_NEIGHBORS for destinations and sources, respec-
tively. For a general graph topology, created with MPI_GRAPH_CREATE, the order of
neighbors in the send and receive buffers is defined as the sequence of neighbors as re-
turned by MPI_GRAPH_NEIGHBORS. Note that general graph topologies should generally
be replaced by the distributed graph topologies.

For a Cartesian topology, created with MPI_CART_CREATE, the sequence of neigh-
bors in the send and receive buffers at each process is defined by order of the dimensions,
first the neighbor in the negative direction and then in the positive direction with dis-
placement 1. The numbers of sources and destinations in the communication routines are
2*ndims with ndims defined in MPI_CART_CREATE. If a neighbor does not exist, i.e., at
the border of a Cartesian topology in the case of a non-periodic virtual grid dimension (i.e.,
periods[. . .]==false), then this neighbor is defined to be MPI_PROC_NULL.

If a neighbor in any of the functions is MPI_PROC_NULL, then the neighborhood collec-
tive communication behaves like a point-to-point communication with MPI_PROC_NULL in
this direction. That is, the buffer is still part of the sequence of neighbors but it is neither
communicated nor updated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 315

7.6.1 Neighborhood Gather

In this function, each process i gathers data items from each process j if an edge (j, i) exists
in the topology graph, and each process i sends the same data items to all processes j where
an edge (i, j) exists. The send buffer is sent to each neighboring process and the l-th block
in the receive buffer is received from the l-th neighbor.

MPI_NEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgather(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm,&indegree,&outdegree,&weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm,indegree,srcs,MPI_UNWEIGHTED,

outdegree,dsts,MPI_UNWEIGHTED);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

316 CHAPTER 7. PROCESS TOPOLOGIES

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf,sendcount,sendtype,dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+l*recvcount*extent(recvtype),recvcount,recvtype,

srcs[l],...);

MPI_Waitall(...);

Figure 7.1 shows the neighborhood gather communication of one process with outgoing
neighbors d0 . . . d3 and incoming neighbors s0 . . . s5. The process will send its sendbuf to
all four destinations (outgoing neighbors) and it will receive the contribution from all six
sources (incoming neighbors) into separate locations of its receive buffer.

d�@
@R� B
B
B
B
BBM

+�
�
�
�
��3

�
�
�
��MB
B
B
B
BBN

H
HH

H
HH

HHY

recvbuf

sendbuf

d0

s0

s1

s2
s3

d2, s4

d3, s5

d1

s0 s1 s2 s3 s4 s5

Figure 7.1: FIXME: You cannot use the label command without a caption

All arguments are significant on all processes and the argument
comm must have identical values on all processes.

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at all other processes. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

Rationale. For optimization reasons, the same type signature is required indepen-
dently of whether the topology graph is connected or not. (End of rationale.)

The “in place” option is not meaningful for this operation.
The vector variant of MPI_NEIGHBOR_ALLGATHER allows one to gather different

numbers of elements from each neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 317

MPI_NEIGHBOR_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) con-

taining the number of elements that are received from

each neighbor

IN displs integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm,&indegree,&outdegree,&weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm,indegree,srcs,MPI_UNWEIGHTED,

outdegree,dsts,MPI_UNWEIGHTED);

int k,l;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

318 CHAPTER 7. PROCESS TOPOLOGIES

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf,sendcount,sendtype,dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+displs[l]*extent(recvtype),recvcounts[l],recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcount, sendtype, at process j must be equal
to the type signature associated with recvcounts[l], recvtype at any other process with
srcs[l]==j. This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of communicating processes. Distinct type maps
between sender and receiver are still allowed. The data received from the l-th neighbor is
placed into recvbuf beginning at offset displs[l] elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument

comm must have identical values on all processes.

7.6.2 Neighbor Alltoall

In this function, each process i receives data items from each process j if an edge (j, i)
exists in the topology graph or Cartesian topology. Similarly, each process i sends data
items to all processes j where an edge (i, j) exists. This call is more general than
MPI_NEIGHBOR_ALLGATHER in that different data items can be sent to each neighbor.
The k-th block in send buffer is sent to the k-th neighboring process and the l-th block in
the receive buffer is received from the l-th neighbor.

MPI_NEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 319

MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm,&indegree,&outdegree,&weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm,indegree,srcs,MPI_UNWEIGHTED,

outdegree,dsts,MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+k*sendcount*extent(sendtype),sendcount,sendtype,

dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+l*recvcount*extent(recvtype),recvcount,recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcount, sendtype, at a process must be equal to
the type signature associated with recvcount, recvtype at any other process. This implies
that the amount of data sent must be equal to the amount of data received, pairwise between
every pair of communicating processes. Distinct type maps between sender and receiver are
still allowed.

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument

comm must have identical values on all processes.
The vector variant of MPI_NEIGHBOR_ALLTOALL allows sending/receiving different

numbers of elements to and from each neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

320 CHAPTER 7. PROCESS TOPOLOGIES

MPI_NEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-

fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement (relative to sendbuf) from which to

send the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) speci-

fying the number of elements that are received from

each neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[], MPI_Datatype

recvtype, MPI_Comm comm)

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm,&indegree,&outdegree,&weighted);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.6. NEIGHBORHOOD COLLECTIVE COMMUNICATION 321

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm,indegree,srcs,MPI_UNWEIGHTED,

outdegree,dsts,MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+sdispls[k]*extent(sendtype),sendcounts[k],sendtype,

dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+rdispls[l]*extent(recvtype),recvcounts[l],recvtype,

srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtype with dsts[k]==j at process
i must be equal to the type signature associated with recvcounts[l], recvtype with srcs[l]==i
at process j. This implies that the amount of data sent must be equal to the amount of
data received, pairwise between every pair of communicating processes. Distinct type maps
between sender and receiver are still allowed. The data in the sendbuf beginning at offset
sdispls[k] elements (in terms of the sendtype) is sent to the k-th outgoing neighbor. The data
received from the l-th incoming neighbor is placed into recvbuf beginning at offset rdispls[l]
elements (in terms of the recvtype).

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument

comm must have identical values on all processes.
MPI_NEIGHBOR_ALLTOALLW allows one to send and receive with different datatypes

to and from each neighbor.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

322 CHAPTER 7. PROCESS TOPOLOGIES

MPI_NEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-

fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for neighbor

j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j spec-

ifies the type of data to send to neighbor j (array of

handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) speci-

fying the number of elements that are received from

each neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement in bytes (relative to recvbuf) at which

to place the incoming data from neighbor i (array of

integers)

IN recvtypes array of datatypes (of length indegree). Entry i spec-

ifies the type of data received from neighbor i (array

of handles)

IN comm communicator with topology structure (handle)

int MPI_Neighbor_alltoallw(const void* sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void* recvbuf, const int recvcounts[], const MPI_Aint

rdispls[], const MPI_Datatype recvtypes[], MPI_Comm comm)

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_NEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 323

This function supports Cartesian communicators, graph communicators, and distributed
graph communicators as described in Section 7.6. If comm is a distributed graph commu-
nicator, the outcome is as if each process executed sends to each of its outgoing neighbors
and receives from each of its incoming neighbors:

MPI_Dist_graph_neighbors_count(comm,&indegree,&outdegree,&weighted);

int *srcs=(int*)malloc(indegree*sizeof(int));

int *dsts=(int*)malloc(outdegree*sizeof(int));

MPI_Dist_graph_neighbors(comm,indegree,srcs,MPI_UNWEIGHTED,

outdegree,dsts,MPI_UNWEIGHTED);

int k,l;

/* assume sendbuf and recvbuf are of type (char*) */

for(k=0; k<outdegree; ++k)

MPI_Isend(sendbuf+sdispls[k],sendcounts[k], sendtypes[k],dsts[k],...);

for(l=0; l<indegree; ++l)

MPI_Irecv(recvbuf+rdispls[l],recvcounts[l], recvtypes[l],srcs[l],...);

MPI_Waitall(...);

The type signature associated with sendcounts[k], sendtypes[k] with dsts[k]==j at pro-
cess i must be equal to the type signature associated with recvcounts[l], recvtypes[l] with
srcs[l]==i at process j. This implies that the amount of data sent must be equal to the
amount of data received, pairwise between every pair of communicating processes. Distinct
type maps between sender and receiver are still allowed.

The “in place” option is not meaningful for this operation.
All arguments are significant on all processes and the argument

comm must have identical values on all processes.

7.7 Nonblocking Neighborhood Communication on Process Topologies

Nonblocking variants of the neighborhood collective operations allow relaxed synchroniza-
tion and overlapping of computation and communication. The semantics are similar to
nonblocking collective operations as described in Section 5.12.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

324 CHAPTER 7. PROCESS TOPOLOGIES

7.7.1 Nonblocking Neighborhood Gather

MPI_INEIGHBOR_ALLGATHER(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHER.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 325

MPI_INEIGHBOR_ALLGATHERV(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,
recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) con-

taining the number of elements that are received from

each neighbor

IN displs integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Request *request)

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLGATHERV.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

326 CHAPTER 7. PROCESS TOPOLOGIES

7.7.2 Nonblocking Neighborhood Alltoall

MPI_INEIGHBOR_ALLTOALL(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,
comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcount number of elements sent to each neighbor (non-negative

integer)

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcount number of elements received from each neighbor (non-

negative integer)

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALL.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.7. NONBLOCKING NEIGHBORHOOD COMMUNICATION 327

MPI_INEIGHBOR_ALLTOALLV(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,
rdispls, recvtype, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-

fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement (relative to sendbuf) from which send

the outgoing data to neighbor j

IN sendtype data type of send buffer elements (handle)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) speci-

fying the number of elements that are received from

each neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement (relative to recvbuf) at which to place the

incoming data from neighbor i

IN recvtype data type of receive buffer elements (handle)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[], MPI_Datatype

recvtype, MPI_Comm comm, MPI_Request *request)

MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLV.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

328 CHAPTER 7. PROCESS TOPOLOGIES

MPI_INEIGHBOR_ALLTOALLW(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,
rdispls, recvtypes, comm, request)

IN sendbuf starting address of send buffer (choice)

IN sendcounts non-negative integer array (of length outdegree) speci-

fying the number of elements to send to each neighbor

IN sdispls integer array (of length outdegree). Entry j specifies

the displacement in bytes (relative to sendbuf) from

which to take the outgoing data destined for neighbor

j (array of integers)

IN sendtypes array of datatypes (of length outdegree). Entry j spec-

ifies the type of data to send to neighbor j (array of

handles)

OUT recvbuf starting address of receive buffer (choice)

IN recvcounts non-negative integer array (of length indegree) speci-

fying the number of elements that are received from

each neighbor

IN rdispls integer array (of length indegree). Entry i specifies the

displacement in bytes (relative to recvbuf) at which

to place the incoming data from neighbor i (array of

integers)

IN recvtypes array of datatypes (of length indegree). Entry i spec-

ifies the type of data received from neighbor i (array

of handles)

IN comm communicator with topology structure (handle)

OUT request communication request (handle)

int MPI_Ineighbor_alltoallw(const void* sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void* recvbuf, const int recvcounts[], const MPI_Aint

rdispls[], const MPI_Datatype recvtypes[], MPI_Comm comm,

MPI_Request *request)

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS ::

sdispls(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.8. AN APPLICATION EXAMPLE 329

MPI_INEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

REQUEST, IERROR

This call starts a nonblocking variant of MPI_NEIGHBOR_ALLTOALLW.

7.8 An Application Example

Example 7.9 The example in Figures 7.2-7.4 shows how the grid definition and inquiry
functions can be used in an application program. A partial differential equation, for instance
the Poisson equation, is to be solved on a rectangular domain. First, the processes organize
themselves in a two-dimensional structure. Each process then inquires about the ranks of
its neighbors in the four directions (up, down, right, left). The numerical problem is solved
by an iterative method, the details of which are hidden in the subroutine relax.

In each relaxation step each process computes new values for the solution grid function
at the points u(1:100,1:100) owned by the process. Then the values at inter-process
boundaries have to be exchanged with neighboring processes. For example, the newly
calculated values in u(1,1:100) must be sent into the halo cells u(101,1:100) of the
left-hand neighbor with coordinates (own_coord(1)-1,own_coord(2)).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

330 CHAPTER 7. PROCESS TOPOLOGIES

INTEGER ndims, num_neigh

LOGICAL reorder

PARAMETER (ndims=2, num_neigh=4, reorder=.true.)

INTEGER comm, comm_cart, dims(ndims), ierr

INTEGER neigh_rank(num_neigh), own_coords(ndims), i, j, it

LOGICAL periods(ndims)

REAL u(0:101,0:101), f(0:101,0:101)

DATA dims / ndims * 0 /

comm = MPI_COMM_WORLD

! Set process grid size and periodicity

CALL MPI_DIMS_CREATE(comm, ndims, dims,ierr)

periods(1) = .TRUE.

periods(2) = .TRUE.

! Create a grid structure in WORLD group and inquire about own position

CALL MPI_CART_CREATE (comm, ndims, dims, periods, reorder, &

comm_cart,ierr)

CALL MPI_CART_GET (comm_cart, ndims, dims, periods, own_coords,ierr)

i = own_coords(1)

j = own_coords(2)

! Look up the ranks for the neighbors. Own process coordinates are (i,j).

! Neighbors are (i-1,j), (i+1,j), (i,j-1), (i,j+1) modulo (dims(1),dims(2))

CALL MPI_CART_SHIFT (comm_cart, 0,1, neigh_rank(1),neigh_rank(2), ierr)

CALL MPI_CART_SHIFT (comm_cart, 1,1, neigh_rank(3),neigh_rank(4), ierr)

! Initialize the grid functions and start the iteration

CALL init (u, f)

DO it=1,100

CALL relax (u, f)

! Exchange data with neighbor processes

CALL exchange (u, comm_cart, neigh_rank, num_neigh)

END DO

CALL output (u)

Figure 7.2: Set-up of process structure for two-dimensional parallel Poisson solver.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

7.8. AN APPLICATION EXAMPLE 331

SUBROUTINE exchange (u, comm_cart, neigh_rank, num_neigh)

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

REAL sndbuf(100,num_neigh), rcvbuf(100,num_neigh)

INTEGER ierr

sndbuf(1:100,1) = u(1,1:100)

sndbuf(1:100,2) = u(100,1:100)

sndbuf(1:100,3) = u(1:100, 1)

sndbuf(1:100,4) = u(1:100,100)

CALL MPI_NEIGHBOR_ALLTOALL (sndbuf, 100, MPI_REAL, rcvbuf, 100, MPI_REAL, &

comm_cart, ierr)

! instead of

! DO i=1,num_neigh

! CALL MPI_IRECV(rcvbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2*i-1),&

! ierr)

! CALL MPI_ISEND(sndbuf(1,i),100,MPI_REAL,neigh_rank(i),...,rq(2*i),&

! ierr)

! END DO

! CALL MPI_WAITALL (2*num_neigh, rq, statuses, ierr)

u(0,1:100) = rcvbuf(1:100,1)

u(101,1:100) = rcvbuf(1:100,2)

u(1:100, 0) = rcvbuf(1:100,3)

u(1:100,101) = rcvbuf(1:100,4)

END

Figure 7.3: Communication routine with local data copying and sparse neighborhood all-
to-all.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

332 CHAPTER 7. PROCESS TOPOLOGIES

SUBROUTINE exchange (u, comm_cart, neigh_rank, num_neigh)

IMPLICIT NONE

USE MPI

REAL u(0:101,0:101)

INTEGER comm_cart, num_neigh, neigh_rank(num_neigh)

INTEGER sndcounts(num_neigh), sndtypes(num_neigh)

INTEGER rcvcounts(num_neigh), rcvtypes(num_neigh)

INTEGER (KIND=MPI_ADDRESS_KIND) lb, sizeofreal

INTEGER (KIND=MPI_ADDRESS_KIND) sdispls(num_neigh), rdispls(num_neigh)

INTEGER type_vec, ierr

! The following initialization need to be done only once

! before the first call of exchange.

CALL MPI_TYPE_GET_EXTENT (MPI_REAL, lb, sizeofreal, ierr)

CALL MPI_TYPE_VECTOR (100, 1, 102, MPI_REAL, type_vec, ierr)

CALL MPI_TYPE_COMMIT (type_vec, ierr)

sndtypes(1:2) = type_vec

sndcounts(1:2) = 1

sndtypes(3:4) = MPI_REAL

sndcounts(3:4) = 100

rcvtypes = sndtypes

rcvcounts = sndcounts

sdispls(1) = (1 + 1*102) * sizeofreal ! first element of u(1 , 1:100)

sdispls(2) = (100 + 1*102) * sizeofreal ! first element of u(100 , 1:100)

sdispls(3) = (1 + 1*102) * sizeofreal ! first element of u(1:100, 1)

sdispls(4) = (1 + 100*102) * sizeofreal ! first element of u(1:100,100)

rdispls(1) = (0 + 1*102) * sizeofreal ! first element of u(0 , 1:100)

rdispls(2) = (101 + 1*102) * sizeofreal ! first element of u(101 , 1:100)

rdispls(3) = (1 + 0*102) * sizeofreal ! first element of u(1:100, 0)

rdispls(4) = (1 + 101*102) * sizeofreal ! first element of u(1:100,101)

! the following communication has to be done in each call of exchange

CALL MPI_NEIGHBOR_ALLTOALLW (u, sndcounts, sdispls, sndtypes, &

u, rcvcounts, rdispls, rcvtypes, &

comm_cart, ierr)

! The following finalizing need to be done only once

! after the last call of exchange.

CALL MPI_TYPE_FREE (type_vec, ierr)

END

Figure 7.4: Communication routine with sparse neighborhood all-to-all-w and without local
data copying.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 8

MPI Environmental Management

This chapter discusses routines for getting and, where appropriate, setting various param-
eters that relate to the MPI implementation and the execution environment (such as error
handling). The procedures for entering and leaving the MPI execution environment are also
described here.

8.1 Implementation Information

8.1.1 Version Inquiries

In order to cope with changes to the MPI Standard, there are both compile-time and run-
time ways to determine which version of the standard is in use in the environment one is
using.

The “version” will be represented by two separate integers, for the version and subver-
sion: In C,

#define MPI_VERSION 3

#define MPI_SUBVERSION 0

in Fortran,

INTEGER :: MPI_VERSION, MPI_SUBVERSION

PARAMETER (MPI_VERSION = 3)

PARAMETER (MPI_SUBVERSION = 0)

For runtime determination,

MPI_GET_VERSION(version, subversion)

OUT version version number (integer)

OUT subversion subversion number (integer)

int MPI_Get_version(int *version, int *subversion)

MPI_Get_version(version, subversion, ierror)

INTEGER, INTENT(OUT) :: version, subversion

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

333

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

334 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

MPI_GET_VERSION can be called before MPI_INIT and after MPI_FINALIZE. Valid
(MPI_VERSION, MPI_SUBVERSION) pairs in this and previous versions of the MPI standard
are (3,0), (2,2), (2,1), (2,0), and (1,2).

MPI_GET_LIBRARY_VERSION(version, resultlen)

OUT version version string (string)

OUT resultlen Length (in printable characters) of the result returned

in version (integer)

int MPI_Get_library_version(char *version, int *resultlen)

MPI_Get_library_version(version, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_LIBRARY_VERSION_STRING), INTENT(OUT) :: version

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)

CHARACTER*(*) VERSION

INTEGER RESULTLEN,IERROR

This routine returns a string representing the version of the MPI library. The version
argument is a character string for maximum flexibility.

Advice to implementors. An implementation of MPI should return a different string
for every change to its source code or build that could be visible to the user. (End of
advice to implementors.)

The argument version must represent storage that is
MPI_MAX_LIBRARY_VERSION_STRING characters long. MPI_GET_LIBRARY_VERSION may
write up to this many characters into version.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at version[resultlen]. The value of resultlen cannot
be larger than MPI_MAX_LIBRARY_VERSION_STRING - 1. In Fortran, version is padded on
the right with blank characters. The value of resultlen cannot be larger than
MPI_MAX_LIBRARY_VERSION_STRING.

MPI_GET_LIBRARY_VERSION can be called before MPI_INIT and after
MPI_FINALIZE.

8.1.2 Environmental Inquiries

A set of attributes that describe the execution environment are attached to the communi-
cator MPI_COMM_WORLD when MPI is initialized. The values of these attributes can be
inquired by using the function MPI_COMM_GET_ATTR described in Section 6.7 and in
Section 17.2.7. It is erroneous to delete these attributes, free their keys, or change their
values.

The list of predefined attribute keys include

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.1. IMPLEMENTATION INFORMATION 335

MPI_TAG_UB Upper bound for tag value.

MPI_HOST Host process rank, if such exists, MPI_PROC_NULL, otherwise.

MPI_IO rank of a node that has regular I/O facilities (possibly myrank). Nodes in the same
communicator may return different values for this parameter.

MPI_WTIME_IS_GLOBAL Boolean variable that indicates whether clocks are synchronized.

Vendors may add implementation-specific parameters (such as node number, real mem-
ory size, virtual memory size, etc.)

These predefined attributes do not change value between MPI initialization (MPI_INIT)
and MPI completion (MPI_FINALIZE), and cannot be updated or deleted by users.

Advice to users. Note that in the C binding, the value returned by these attributes
is a pointer to an int containing the requested value. (End of advice to users.)

The required parameter values are discussed in more detail below:

Tag Values

Tag values range from 0 to the value returned for MPI_TAG_UB, inclusive. These values are
guaranteed to be unchanging during the execution of an MPI program. In addition, the tag
upper bound value must be at least 32767. An MPI implementation is free to make the
value of MPI_TAG_UB larger than this; for example, the value 230 − 1 is also a valid value
for MPI_TAG_UB.

The attribute MPI_TAG_UB has the same value on all processes of MPI_COMM_WORLD.

Host Rank

The value returned for MPI_HOST gets the rank of the HOST process in the group associated
with communicator MPI_COMM_WORLD, if there is such. MPI_PROC_NULL is returned if
there is no host. MPI does not specify what it means for a process to be a HOST , nor does
it requires that a HOST exists.

The attribute MPI_HOST has the same value on all processes of MPI_COMM_WORLD.

IO Rank

The value returned for MPI_IO is the rank of a processor that can provide language-standard
I/O facilities. For Fortran, this means that all of the Fortran I/O operations are supported
(e.g., OPEN, REWIND, WRITE). For C, this means that all of the ISO C I/O operations are
supported (e.g., fopen, fprintf, lseek).

If every process can provide language-standard I/O, then the value MPI_ANY_SOURCE

will be returned. Otherwise, if the calling process can provide language-standard I/O,
then its rank will be returned. Otherwise, if some process can provide language-standard
I/O then the rank of one such process will be returned. The same value need not be
returned by all processes. If no process can provide language-standard I/O, then the value
MPI_PROC_NULL will be returned.

Advice to users. Note that input is not collective, and this attribute does not indicate
which process can or does provide input. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

336 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Clock Synchronization

The value returned for MPI_WTIME_IS_GLOBAL is 1 if clocks at all processes in
MPI_COMM_WORLD are synchronized, 0 otherwise. A collection of clocks is considered
synchronized if explicit effort has been taken to synchronize them. The expectation is that
the variation in time, as measured by calls to MPI_WTIME, will be less then one half the
round-trip time for an MPI message of length zero. If time is measured at a process just
before a send and at another process just after a matching receive, the second time should
be always higher than the first one.

The attribute MPI_WTIME_IS_GLOBAL need not be present when the clocks are not
synchronized (however, the attribute key MPI_WTIME_IS_GLOBAL is always valid). This
attribute may be associated with communicators other then MPI_COMM_WORLD.

The attribute MPI_WTIME_IS_GLOBAL has the same value on all processes of
MPI_COMM_WORLD.

Inquire Processor Name

MPI_GET_PROCESSOR_NAME(name, resultlen)

OUT name A unique specifier for the actual (as opposed to vir-

tual) node.

OUT resultlen Length (in printable characters) of the result returned

in name

int MPI_Get_processor_name(char *name, int *resultlen)

MPI_Get_processor_name(name, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)

CHARACTER*(*) NAME

INTEGER RESULTLEN,IERROR

This routine returns the name of the processor on which it was called at the moment
of the call. The name is a character string for maximum flexibility. From this value it
must be possible to identify a specific piece of hardware; possible values include “processor
9 in rack 4 of mpp.cs.org” and “231” (where 231 is the actual processor number in the
running homogeneous system). The argument name must represent storage that is at least
MPI_MAX_PROCESSOR_NAME characters long. MPI_GET_PROCESSOR_NAME may write
up to this many characters into name.

The number of characters actually written is returned in the output argument, resultlen.
In C, a null character is additionally stored at name[resultlen]. The value of resultlen cannot
be larger than MPI_MAX_PROCESSOR_NAME-1. In Fortran, name is padded on the right with
blank characters. The value of resultlen cannot be larger than MPI_MAX_PROCESSOR_NAME.

Rationale. This function allows MPI implementations that do process migration to
return the current processor. Note that nothing in MPI requires or defines process

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.2. MEMORY ALLOCATION 337

migration; this definition of MPI_GET_PROCESSOR_NAME simply allows such an
implementation. (End of rationale.)

Advice to users. The user must provide at least MPI_MAX_PROCESSOR_NAME space
to write the processor name — processor names can be this long. The user should
examine the output argument, resultlen, to determine the actual length of the name.
(End of advice to users.)

8.2 Memory Allocation

In some systems, message-passing and remote-memory-access (RMA) operations run faster
when accessing specially allocated memory (e.g., memory that is shared by the other pro-
cesses in the communicating group on an SMP). MPI provides a mechanism for allocating
and freeing such special memory. The use of such memory for message-passing or RMA
is not mandatory, and this memory can be used without restrictions as any other dynam-
ically allocated memory. However, implementations may restrict the use of some RMA
functionality as defined in Section 11.5.3.

MPI_ALLOC_MEM(size, info, baseptr)

IN size size of memory segment in bytes (non-negative inte-

ger)

IN info info argument (handle)

OUT baseptr pointer to beginning of memory segment allocated

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

MPI_Alloc_mem(size, info, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must
be provided in the mpi module and should be provided in mpif.h through overloading,
i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND)

BASEPTR, but with a different specific procedure name:

INTERFACE MPI_ALLOC_MEM

SUBROUTINE MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

338 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

END SUBROUTINE

SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

The base procedure name of this overloaded function is MPI_ALLOC_MEM_CPTR. The
implied specific procedure names are described in Section 17.1.5.

The info argument can be used to provide directives that control the desired location
of the allocated memory. Such a directive does not affect the semantics of the call. Valid
info values are implementation-dependent; a null directive value of info = MPI_INFO_NULL
is always valid.

The function MPI_ALLOC_MEM may return an error code of class MPI_ERR_NO_MEM

to indicate it failed because memory is exhausted.

MPI_FREE_MEM(base)

IN base initial address of memory segment allocated by

MPI_ALLOC_MEM (choice)

int MPI_Free_mem(void *base)

MPI_Free_mem(base, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: base

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FREE_MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

The function MPI_FREE_MEM may return an error code of class MPI_ERR_BASE to
indicate an invalid base argument.

Rationale. The C bindings of MPI_ALLOC_MEM and MPI_FREE_MEM are similar
to the bindings for the malloc and free C library calls: a call to
MPI_Alloc_mem(. . ., &base) should be paired with a call to MPI_Free_mem(base) (one
less level of indirection). Both arguments are declared to be of same type
void* so as to facilitate type casting. The Fortran binding is consistent with the C
bindings: the Fortran MPI_ALLOC_MEM call returns in baseptr the TYPE(C_PTR)

pointer or the (integer valued) address of the allocated memory. The base argument
of MPI_FREE_MEM is a choice argument, which passes (a reference to) the variable
stored at that location. (End of rationale.)

Advice to implementors. If MPI_ALLOC_MEM allocates special memory, then a
design similar to the design of C malloc and free functions has to be used, in order

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.2. MEMORY ALLOCATION 339

to find out the size of a memory segment, when the segment is freed. If no special
memory is used, MPI_ALLOC_MEM simply invokes malloc, and MPI_FREE_MEM
invokes free.

A call to MPI_ALLOC_MEM can be used in shared memory systems to allocate mem-
ory in a shared memory segment. (End of advice to implementors.)

Example 8.1 Example of use of MPI_ALLOC_MEM, in Fortran with
TYPE(C_PTR) pointers. We assume 4-byte REALs.

USE mpi_f08 ! or USE mpi (not guaranteed with INCLUDE ’mpif.h’)

USE, INTRINSIC :: ISO_C_BINDING

TYPE(C_PTR) :: p

REAL, DIMENSION(:,:), POINTER :: a ! no memory is allocated

INTEGER, DIMENSION(2) :: shape

INTEGER(KIND=MPI_ADDRESS_KIND) :: size

shape = (/100,100/)

size = 4 * shape(1) * shape(2) ! assuming 4 bytes per REAL

CALL MPI_Alloc_mem(size,MPI_INFO_NULL,p,ierr) ! memory is allocated and

CALL C_F_POINTER(p, a, shape) ! intrinsic ! now accessible via a(i,j)

... ! in ISO_C_BINDING

a(3,5) = 2.71;

...

CALL MPI_Free_mem(a, ierr) ! memory is freed

Example 8.2 Example of use of MPI_ALLOC_MEM, in Fortran with non-standard Cray-
pointers. We assume 4-byte REALs, and assume that these pointers are address-sized.

REAL A

POINTER (P, A(100,100)) ! no memory is allocated

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

SIZE = 4*100*100

CALL MPI_ALLOC_MEM(SIZE, MPI_INFO_NULL, P, IERR)

! memory is allocated

...

A(3,5) = 2.71;

...

CALL MPI_FREE_MEM(A, IERR) ! memory is freed

This code is not Fortran 77 or Fortran 90 code. Some compilers may not support this
code or need a special option, e.g., the GNU gFortran compiler needs -fcray-pointer.

Advice to implementors. Some compilers map Cray-pointers to address-sized integers,
some to TYPE(C_PTR) pointers (e.g., Cray Fortran, version 7.3.3). From the user’s
viewpoint, this mapping is irrelevant because Examples 8.2 should work correctly
with an MPI-3.0 (or later) library if Cray-pointers are available. (End of advice to
implementors.)

Example 8.3 Same example, in C.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

340 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

float (* f)[100][100];

/* no memory is allocated */

MPI_Alloc_mem(sizeof(float)*100*100, MPI_INFO_NULL, &f);

/* memory allocated */

...

(*f)[5][3] = 2.71;

...

MPI_Free_mem(f);

8.3 Error Handling

An MPI implementation cannot or may choose not to handle some errors that occur during
MPI calls. These can include errors that generate exceptions or traps, such as floating point
errors or access violations. The set of errors that are handled by MPI is implementation-
dependent. Each such error generates an MPI exception.

The above text takes precedence over any text on error handling within this document.
Specifically, text that states that errors will be handled should be read as may be handled.

A user can associate error handlers to three types of objects: communicators, windows,
and files. The specified error handling routine will be used for any MPI exception that occurs
during a call to MPI for the respective object. MPI calls that are not related to any objects
are considered to be attached to the communicator MPI_COMM_WORLD. The attachment
of error handlers to objects is purely local: different processes may attach different error
handlers to corresponding objects.

Several predefined error handlers are available in MPI:

MPI_ERRORS_ARE_FATAL The handler, when called, causes the program to abort on all
executing processes. This has the same effect as if MPI_ABORT was called by the
process that invoked the handler.

MPI_ERRORS_RETURN The handler has no effect other than returning the error code to
the user.

Implementations may provide additional predefined error handlers and programmers
can code their own error handlers.

The error handler MPI_ERRORS_ARE_FATAL is associated by default with MPI_COMM-

_WORLD after initialization. Thus, if the user chooses not to control error handling, every
error that MPI handles is treated as fatal. Since (almost) all MPI calls return an error code,
a user may choose to handle errors in its main code, by testing the return code of MPI
calls and executing a suitable recovery code when the call was not successful. In this case,
the error handler MPI_ERRORS_RETURN will be used. Usually it is more convenient and
more efficient not to test for errors after each MPI call, and have such error handled by a
non-trivial MPI error handler.

After an error is detected, the state of MPI is undefined. That is, using a user-defined
error handler, or MPI_ERRORS_RETURN, does not necessarily allow the user to continue to
use MPI after an error is detected. The purpose of these error handlers is to allow a user to
issue user-defined error messages and to take actions unrelated to MPI (such as flushing I/O
buffers) before a program exits. An MPI implementation is free to allow MPI to continue
after an error but is not required to do so.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.3. ERROR HANDLING 341

Advice to implementors. A high-quality implementation will, to the greatest possible
extent, circumscribe the impact of an error, so that normal processing can continue
after an error handler was invoked. The implementation documentation will provide
information on the possible effect of each class of errors. (End of advice to implemen-
tors.)

An MPI error handler is an opaque object, which is accessed by a handle. MPI calls are
provided to create new error handlers, to associate error handlers with objects, and to test
which error handler is associated with an object. C has distinct typedefs for user defined
error handling callback functions that accept communicator, file, and window arguments.
In Fortran there are three user routines.

An error handler object is created by a call to MPI_XXX_CREATE_ERRHANDLER,
where XXX is, respectively, COMM, WIN, or FILE.

An error handler is attached to a communicator, window, or file by a call to
MPI_XXX_SET_ERRHANDLER. The error handler must be either a predefined error han-
dler, or an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER,
with matching XXX. The predefined error handlers MPI_ERRORS_RETURN and
MPI_ERRORS_ARE_FATAL can be attached to communicators, windows, and files.

The error handler currently associated with a communicator, window, or file can be
retrieved by a call to MPI_XXX_GET_ERRHANDLER.

The MPI function MPI_ERRHANDLER_FREE can be used to free an error handler that
was created by a call to MPI_XXX_CREATE_ERRHANDLER.

MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler ob-
ject is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark the error handler for deallocation.
This provides behavior similar to that of MPI_COMM_GROUP and MPI_GROUP_FREE.

Advice to implementors. High-quality implementations should raise an error when
an error handler that was created by a call to MPI_XXX_CREATE_ERRHANDLER is
attached to an object of the wrong type with a call to MPI_YYY_SET_ERRHANDLER.
To do so, it is necessary to maintain, with each error handler, information on the
typedef of the associated user function. (End of advice to implementors.)

The syntax for these calls is given below.

8.3.1 Error Handlers for Communicators

MPI_COMM_CREATE_ERRHANDLER(comm_errhandler_fn, errhandler)

IN comm_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function

*comm_errhandler_fn, MPI_Errhandler *errhandler)

MPI_Comm_create_errhandler(comm_errhandler_fn, errhandler, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

342 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

PROCEDURE(MPI_Comm_errhandler_function) :: comm_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CREATE_ERRHANDLER(COMM_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL COMM_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to communicators.
The user routine should be, in C, a function of type MPI_Comm_errhandler_function, which

is defined as
typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

The first argument is the communicator in use. The second is the error code to be
returned by the MPI routine that raised the error. If the routine would have returned
MPI_ERR_IN_STATUS, it is the error code returned in the status for the request that caused
the error handler to be invoked. The remaining arguments are “varargs” arguments whose
number and meaning is implementation-dependent. An implementation should clearly doc-
ument these arguments. Addresses are used so that the handler may be written in Fortran.
With the Fortran mpi_f08 module, the user routine comm_errhandler_fn should be of the
form:
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_errhandler_function(comm, error_code)

TYPE(MPI_Comm) :: comm

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine COMM_ERRHANDLER_FN
should be of the form:
SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)

INTEGER COMM, ERROR_CODE

Rationale. The variable argument list is provided because it provides an ISO-
standard hook for providing additional information to the error handler; without this
hook, ISO C prohibits additional arguments. (End of rationale.)

Advice to users. A newly created communicator inherits the error handler that
is associated with the “parent” communicator. In particular, the user can specify
a “global” error handler for all communicators by associating this handler with the
communicator MPI_COMM_WORLD immediately after initialization. (End of advice to
users.)

MPI_COMM_SET_ERRHANDLER(comm, errhandler)

INOUT comm communicator (handle)

IN errhandler new error handler for communicator (handle)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

MPI_Comm_set_errhandler(comm, errhandler, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.3. ERROR HANDLING 343

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Attaches a new error handler to a communicator. The error handler must be either
a predefined error handler, or an error handler created by a call to
MPI_COMM_CREATE_ERRHANDLER.

MPI_COMM_GET_ERRHANDLER(comm, errhandler)

IN comm communicator (handle)

OUT errhandler error handler currently associated with communicator

(handle)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

MPI_Comm_get_errhandler(comm, errhandler, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a communicator.
For example, a library function may register at its entry point the current error handler

for a communicator, set its own private error handler for this communicator, and restore
before exiting the previous error handler.

8.3.2 Error Handlers for Windows

MPI_WIN_CREATE_ERRHANDLER(win_errhandler_fn, errhandler)

IN win_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function

*win_errhandler_fn, MPI_Errhandler *errhandler)

MPI_Win_create_errhandler(win_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Win_errhandler_function) :: win_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CREATE_ERRHANDLER(WIN_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL WIN_ERRHANDLER_FN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

344 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a window object. The user routine
should be, in C, a function of type MPI_Win_errhandler_function which is defined as
typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

The first argument is the window in use, the second is the error code to be returned.
With the Fortran mpi_f08 module, the user routine win_errhandler_fn should be of the form:
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_errhandler_function(win, error_code)

TYPE(MPI_Win) :: win

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine WIN_ERRHANDLER_FN should
be of the form:
SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)

INTEGER WIN, ERROR_CODE

MPI_WIN_SET_ERRHANDLER(win, errhandler)

INOUT win window (handle)

IN errhandler new error handler for window (handle)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

MPI_Win_set_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

Attaches a new error handler to a window. The error handler must be either a pre-
defined error handler, or an error handler created by a call to
MPI_WIN_CREATE_ERRHANDLER.

MPI_WIN_GET_ERRHANDLER(win, errhandler)

IN win window (handle)

OUT errhandler error handler currently associated with window (han-

dle)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

MPI_Win_get_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.3. ERROR HANDLING 345

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a window.

8.3.3 Error Handlers for Files

MPI_FILE_CREATE_ERRHANDLER(file_errhandler_fn, errhandler)

IN file_errhandler_fn user defined error handling procedure (function)

OUT errhandler MPI error handler (handle)

int MPI_File_create_errhandler(MPI_File_errhandler_function

*file_errhandler_fn, MPI_Errhandler *errhandler)

MPI_File_create_errhandler(file_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_File_errhandler_function) :: file_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CREATE_ERRHANDLER(FILE_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL FILE_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

Creates an error handler that can be attached to a file object. The user routine should
be, in C, a function of type MPI_File_errhandler_function, which is defined as
typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

The first argument is the file in use, the second is the error code to be returned.
With the Fortran mpi_f08 module, the user routine file_errhandler_fn should be of the form:
ABSTRACT INTERFACE

SUBROUTINE MPI_File_errhandler_function(file, error_code)

TYPE(MPI_File) :: file

INTEGER :: error_code

With the Fortran mpi module and mpif.h, the user routine FILE_ERRHANDLER_FN should
be of the form:
SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)

INTEGER FILE, ERROR_CODE

MPI_FILE_SET_ERRHANDLER(file, errhandler)

INOUT file file (handle)

IN errhandler new error handler for file (handle)

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

MPI_File_set_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

346 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

Attaches a new error handler to a file. The error handler must be either a predefined
error handler, or an error handler created by a call to MPI_FILE_CREATE_ERRHANDLER.

MPI_FILE_GET_ERRHANDLER(file, errhandler)

IN file file (handle)

OUT errhandler error handler currently associated with file (handle)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

MPI_File_get_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

Retrieves the error handler currently associated with a file.

8.3.4 Freeing Errorhandlers and Retrieving Error Strings

MPI_ERRHANDLER_FREE(errhandler)

INOUT errhandler MPI error handler (handle)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

MPI_Errhandler_free(errhandler, ierror)

TYPE(MPI_Errhandler), INTENT(INOUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)

INTEGER ERRHANDLER, IERROR

Marks the error handler associated with errhandler for deallocation and sets errhandler
to MPI_ERRHANDLER_NULL. The error handler will be deallocated after all the objects
associated with it (communicator, window, or file) have been deallocated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. ERROR CODES AND CLASSES 347

MPI_ERROR_STRING(errorcode, string, resultlen)

IN errorcode Error code returned by an MPI routine

OUT string Text that corresponds to the errorcode

OUT resultlen Length (in printable characters) of the result returned

in string

int MPI_Error_string(int errorcode, char *string, int *resultlen)

MPI_Error_string(errorcode, string, resultlen, ierror)

INTEGER, INTENT(IN) :: errorcode

CHARACTER(LEN=MPI_MAX_ERROR_STRING), INTENT(OUT) :: string

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)

INTEGER ERRORCODE, RESULTLEN, IERROR

CHARACTER*(*) STRING

Returns the error string associated with an error code or class. The argument string
must represent storage that is at least MPI_MAX_ERROR_STRING characters long.

The number of characters actually written is returned in the output argument, resultlen.

Rationale. The form of this function was chosen to make the Fortran and C bindings
similar. A version that returns a pointer to a string has two difficulties. First, the
return string must be statically allocated and different for each error message (allowing
the pointers returned by successive calls to MPI_ERROR_STRING to point to the
correct message). Second, in Fortran, a function declared as returning CHARACTER*(*)

can not be referenced in, for example, a PRINT statement. (End of rationale.)

8.4 Error Codes and Classes

The error codes returned by MPI are left entirely to the implementation (with the exception
of MPI_SUCCESS). This is done to allow an implementation to provide as much information
as possible in the error code (for use with MPI_ERROR_STRING).

To make it possible for an application to interpret an error code, the routine
MPI_ERROR_CLASS converts any error code into one of a small set of standard error codes,
called error classes. Valid error classes are shown in Table 8.1 and Table 8.2.

The error classes are a subset of the error codes: an MPI function may return an error
class number; and the function MPI_ERROR_STRING can be used to compute the error
string associated with an error class. The values defined for MPI error classes are valid MPI
error codes.

The error codes satisfy,

0 = MPI_SUCCESS < MPI_ERR_. . . ≤ MPI_ERR_LASTCODE.

Rationale. The difference between MPI_ERR_UNKNOWN and MPI_ERR_OTHER is that
MPI_ERROR_STRING can return useful information about MPI_ERR_OTHER.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

348 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_SUCCESS No error
MPI_ERR_BUFFER Invalid buffer pointer
MPI_ERR_COUNT Invalid count argument
MPI_ERR_TYPE Invalid datatype argument
MPI_ERR_TAG Invalid tag argument
MPI_ERR_COMM Invalid communicator
MPI_ERR_RANK Invalid rank
MPI_ERR_REQUEST Invalid request (handle)
MPI_ERR_ROOT Invalid root
MPI_ERR_GROUP Invalid group
MPI_ERR_OP Invalid operation
MPI_ERR_TOPOLOGY Invalid topology
MPI_ERR_DIMS Invalid dimension argument
MPI_ERR_ARG Invalid argument of some other kind
MPI_ERR_UNKNOWN Unknown error
MPI_ERR_TRUNCATE Message truncated on receive
MPI_ERR_OTHER Known error not in this list
MPI_ERR_INTERN Internal MPI (implementation) error
MPI_ERR_IN_STATUS Error code is in status
MPI_ERR_PENDING Pending request
MPI_ERR_KEYVAL Invalid keyval has been passed
MPI_ERR_NO_MEM MPI_ALLOC_MEM failed because memory

is exhausted
MPI_ERR_BASE Invalid base passed to MPI_FREE_MEM
MPI_ERR_INFO_KEY Key longer than MPI_MAX_INFO_KEY

MPI_ERR_INFO_VALUE Value longer than MPI_MAX_INFO_VAL

MPI_ERR_INFO_NOKEY Invalid key passed to MPI_INFO_DELETE
MPI_ERR_SPAWN Error in spawning processes
MPI_ERR_PORT Invalid port name passed to

MPI_COMM_CONNECT
MPI_ERR_SERVICE Invalid service name passed to

MPI_UNPUBLISH_NAME
MPI_ERR_NAME Invalid service name passed to

MPI_LOOKUP_NAME
MPI_ERR_WIN Invalid win argument
MPI_ERR_SIZE Invalid size argument
MPI_ERR_DISP Invalid disp argument
MPI_ERR_INFO Invalid info argument
MPI_ERR_LOCKTYPE Invalid locktype argument
MPI_ERR_ASSERT Invalid assert argument
MPI_ERR_RMA_CONFLICT Conflicting accesses to window
MPI_ERR_RMA_SYNC Wrong synchronization of RMA calls

Table 8.1: Error classes (Part 1)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.4. ERROR CODES AND CLASSES 349

MPI_ERR_RMA_RANGE Target memory is not part of the win-
dow (in the case of a window created
with MPI_WIN_CREATE_DYNAMIC, tar-
get memory is not attached)

MPI_ERR_RMA_ATTACH Memory cannot be attached (e.g., because
of resource exhaustion)

MPI_ERR_RMA_SHARED Memory cannot be shared (e.g., some pro-
cess in the group of the specified commu-
nicator cannot expose shared memory)

MPI_ERR_RMA_FLAVOR Passed window has the wrong flavor for the
called function

MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error
MPI_ERR_LASTCODE Last error code

Table 8.2: Error classes (Part 2)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

350 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Note that MPI_SUCCESS = 0 is necessary to be consistent with C practice; the sepa-
ration of error classes and error codes allows us to define the error classes this way.
Having a known LASTCODE is often a nice sanity check as well. (End of rationale.)

MPI_ERROR_CLASS(errorcode, errorclass)

IN errorcode Error code returned by an MPI routine

OUT errorclass Error class associated with errorcode

int MPI_Error_class(int errorcode, int *errorclass)

MPI_Error_class(errorcode, errorclass, ierror)

INTEGER, INTENT(IN) :: errorcode

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)

INTEGER ERRORCODE, ERRORCLASS, IERROR

The function MPI_ERROR_CLASS maps each standard error code (error class) onto
itself.

8.5 Error Classes, Error Codes, and Error Handlers

Users may want to write a layered library on top of an existing MPI implementation, and
this library may have its own set of error codes and classes. An example of such a library
is an I/O library based on MPI, see Chapter 13. For this purpose, functions are needed to:

1. add a new error class to the ones an MPI implementation already knows.

2. associate error codes with this error class, so that MPI_ERROR_CLASS works.

3. associate strings with these error codes, so that MPI_ERROR_STRING works.

4. invoke the error handler associated with a communicator, window, or object.

Several functions are provided to do this. They are all local. No functions are provided
to free error classes or codes: it is not expected that an application will generate them in
significant numbers.

MPI_ADD_ERROR_CLASS(errorclass)

OUT errorclass value for the new error class (integer)

int MPI_Add_error_class(int *errorclass)

MPI_Add_error_class(errorclass, ierror)

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 351

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

Creates a new error class and returns the value for it.

Rationale. To avoid conflicts with existing error codes and classes, the value is set
by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorclass in the same deterministic way on all processes. (End of advice to
implementors.)

Advice to users. Since a call to MPI_ADD_ERROR_CLASS is local, the same errorclass
may not be returned on all processes that make this call. Thus, it is not safe to assume
that registering a new error on a set of processes at the same time will yield the same
errorclass on all of the processes. However, if an implementation returns the new
errorclass in a deterministic way, and they are always generated in the same order on
the same set of processes (for example, all processes), then the value will be the same.
However, even if a deterministic algorithm is used, the value can vary across processes.
This can happen, for example, if different but overlapping groups of processes make
a series of calls. As a result of these issues, getting the “same” error on multiple
processes may not cause the same value of error code to be generated. (End of advice
to users.)

The value of MPI_ERR_LASTCODE is a constant value and is not affected by new user-
defined error codes and classes. Instead, a predefined attribute key MPI_LASTUSEDCODE is
associated with MPI_COMM_WORLD. The attribute value corresponding to this key is the
current maximum error class including the user-defined ones. This is a local value and may
be different on different processes. The value returned by this key is always greater than or
equal to MPI_ERR_LASTCODE.

Advice to users. The value returned by the key MPI_LASTUSEDCODE will not change
unless the user calls a function to explicitly add an error class/code. In a multi-
threaded environment, the user must take extra care in assuming this value has not
changed. Note that error codes and error classes are not necessarily dense. A user
may not assume that each error class below MPI_LASTUSEDCODE is valid. (End of
advice to users.)

MPI_ADD_ERROR_CODE(errorclass, errorcode)

IN errorclass error class (integer)

OUT errorcode new error code to associated with errorclass (integer)

int MPI_Add_error_code(int errorclass, int *errorcode)

MPI_Add_error_code(errorclass, errorcode, ierror)

INTEGER, INTENT(IN) :: errorclass

INTEGER, INTENT(OUT) :: errorcode

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

352 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

Creates new error code associated with errorclass and returns its value in errorcode.

Rationale. To avoid conflicts with existing error codes and classes, the value of the
new error code is set by the implementation and not by the user. (End of rationale.)

Advice to implementors. A high-quality implementation will return the value for
a new errorcode in the same deterministic way on all processes. (End of advice to
implementors.)

MPI_ADD_ERROR_STRING(errorcode, string)

IN errorcode error code or class (integer)

IN string text corresponding to errorcode (string)

int MPI_Add_error_string(int errorcode, const char *string)

MPI_Add_error_string(errorcode, string, ierror)

INTEGER, INTENT(IN) :: errorcode

CHARACTER(LEN=*), INTENT(IN) :: string

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

Associates an error string with an error code or class. The string must be no more
than MPI_MAX_ERROR_STRING characters long. The length of the string is as defined in the
calling language. The length of the string does not include the null terminator in C. Trailing
blanks will be stripped in Fortran. Calling MPI_ADD_ERROR_STRING for an errorcode that
already has a string will replace the old string with the new string. It is erroneous to call
MPI_ADD_ERROR_STRING for an error code or class with a value ≤ MPI_ERR_LASTCODE.

If MPI_ERROR_STRING is called when no string has been set, it will return a empty
string (all spaces in Fortran, "" in C).

Section 8.3 describes the methods for creating and associating error handlers with
communicators, files, and windows.

MPI_COMM_CALL_ERRHANDLER (comm, errorcode)

IN comm communicator with error handler (handle)

IN errorcode error code (integer)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

MPI_Comm_call_errhandler(comm, errorcode, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.5. ERROR CLASSES, ERROR CODES, AND ERROR HANDLERS 353

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

This function invokes the error handler assigned to the communicator with the error
code supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if
the error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. Users should note that the default error handler is
MPI_ERRORS_ARE_FATAL. Thus, calling MPI_COMM_CALL_ERRHANDLER will abort
the comm processes if the default error handler has not been changed for this com-
municator or on the parent before the communicator was created. (End of advice to
users.)

MPI_WIN_CALL_ERRHANDLER (win, errorcode)

IN win window with error handler (handle)

IN errorcode error code (integer)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

MPI_Win_call_errhandler(win, errorcode, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)

INTEGER WIN, ERRORCODE, IERROR

This function invokes the error handler assigned to the window with the error code
supplied. This function returns MPI_SUCCESS in C and the same value in IERROR if the
error handler was successfully called (assuming the process is not aborted and the error
handler returns).

Advice to users. As with communicators, the default error handler for windows is
MPI_ERRORS_ARE_FATAL. (End of advice to users.)

MPI_FILE_CALL_ERRHANDLER (fh, errorcode)

IN fh file with error handler (handle)

IN errorcode error code (integer)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

354 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_File_call_errhandler(fh, errorcode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

This function invokes the error handler assigned to the file with the error code supplied.
This function returns MPI_SUCCESS in C and the same value in IERROR if the error handler
was successfully called (assuming the process is not aborted and the error handler returns).

Advice to users. Unlike errors on communicators and windows, the default behavior
for files is to have MPI_ERRORS_RETURN. (End of advice to users.)

Advice to users. Users are warned that handlers should not be called recursively
with MPI_COMM_CALL_ERRHANDLER, MPI_FILE_CALL_ERRHANDLER, or
MPI_WIN_CALL_ERRHANDLER. Doing this can create a situation where an infinite
recursion is created. This can occur if MPI_COMM_CALL_ERRHANDLER,
MPI_FILE_CALL_ERRHANDLER, or MPI_WIN_CALL_ERRHANDLER is called inside
an error handler.

Error codes and classes are associated with a process. As a result, they may be used
in any error handler. Error handlers should be prepared to deal with any error code
they are given. Furthermore, it is good practice to only call an error handler with the
appropriate error codes. For example, file errors would normally be sent to the file
error handler. (End of advice to users.)

8.6 Timers and Synchronization

MPI defines a timer. A timer is specified even though it is not “message-passing,” because
timing parallel programs is important in “performance debugging” and because existing
timers (both in POSIX 1003.1-1988 and 1003.4D 14.1 and in Fortran 90) are either incon-
venient or do not provide adequate access to high resolution timers. See also Section 2.6.4.

MPI_WTIME()

double MPI_Wtime(void)

DOUBLE PRECISION MPI_Wtime()

DOUBLE PRECISION MPI_WTIME()

MPI_WTIME returns a floating-point number of seconds, representing elapsed wall-
clock time since some time in the past.

The “time in the past” is guaranteed not to change during the life of the process.
The user is responsible for converting large numbers of seconds to other units if they are
preferred.

This function is portable (it returns seconds, not “ticks”), it allows high-resolution,
and carries no unnecessary baggage. One would use it like this:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. STARTUP 355

{

double starttime, endtime;

starttime = MPI_Wtime();

.... stuff to be timed ...

endtime = MPI_Wtime();

printf("That took %f seconds\n",endtime-starttime);

}

The times returned are local to the node that called them. There is no requirement
that different nodes return “the same time.” (But see also the discussion of
MPI_WTIME_IS_GLOBAL in Section 8.1.2).

MPI_WTICK()

double MPI_Wtick(void)

DOUBLE PRECISION MPI_Wtick()

DOUBLE PRECISION MPI_WTICK()

MPI_WTICK returns the resolution of MPI_WTIME in seconds. That is, it returns,
as a double precision value, the number of seconds between successive clock ticks. For
example, if the clock is implemented by the hardware as a counter that is incremented
every millisecond, the value returned by MPI_WTICK should be 10−3.

8.7 Startup

One goal of MPI is to achieve source code portability. By this we mean that a program writ-
ten using MPI and complying with the relevant language standards is portable as written,
and must not require any source code changes when moved from one system to another.
This explicitly does not say anything about how an MPI program is started or launched from
the command line, nor what the user must do to set up the environment in which an MPI
program will run. However, an implementation may require some setup to be performed
before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_Init(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INIT(IERROR)

INTEGER IERROR

All MPI programs must contain exactly one call to an MPI initialization routine:
MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization routines are erro-
neous. The only MPI functions that may be invoked before the MPI initialization routines

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

356 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

are called are MPI_GET_VERSION, MPI_GET_LIBRARY_VERSION, MPI_INITIALIZED,
MPI_FINALIZED, and any function with the prefix MPI_T_ (within the constraints for func-
tions with this prefix listed in Section 14.3.4). The version for ISO C accepts the argc and
argv that are provided by the arguments to main or NULL:

int main(int argc, char *argv[])

{

MPI_Init(&argc, &argv);

/* parse arguments */

/* main program */

MPI_Finalize(); /* see below */

return 0;

}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc and argv arguments of main in C.
After MPI is initialized, the application can access information about the execution

environment by querying the predefined info object MPI_INFO_ENV. The following keys are
predefined for this object, corresponding to the arguments of MPI_COMM_SPAWN or of
mpiexec:

command Name of program executed.

argv Space separated arguments to command.

maxprocs Maximum number of MPI processes to start.

soft Allowed values for number of processors.

host Hostname.

arch Architecture name.

wdir Working directory of the MPI process.

file Value is the name of a file in which additional information is specified.

thread_level Requested level of thread support, if requested before the program started exe-
cution.

Note that all values are strings. Thus, the maximum number of processes is represented
by a string such as “1024” and the requested level is represented by a string such as
“MPI_THREAD_SINGLE”.

The info object MPI_INFO_ENV need not contain a (key,value) pair for each of these
predefined keys; the set of (key,value) pairs provided is implementation-dependent. Imple-
mentations may provide additional, implementation specific, (key,value) pairs.

In case where the MPI processes were started with MPI_COMM_SPAWN_MULTIPLE
or, equivalently, with a startup mechanism that supports multiple process specifications,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. STARTUP 357

then the values stored in the info object MPI_INFO_ENV at a process are those values that
affect the local MPI process.

Example 8.4 If MPI is started with a call to

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

Then the first 5 processes will have have in their MPI_INFO_ENV object the pairs (command,

ocean), (maxprocs, 5), and (arch, sun). The next 10 processes will have in MPI_INFO_ENV

(command, atmos), (maxprocs, 10), and (arch, rs6000)

Advice to users. The values passed in MPI_INFO_ENV are the values of the arguments
passed to the mechanism that started the MPI execution — not the actual value
provided. Thus, the value associated with maxprocs is the number of MPI processes
requested; it can be larger than the actual number of processes obtained, if the soft

option was used. (End of advice to users.)

Advice to implementors. High-quality implementations will provide a (key,value) pair
for each parameter that can be passed to the command that starts an MPI program.
(End of advice to implementors.)

MPI_FINALIZE()

int MPI_Finalize(void)

MPI_Finalize(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FINALIZE(IERROR)

INTEGER IERROR

This routine cleans up all MPI state. If an MPI program terminates normally (i.e.,
not due to a call to MPI_ABORT or an unrecoverable error) then each process must call
MPI_FINALIZE before it exits.

Before an MPI process invokes MPI_FINALIZE, the process must perform all MPI calls
needed to complete its involvement in MPI communications: It must locally complete all
MPI operations that it initiated and must execute matching calls needed to complete MPI
communications initiated by other processes. For example, if the process executed a non-
blocking send, it must eventually call MPI_WAIT, MPI_TEST, MPI_REQUEST_FREE, or
any derived function; if the process is the target of a send, then it must post the matching
receive; if it is part of a group executing a collective operation, then it must have completed
its participation in the operation.

The call to MPI_FINALIZE does not free objects created by MPI calls; these objects are
freed using MPI_XXX_FREE calls.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective
over the union of all processes that have been and continue to be connected, as explained
in Section 10.5.4.

The following examples illustrates these rules

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

358 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

Example 8.5 The following code is correct

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Example 8.6 Without a matching receive, the program is erroneous

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();

Example 8.7 This program is correct: Process 0 calls MPI_Finalize after it has executed
the MPI calls that complete the send operation. Likewise, process 1 executes the MPI call
that completes the matching receive operation before it calls MPI_Finalize.

Process 0 Proces 1

-------- --------

MPI_Init(); MPI_Init();

MPI_Isend(dest=1); MPI_Recv(src=0);

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 8.8 This program is correct. The attached buffer is a resource allocated by the
user, not by MPI; it is available to the user after MPI is finalized.

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

buffer = malloc(1000000); MPI_Recv(src=0);

MPI_Buffer_attach(); MPI_Finalize();

MPI_Send(dest=1)); exit();

MPI_Finalize();

free(buffer);

exit();

Example 8.9 This program is correct. The cancel operation must succeed, since the
send cannot complete normally. The wait operation, after the call to MPI_Cancel, is local
— no matching MPI call is required on process 1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. STARTUP 359

Process 0 Process 1

--------- ---------

MPI_Issend(dest=1); MPI_Finalize();

MPI_Cancel();

MPI_Wait();

MPI_Finalize();

Advice to implementors. Even though a process has executed all MPI calls needed to
complete the communications it is involved with, such communication may not yet be
completed from the viewpoint of the underlying MPI system. For example, a blocking
send may have returned, even though the data is still buffered at the sender in an MPI
buffer; an MPI process may receive a cancel request for a message it has completed
receiving. The MPI implementation must ensure that a process has completed any
involvement in MPI communication before MPI_FINALIZE returns. Thus, if a process
exits after the call to MPI_FINALIZE, this will not cause an ongoing communication
to fail. The MPI implementation should also complete freeing all objects marked for
deletion by MPI calls that freed them. (End of advice to implementors.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called,
except for MPI_GET_VERSION, MPI_GET_LIBRARY_VERSION, MPI_INITIALIZED,
MPI_FINALIZED, and any function with the prefix MPI_T_ (within the constraints for
functions with this prefix listed in Section 14.3.4).

Although it is not required that all processes return from MPI_FINALIZE, it is required
that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, users may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 8.10 The following illustrates the use of requiring that at least one process
return and that it be known that process 0 is one of the processes that return. One wants
code like the following to work no matter how many processes return.

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

...

MPI_Finalize();

if (myrank == 0) {

resultfile = fopen("outfile","w");

dump_results(resultfile);

fclose(resultfile);

}

exit(0);

MPI_INITIALIZED(flag)

OUT flag Flag is true if MPI_INIT has been called and false
otherwise.

int MPI_Initialized(int *flag)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

360 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

MPI_Initialized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INITIALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

This routine may be used to determine whether MPI_INIT has been called.
MPI_INITIALIZED returns true if the calling process has called MPI_INIT. Whether
MPI_FINALIZE has been called does not affect the behavior of MPI_INITIALIZED. It is one
of the few routines that may be called before MPI_INIT is called.

MPI_ABORT(comm, errorcode)

IN comm communicator of tasks to abort

IN errorcode error code to return to invoking environment

int MPI_Abort(MPI_Comm comm, int errorcode)

MPI_Abort(comm, errorcode, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ABORT(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

This routine makes a “best attempt” to abort all tasks in the group of comm. This
function does not require that the invoking environment take any action with the error
code. However, a Unix or POSIX environment should handle this as a return errorcode

from the main program.
It may not be possible for an MPI implementation to abort only the processes repre-

sented by comm if this is a subset of the processes. In this case, the MPI implementation
should attempt to abort all the connected processes but should not abort any unconnected
processes. If no processes were spawned, accepted, or connected then this has the effect of
aborting all the processes associated with MPI_COMM_WORLD.

Rationale. The communicator argument is provided to allow for future extensions of
MPI to environments with, for example, dynamic process management. In particular,
it allows but does not require an MPI implementation to abort a subset of
MPI_COMM_WORLD. (End of rationale.)

Advice to users. Whether the errorcode is returned from the executable or from the
MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the MPI
library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec or
singleton init). (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.7. STARTUP 361

8.7.1 Allowing User Functions at Process Termination

There are times in which it would be convenient to have actions happen when an MPI process
finishes. For example, a routine may do initializations that are useful until the MPI job (or
that part of the job that being terminated in the case of dynamically created processes) is
finished. This can be accomplished in MPI by attaching an attribute to MPI_COMM_SELF

with a callback function. When MPI_FINALIZE is called, it will first execute the equivalent
of an MPI_COMM_FREE on MPI_COMM_SELF. This will cause the delete callback function
to be executed on all keys associated with MPI_COMM_SELF, in the reverse order that
they were set on MPI_COMM_SELF. If no key has been attached to MPI_COMM_SELF, then
no callback is invoked. The “freeing” of MPI_COMM_SELF occurs before any other parts
of MPI are affected. Thus, for example, calling MPI_FINALIZED will return false in any
of these callback functions. Once done with MPI_COMM_SELF, the order and rest of the
actions taken by MPI_FINALIZE is not specified.

Advice to implementors. Since attributes can be added from any supported language,
the MPI implementation needs to remember the creating language so the correct
callback is made. Implementations that use the attribute delete callback on
MPI_COMM_SELF internally should register their internal callbacks before returning
from MPI_INIT / MPI_INIT_THREAD, so that libraries or applications will not have
portions of the MPI implementation shut down before the application-level callbacks
are made. (End of advice to implementors.)

8.7.2 Determining Whether MPI Has Finished

One of the goals of MPI was to allow for layered libraries. In order for a library to do
this cleanly, it needs to know if MPI is active. In MPI the function MPI_INITIALIZED was
provided to tell if MPI had been initialized. The problem arises in knowing if MPI has been
finalized. Once MPI has been finalized it is no longer active and cannot be restarted. A
library needs to be able to determine this to act accordingly. To achieve this the following
function is needed:

MPI_FINALIZED(flag)

OUT flag true if MPI was finalized (logical)

int MPI_Finalized(int *flag)

MPI_Finalized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

This routine returns true if MPI_FINALIZE has completed. It is valid to call
MPI_FINALIZED before MPI_INIT and after MPI_FINALIZE.

Advice to users. MPI is “active” and it is thus safe to call MPI functions if MPI_INIT
has completed and MPI_FINALIZE has not completed. If a library has no other

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

362 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

way of knowing whether MPI is active or not, then it can use MPI_INITIALIZED and
MPI_FINALIZED to determine this. For example, MPI is “active” in callback functions
that are invoked during MPI_FINALIZE. (End of advice to users.)

8.8 Portable MPI Process Startup

A number of implementations of MPI provide a startup command for MPI programs that
is of the form

mpirun <mpirun arguments> <program> <program arguments>

Separating the command to start the program from the program itself provides flexibility,
particularly for network and heterogeneous implementations. For example, the startup
script need not run on one of the machines that will be executing the MPI program itself.

Having a standard startup mechanism also extends the portability of MPI programs one
step further, to the command lines and scripts that manage them. For example, a validation
suite script that runs hundreds of programs can be a portable script if it is written using such
a standard starup mechanism. In order that the “standard” command not be confused with
existing practice, which is not standard and not portable among implementations, instead
of mpirun MPI specifies mpiexec.

While a standardized startup mechanism improves the usability of MPI, the range of
environments is so diverse (e.g., there may not even be a command line interface) that MPI
cannot mandate such a mechanism. Instead, MPI specifies an mpiexec startup command
and recommends but does not require it, as advice to implementors. However, if an im-
plementation does provide a command called mpiexec, it must be of the form described
below.

It is suggested that

mpiexec -n <numprocs> <program>

be at least one way to start <program> with an initial MPI_COMM_WORLD whose group
contains <numprocs> processes. Other arguments to mpiexec may be implementation-
dependent.

Advice to implementors. Implementors, if they do provide a special startup command
for MPI programs, are advised to give it the following form. The syntax is chosen in
order that mpiexec be able to be viewed as a command-line version of
MPI_COMM_SPAWN (See Section 10.3.4).

Analogous to MPI_COMM_SPAWN, we have

mpiexec -n <maxprocs>

-soft < >

-host < >

-arch < >

-wdir < >

-path < >

-file < >

...

<command line>

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8.8. PORTABLE MPI PROCESS STARTUP 363

for the case where a single command line for the application program and its arguments
will suffice. See Section 10.3.4 for the meanings of these arguments. For the case
corresponding to MPI_COMM_SPAWN_MULTIPLE there are two possible formats:

Form A:

mpiexec { <above arguments> } : { ... } : { ... } : ... : { ... }

As with MPI_COMM_SPAWN, all the arguments are optional. (Even the -n x argu-
ment is optional; the default is implementation dependent. It might be 1, it might be
taken from an environment variable, or it might be specified at compile time.) The
names and meanings of the arguments are taken from the keys in the info argument
to MPI_COMM_SPAWN. There may be other, implementation-dependent arguments
as well.

Note that Form A, though convenient to type, prevents colons from being program
arguments. Therefore an alternate, file-based form is allowed:

Form B:

mpiexec -configfile <filename>

where the lines of <filename> are of the form separated by the colons in Form A.
Lines beginning with ‘#’ are comments, and lines may be continued by terminating
the partial line with ‘\’.

Example 8.11 Start 16 instances of myprog on the current or default machine:

mpiexec -n 16 myprog

Example 8.12 Start 10 processes on the machine called ferrari:

mpiexec -n 10 -host ferrari myprog

Example 8.13 Start three copies of the same program with different command-line
arguments:

mpiexec myprog infile1 : myprog infile2 : myprog infile3

Example 8.14 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s:

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

It is assumed that the implementation in this case has a method for choosing hosts of
the appropriate type. Their ranks are in the order specified.

Example 8.15 Start the ocean program on five Suns and the atmos program on 10
RS/6000’s (Form B):

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

364 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

mpiexec -configfile myfile

where myfile contains

-n 5 -arch sun ocean

-n 10 -arch rs6000 atmos

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 9

The Info Object

Many of the routines in MPI take an argument info. info is an opaque object with a handle
of type MPI_Info in C and Fortran with the mpi_f08 module, and INTEGER in Fortran with
the mpi module or the include file mpif.h. It stores an unordered set of (key,value) pairs
(both key and value are strings). A key can have only one value. MPI reserves several keys
and requires that if an implementation uses a reserved key, it must provide the specified
functionality. An implementation is not required to support these keys and may support
any others not reserved by MPI.

An implementation must support info objects as caches for arbitrary (key,value) pairs,
regardless of whether it recognizes the key. Each function that takes hints in the form of an
MPI_Info must be prepared to ignore any key it does not recognize. This description of info
objects does not attempt to define how a particular function should react if it recognizes
a key but not the associated value. MPI_INFO_GET_NKEYS, MPI_INFO_GET_NTHKEY,
MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must retain all (key,value) pairs so that
layered functionality can also use the Info object.

Keys have an implementation-defined maximum length of MPI_MAX_INFO_KEY, which
is at least 32 and at most 255. Values have an implementation-defined maximum length
of MPI_MAX_INFO_VAL. In Fortran, leading and trailing spaces are stripped from both.
Returned values will never be larger than these maximum lengths. Both key and value are
case sensitive.

Rationale. Keys have a maximum length because the set of known keys will always
be finite and known to the implementation and because there is no reason for keys
to be complex. The small maximum size allows applications to declare keys of size
MPI_MAX_INFO_KEY. The limitation on value sizes is so that an implementation is
not forced to deal with arbitrarily long strings. (End of rationale.)

Advice to users. MPI_MAX_INFO_VAL might be very large, so it might not be wise to
declare a string of that size. (End of advice to users.)

When info is used as an argument to a nonblocking routine, it is parsed before that
routine returns, so that it may be modified or freed immediately after return.

When the descriptions refer to a key or value as being a boolean, an integer, or a list,
they mean the string representation of these types. An implementation may define its own
rules for how info value strings are converted to other types, but to ensure portability, every
implementation must support the following representations. Valid values for a boolean must

365

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

366 CHAPTER 9. THE INFO OBJECT

include the strings “true” and “false” (all lowercase). For integers, valid values must include
string representations of decimal values of integers that are within the range of a standard
integer type in the program. (However it is possible that not every integer is a valid value
for a given key.) On positive numbers, + signs are optional. No space may appear between
a + or − sign and the leading digit of a number. For comma separated lists, the string
must contain valid elements separated by commas. Leading and trailing spaces are stripped
automatically from the types of info values described above and for each element of a comma
separated list. These rules apply to all info values of these types. Implementations are free
to specify a different interpretation for values of other info keys.

MPI_INFO_CREATE(info)

OUT info info object created (handle)

int MPI_Info_create(MPI_Info *info)

MPI_Info_create(info, ierror)

TYPE(MPI_Info), INTENT(OUT) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_CREATE(INFO, IERROR)

INTEGER INFO, IERROR

MPI_INFO_CREATE creates a new info object. The newly created object contains no
key/value pairs.

MPI_INFO_SET(info, key, value)

INOUT info info object (handle)

IN key key (string)

IN value value (string)

int MPI_Info_set(MPI_Info info, const char *key, const char *value)

MPI_Info_set(info, key, value, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key, value

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

MPI_INFO_SET adds the (key,value) pair to info, and overrides the value if a value for
the same key was previously set. key and value are null-terminated strings in C. In Fortran,
leading and trailing spaces in key and value are stripped. If either key or value are larger
than the allowed maximums, the errors MPI_ERR_INFO_KEY or MPI_ERR_INFO_VALUE are
raised, respectively.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

367

MPI_INFO_DELETE(info, key)

INOUT info info object (handle)

IN key key (string)

int MPI_Info_delete(MPI_Info info, const char *key)

MPI_Info_delete(info, key, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

MPI_INFO_DELETE deletes a (key,value) pair from info. If key is not defined in info,
the call raises an error of class MPI_ERR_INFO_NOKEY.

MPI_INFO_GET(info, key, valuelen, value, flag)

IN info info object (handle)

IN key key (string)

IN valuelen length of value arg (integer)

OUT value value (string)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get(MPI_Info info, const char *key, int valuelen, char *value,

int *flag)

MPI_Info_get(info, key, valuelen, value, flag, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, INTENT(IN) :: valuelen

CHARACTER(LEN=valuelen), INTENT(OUT) :: value

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

This function retrieves the value associated with key in a previous call to
MPI_INFO_SET. If such a key exists, it sets flag to true and returns the value in value,
otherwise it sets flag to false and leaves value unchanged. valuelen is the number of characters
available in value. If it is less than the actual size of the value, the value is truncated. In
C, valuelen should be one less than the amount of allocated space to allow for the null
terminator.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

368 CHAPTER 9. THE INFO OBJECT

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_VALUELEN(info, key, valuelen, flag)

IN info info object (handle)

IN key key (string)

OUT valuelen length of value arg (integer)

OUT flag true if key defined, false if not (boolean)

int MPI_Info_get_valuelen(MPI_Info info, const char *key, int *valuelen,

int *flag)

MPI_Info_get_valuelen(info, key, valuelen, flag, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, INTENT(OUT) :: valuelen

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

Retrieves the length of the value associated with key. If key is defined, valuelen is set to
the length of its associated value and flag is set to true. If key is not defined, valuelen is not
touched and flag is set to false. The length returned in C does not include the end-of-string
character.

If key is larger than MPI_MAX_INFO_KEY, the call is erroneous.

MPI_INFO_GET_NKEYS(info, nkeys)

IN info info object (handle)

OUT nkeys number of defined keys (integer)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

MPI_Info_get_nkeys(info, nkeys, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(OUT) :: nkeys

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NKEYS returns the number of currently defined keys in info.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

369

MPI_INFO_GET_NTHKEY(info, n, key)

IN info info object (handle)

IN n key number (integer)

OUT key key (string)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

MPI_Info_get_nthkey(info, n, key, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: n

CHARACTER(LEN=*), INTENT(OUT) :: key

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

This function returns the nth defined key in info. Keys are numbered 0 . . . N − 1 where
N is the value returned by MPI_INFO_GET_NKEYS. All keys between 0 and N − 1 are
guaranteed to be defined. The number of a given key does not change as long as info is not
modified with MPI_INFO_SET or MPI_INFO_DELETE.

MPI_INFO_DUP(info, newinfo)

IN info info object (handle)

OUT newinfo info object (handle)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

MPI_Info_dup(info, newinfo, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Info), INTENT(OUT) :: newinfo

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INFO_DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI_INFO_DUP duplicates an existing info object, creating a new object, with the
same (key,value) pairs and the same ordering of keys.

MPI_INFO_FREE(info)

INOUT info info object (handle)

int MPI_Info_free(MPI_Info *info)

MPI_Info_free(info, ierror)

TYPE(MPI_Info), INTENT(INOUT) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

370 CHAPTER 9. THE INFO OBJECT

MPI_INFO_FREE(INFO, IERROR)

INTEGER INFO, IERROR

This function frees info and sets it to MPI_INFO_NULL. The value of an info argument is
interpreted each time the info is passed to a routine. Changes to an info after return from
a routine do not affect that interpretation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 10

Process Creation and Management

10.1 Introduction

MPI is primarily concerned with communication rather than process or resource manage-
ment. However, it is necessary to address these issues to some degree in order to define
a useful framework for communication. This chapter presents a set of MPI interfaces that
allows for a variety of approaches to process management while placing minimal restrictions
on the execution environment.

The MPI model for process creation allows both the creation of an intial set of pro-
cesses related by their membership in a common MPI_COMM_WORLD and the creation and
management of processes after an MPI application has been started. A major impetus for
the latter form of process creation comes from the PVM [24] research effort. This work
has provided a wealth of experience with process management and resource control that
illustrates their benefits and potential pitfalls.

The MPI Forum decided not to address resource control because it was not able to
design a portable interface that would be appropriate for the broad spectrum of existing and
potential resource and process controllers. Resource control can encompass a wide range of
abilities, including adding and deleting nodes from a virtual parallel machine, reserving and
scheduling resources, managing compute partitions of an MPP, and returning information
about available resources. MPI assumes that resource control is provided externally —
probably by computer vendors, in the case of tightly coupled systems, or by a third party
software package when the environment is a cluster of workstations.

The reasons for including process management in MPI are both technical and practical.
Important classes of message-passing applications require process control. These include
task farms, serial applications with parallel modules, and problems that require a run-time
assessment of the number and type of processes that should be started. On the practical
side, users of workstation clusters who are migrating from PVM to MPI may be accustomed
to using PVM’s capabilities for process and resource management. The lack of these features
would be a practical stumbling block to migration.

The following goals are central to the design of MPI process management:

• The MPI process model must apply to the vast majority of current parallel envi-
ronments. These include everything from tightly integrated MPPs to heterogeneous
networks of workstations.

• MPI must not take over operating system responsibilities. It should instead provide a

371

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

372 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

clean interface between an application and system software.

• MPI must guarantee communication determinism in the presense of dynamic processes,
i.e., dynamic process management must not introduce unavoidable race conditions.

• MPI must not contain features that compromise performance.

The process management model addresses these issues in two ways. First, MPI remains
primarily a communication library. It does not manage the parallel environment in which
a parallel program executes, though it provides a minimal interface between an application
and external resource and process managers.

Second, MPI maintains a consistent concept of a communicator, regardless of how its
members came into existence. A communicator is never changed once created, and it is
always created using deterministic collective operations.

10.2 The Dynamic Process Model

The dynamic process model allows for the creation and cooperative termination of processes
after an MPI application has started. It provides a mechanism to establish communication
between the newly created processes and the existing MPI application. It also provides a
mechanism to establish communication between two existing MPI applications, even when
one did not “start” the other.

10.2.1 Starting Processes

MPI applications may start new processes through an interface to an external process man-
ager.

MPI_COMM_SPAWN starts MPI processes and establishes communication with them,
returning an intercommunicator. MPI_COMM_SPAWN_MULTIPLE starts several different
binaries (or the same binary with different arguments), placing them in the same
MPI_COMM_WORLD and returning an intercommunicator.

MPI uses the group abstraction to represent processes. A process is identified by a
(group, rank) pair.

10.2.2 The Runtime Environment

The MPI_COMM_SPAWN and MPI_COMM_SPAWN_MULTIPLE routines provide an inter-
face between MPI and the runtime environment of an MPI application. The difficulty is
that there is an enormous range of runtime environments and application requirements, and
MPI must not be tailored to any particular one. Examples of such environments are:

• MPP managed by a batch queueing system. Batch queueing systems generally
allocate resources before an application begins, enforce limits on resource use (CPU
time, memory use, etc.), and do not allow a change in resource allocation after a
job begins. Moreover, many MPPs have special limitations or extensions, such as a
limit on the number of processes that may run on one processor, or the ability to
gang-schedule processes of a parallel application.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.2. THE DYNAMIC PROCESS MODEL 373

• Network of workstations with PVM. PVM (Parallel Virtual Machine) allows a
user to create a “virtual machine” out of a network of workstations. An application
may extend the virtual machine or manage processes (create, kill, redirect output,
etc.) through the PVM library. Requests to manage the machine or processes may
be intercepted and handled by an external resource manager.

• Network of workstations managed by a load balancing system. A load balanc-
ing system may choose the location of spawned processes based on dynamic quantities,
such as load average. It may transparently migrate processes from one machine to
another when a resource becomes unavailable.

• Large SMP with Unix. Applications are run directly by the user. They are
scheduled at a low level by the operating system. Processes may have special schedul-
ing characteristics (gang-scheduling, processor affinity, deadline scheduling, processor
locking, etc.) and be subject to OS resource limits (number of processes, amount of
memory, etc.).

MPI assumes, implicitly, the existence of an environment in which an application runs.
It does not provide “operating system” services, such as a general ability to query what
processes are running, to kill arbitrary processes, to find out properties of the runtime
environment (how many processors, how much memory, etc.).

Complex interaction of an MPI application with its runtime environment should be
done through an environment-specific API. An example of such an API would be the PVM
task and machine management routines — pvm_addhosts, pvm_config, pvm_tasks, etc.,
possibly modified to return an MPI (group, rank) when possible. A Condor or PBS API
would be another possibility.

At some low level, obviously, MPI must be able to interact with the runtime system,
but the interaction is not visible at the application level and the details of the interaction
are not specified by the MPI standard.

In many cases, it is impossible to keep environment-specific information out of the MPI
interface without seriously compromising MPI functionality. To permit applications to take
advantage of environment-specific functionality, many MPI routines take an info argument
that allows an application to specify environment-specific information. There is a tradeoff
between functionality and portability: applications that make use of info are not portable.

MPI does not require the existence of an underlying “virtual machine” model, in which
there is a consistent global view of an MPI application and an implicit “operating system”
managing resources and processes. For instance, processes spawned by one task may not
be visible to another; additional hosts added to the runtime environment by one process
may not be visible in another process; tasks spawned by different processes may not be
automatically distributed over available resources.

Interaction between MPI and the runtime environment is limited to the following areas:

• A process may start new processes with MPI_COMM_SPAWN and
MPI_COMM_SPAWN_MULTIPLE.

• When a process spawns a child process, it may optionally use an info argument to tell
the runtime environment where or how to start the process. This extra information
may be opaque to MPI.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

374 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

• An attribute MPI_UNIVERSE_SIZE (See Section 10.5.1) on MPI_COMM_WORLD tells a
program how “large” the initial runtime environment is, namely how many processes
can usefully be started in all. One can subtract the size of MPI_COMM_WORLD from
this value to find out how many processes might usefully be started in addition to
those already running.

10.3 Process Manager Interface

10.3.1 Processes in MPI

A process is represented in MPI by a (group, rank) pair. A (group, rank) pair specifies a
unique process but a process does not determine a unique (group, rank) pair, since a process
may belong to several groups.

10.3.2 Starting Processes and Establishing Communication

The following routine starts a number of MPI processes and establishes communication with
them, returning an intercommunicator.

Advice to users. It is possible in MPI to start a static SPMD or MPMD appli-
cation by first starting one process and having that process start its siblings with
MPI_COMM_SPAWN. This practice is discouraged primarily for reasons of perfor-
mance. If possible, it is preferable to start all processes at once, as a single MPI
application. (End of advice to users.)

MPI_COMM_SPAWN(command, argv, maxprocs, info, root, comm, intercomm,
array_of_errcodes)

IN command name of program to be spawned (string, significant

only at root)

IN argv arguments to command (array of strings, significant

only at root)

IN maxprocs maximum number of processes to start (integer, sig-

nificant only at root)

IN info a set of key-value pairs telling the runtime system

where and how to start the processes (handle, signifi-

cant only at root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and the

newly spawned group (handle)

OUT array_of_errcodes one code per process (array of integer)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.3. PROCESS MANAGER INTERFACE 375

int MPI_Comm_spawn(const char *command, char *argv[], int maxprocs,

MPI_Info info, int root, MPI_Comm comm, MPI_Comm *intercomm,

int array_of_errcodes[])

MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm,

array_of_errcodes, ierror)

CHARACTER(LEN=*), INTENT(IN) :: command, argv(*)

INTEGER, INTENT(IN) :: maxprocs, root

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER :: array_of_errcodes(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),

IERROR

MPI_COMM_SPAWN tries to start maxprocs identical copies of the MPI program spec-
ified by command, establishing communication with them and returning an intercommun-
icator. The spawned processes are referred to as children. The children have their own
MPI_COMM_WORLD, which is separate from that of the parents. MPI_COMM_SPAWN is
collective over comm, and also may not return until MPI_INIT has been called in the chil-
dren. Similarly, MPI_INIT in the children may not return until all parents have called
MPI_COMM_SPAWN. In this sense, MPI_COMM_SPAWN in the parents and MPI_INIT in
the children form a collective operation over the union of parent and child processes. The
intercommunicator returned by MPI_COMM_SPAWN contains the parent processes in the
local group and the child processes in the remote group. The ordering of processes in the
local and remote groups is the same as the ordering of the group of the comm in the parents
and of MPI_COMM_WORLD of the children, respectively. This intercommunicator can be
obtained in the children through the function MPI_COMM_GET_PARENT.

Advice to users. An implementation may automatically establish communication
before MPI_INIT is called by the children. Thus, completion of MPI_COMM_SPAWN
in the parent does not necessarily mean that MPI_INIT has been called in the children
(although the returned intercommunicator can be used immediately). (End of advice
to users.)

The command argument The command argument is a string containing the name of a pro-
gram to be spawned. The string is null-terminated in C. In Fortran, leading and trailing
spaces are stripped. MPI does not specify how to find the executable or how the working
directory is determined. These rules are implementation-dependent and should be appro-
priate for the runtime environment.

Advice to implementors. The implementation should use a natural rule for finding
executables and determining working directories. For instance, a homogeneous sys-
tem with a global file system might look first in the working directory of the spawning

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

376 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

process, or might search the directories in a PATH environment variable as do Unix
shells. An implementation on top of PVM would use PVM’s rules for finding exe-
cutables (usually in $HOME/pvm3/bin/$PVM_ARCH). An MPI implementation running
under POE on an IBM SP would use POE’s method of finding executables. An imple-
mentation should document its rules for finding executables and determining working
directories, and a high-quality implementation should give the user some control over
these rules. (End of advice to implementors.)

If the program named in command does not call MPI_INIT, but instead forks a process
that calls MPI_INIT, the results are undefined. Implementations may allow this case to
work but are not required to.

Advice to users. MPI does not say what happens if the program you start is a
shell script and that shell script starts a program that calls MPI_INIT. Though some
implementations may allow you to do this, they may also have restrictions, such as
requiring that arguments supplied to the shell script be supplied to the program, or
requiring that certain parts of the environment not be changed. (End of advice to
users.)

The argv argument argv is an array of strings containing arguments that are passed to
the program. The first element of argv is the first argument passed to command, not, as
is conventional in some contexts, the command itself. The argument list is terminated by
NULL in C and an empty string in Fortran. In Fortran, leading and trailing spaces are
always stripped, so that a string consisting of all spaces is considered an empty string. The
constant MPI_ARGV_NULL may be used in C and Fortran to indicate an empty argument
list. In C this constant is the same as NULL.

Example 10.1 Examples of argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” in C:

char command[] = "ocean";

char *argv[] = {"-gridfile", "ocean1.grd", NULL};

MPI_Comm_spawn(command, argv, ...);

or, if not everything is known at compile time:

char *command;

char **argv;

command = "ocean";

argv=(char **)malloc(3 * sizeof(char *));

argv[0] = "-gridfile";

argv[1] = "ocean1.grd";

argv[2] = NULL;

MPI_Comm_spawn(command, argv, ...);

In Fortran:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.3. PROCESS MANAGER INTERFACE 377

CHARACTER*25 command, argv(3)

command = ’ ocean ’

argv(1) = ’ -gridfile ’

argv(2) = ’ ocean1.grd’

argv(3) = ’ ’

call MPI_COMM_SPAWN(command, argv, ...)

Arguments are supplied to the program if this is allowed by the operating system. In
C, the MPI_COMM_SPAWN argument argv differs from the argv argument of main in two
respects. First, it is shifted by one element. Specifically, argv[0] of main is provided by the
implementation and conventionally contains the name of the program (given by command).
argv[1] of main corresponds to argv[0] in MPI_COMM_SPAWN, argv[2] of main to argv[1]
of MPI_COMM_SPAWN, etc. Passing an argv of MPI_ARGV_NULL to MPI_COMM_SPAWN
results in main receiving argc of 1 and an argv whose element 0 is (conventionally) the
name of the program. Second, argv of MPI_COMM_SPAWN must be null-terminated, so
that its length can be determined.

If a Fortran implementation supplies routines that allow a program to obtain its ar-
guments, the arguments may be available through that mechanism. In C, if the operating
system does not support arguments appearing in argv of main(), the MPI implementation
may add the arguments to the argv that is passed to MPI_INIT.

The maxprocs argument MPI tries to spawn maxprocs processes. If it is unable to spawn
maxprocs processes, it raises an error of class MPI_ERR_SPAWN.

An implementation may allow the info argument to change the default behavior, such
that if the implementation is unable to spawn all maxprocs processes, it may spawn a
smaller number of processes instead of raising an error. In principle, the info argument
may specify an arbitrary set {mi : 0 ≤ mi ≤ maxprocs} of allowed values for the number
of processes spawned. The set {mi} does not necessarily include the value maxprocs. If
an implementation is able to spawn one of these allowed numbers of processes,
MPI_COMM_SPAWN returns successfully and the number of spawned processes, m, is given
by the size of the remote group of intercomm. If m is less than maxproc, reasons why the
other processes were not spawned are given in array_of_errcodes as described below. If it is
not possible to spawn one of the allowed numbers of processes, MPI_COMM_SPAWN raises
an error of class MPI_ERR_SPAWN.

A spawn call with the default behavior is called hard. A spawn call for which fewer than
maxprocs processes may be returned is called soft. See Section 10.3.4 for more information
on the soft key for info.

Advice to users. By default, requests are hard and MPI errors are fatal. This means
that by default there will be a fatal error if MPI cannot spawn all the requested
processes. If you want the behavior “spawn as many processes as possible, up to N ,”
you should do a soft spawn, where the set of allowed values {mi} is {0 . . . N}. However,
this is not completely portable, as implementations are not required to support soft
spawning. (End of advice to users.)

The info argument The info argument to all of the routines in this chapter is an opaque
handle of type MPI_Info in C and Fortran with the mpi_f08 module and
INTEGER in Fortran with the mpi module or the include file mpif.h. It is a container for a

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

378 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

number of user-specified (key,value) pairs. key and value are strings (null-terminated char*

in C, character*(*) in Fortran). Routines to create and manipulate the info argument are
described in Chapter 9.

For the SPAWN calls, info provides additional (and possibly implementation-dependent)
instructions to MPI and the runtime system on how to start processes. An application may
pass MPI_INFO_NULL in C or Fortran. Portable programs not requiring detailed control over
process locations should use MPI_INFO_NULL.

MPI does not specify the content of the info argument, except to reserve a number of
special key values (see Section 10.3.4). The info argument is quite flexible and could even
be used, for example, to specify the executable and its command-line arguments. In this
case the command argument to MPI_COMM_SPAWN could be empty. The ability to do this
follows from the fact that MPI does not specify how an executable is found, and the info
argument can tell the runtime system where to “find” the executable “” (empty string). Of
course a program that does this will not be portable across MPI implementations.

The root argument All arguments before the root argument are examined only on the
process whose rank in comm is equal to root. The value of these arguments on other
processes is ignored.

The array_of_errcodes argument The array_of_errcodes is an array of length maxprocs in
which MPI reports the status of each process that MPI was requested to start. If all maxprocs
processes were spawned, array_of_errcodes is filled in with the value MPI_SUCCESS. If only m
(0 ≤ m < maxprocs) processes are spawned, m of the entries will contain MPI_SUCCESS and
the rest will contain an implementation-specific error code indicating the reason MPI could
not start the process. MPI does not specify which entries correspond to failed processes.
An implementation may, for instance, fill in error codes in one-to-one correspondence with
a detailed specification in the info argument. These error codes all belong to the error class
MPI_ERR_SPAWN if there was no error in the argument list. In C or Fortran, an application
may pass MPI_ERRCODES_IGNORE if it is not interested in the error codes.

Advice to implementors. MPI_ERRCODES_IGNORE in Fortran is a special type of
constant, like MPI_BOTTOM. See the discussion in Section 2.5.4. (End of advice to
implementors.)

MPI_COMM_GET_PARENT(parent)

OUT parent the parent communicator (handle)

int MPI_Comm_get_parent(MPI_Comm *parent)

MPI_Comm_get_parent(parent, ierror)

TYPE(MPI_Comm), INTENT(OUT) :: parent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

If a process was started with MPI_COMM_SPAWN or MPI_COMM_SPAWN_MULTIPLE,
MPI_COMM_GET_PARENT returns the “parent” intercommunicator of the current process.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.3. PROCESS MANAGER INTERFACE 379

This parent intercommunicator is created implicitly inside of MPI_INIT and is the same in-
tercommunicator returned by SPAWN in the parents.

If the process was not spawned, MPI_COMM_GET_PARENT returns MPI_COMM_NULL.
After the parent communicator is freed or disconnected, MPI_COMM_GET_PARENT

returns MPI_COMM_NULL.

Advice to users. MPI_COMM_GET_PARENT returns a handle to a single intercom-
municator. Calling MPI_COMM_GET_PARENT a second time returns a handle to
the same intercommunicator. Freeing the handle with MPI_COMM_DISCONNECT or
MPI_COMM_FREE will cause other references to the intercommunicator to become
invalid (dangling). Note that calling MPI_COMM_FREE on the parent communicator
is not useful. (End of advice to users.)

Rationale. The desire of the Forum was to create a constant
MPI_COMM_PARENT similar to MPI_COMM_WORLD. Unfortunately such a constant
cannot be used (syntactically) as an argument to MPI_COMM_DISCONNECT, which
is explicitly allowed. (End of rationale.)

10.3.3 Starting Multiple Executables and Establishing Communication

While MPI_COMM_SPAWN is sufficient for most cases, it does not allow the spawning
of multiple binaries, or of the same binary with multiple sets of arguments. The follow-
ing routine spawns multiple binaries or the same binary with multiple sets of arguments,
establishing communication with them and placing them in the same MPI_COMM_WORLD.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

380 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

MPI_COMM_SPAWN_MULTIPLE(count, array_of_commands, array_of_argv,
array_of_maxprocs, array_of_info, root, comm, intercomm, array_of_errcodes)

IN count number of commands (positive integer, significant to

MPI only at root — see advice to users)

IN array_of_commands programs to be executed (array of strings, significant

only at root)

IN array_of_argv arguments for commands (array of array of strings,

significant only at root)

IN array_of_maxprocs maximum number of processes to start for each com-

mand (array of integer, significant only at root)

IN array_of_info info objects telling the runtime system where and how

to start processes (array of handles, significant only at

root)

IN root rank of process in which previous arguments are ex-

amined (integer)

IN comm intracommunicator containing group of spawning pro-

cesses (handle)

OUT intercomm intercommunicator between original group and newly

spawned group (handle)

OUT array_of_errcodes one error code per process (array of integer)

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],

char **array_of_argv[], const int array_of_maxprocs[], const

MPI_Info array_of_info[], int root, MPI_Comm comm,

MPI_Comm *intercomm, int array_of_errcodes[])

MPI_Comm_spawn_multiple(count, array_of_commands, array_of_argv,

array_of_maxprocs, array_of_info, root, comm, intercomm,

array_of_errcodes, ierror)

INTEGER, INTENT(IN) :: count, array_of_maxprocs(*), root

CHARACTER(LEN=*), INTENT(IN) :: array_of_commands(*)

CHARACTER(LEN=*), INTENT(IN) :: array_of_argv(count, *)

TYPE(MPI_Info), INTENT(IN) :: array_of_info(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER :: array_of_errcodes(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,

ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.3. PROCESS MANAGER INTERFACE 381

MPI_COMM_SPAWN_MULTIPLE is identical to MPI_COMM_SPAWN except that there
are multiple executable specifications. The first argument, count, gives the number of
specifications. Each of the next four arguments are simply arrays of the corresponding
arguments in MPI_COMM_SPAWN. For the Fortran version of array_of_argv, the element
array_of_argv(i,j) is the j-th argument to command number i.

Rationale. This may seem backwards to Fortran programmers who are familiar
with Fortran’s column-major ordering. However, it is necessary to do it this way to
allow MPI_COMM_SPAWN to sort out arguments. Note that the leading dimension
of array_of_argv must be the same as count. Also note that Fortran rules for sequence
association allow a different value in the first dimension; in this case, the sequence of
array elements is interpreted by MPI_COMM_SPAWN_MULTIPLE as if the sequence is
stored in an array defined with the first dimension set to count. This Fortran feature
allows an implementor to define MPI_ARGVS_NULL (see below) with fixed dimensions,
e.g., (1,1), or only with one dimension, e.g., (1). (End of rationale.)

Advice to users. The argument count is interpreted by MPI only at the root, as is
array_of_argv. Since the leading dimension of array_of_argv is count, a non-positive
value of count at a non-root node could theoretically cause a runtime bounds check
error, even though array_of_argv should be ignored by the subroutine. If this happens,
you should explicitly supply a reasonable value of count on the non-root nodes. (End
of advice to users.)

In any language, an application may use the constant MPI_ARGVS_NULL (which is likely
to be (char ***)0 in C) to specify that no arguments should be passed to any commands.
The effect of setting individual elements of array_of_argv to MPI_ARGV_NULL is not defined.
To specify arguments for some commands but not others, the commands without arguments
should have a corresponding argv whose first element is null ((char *)0 in C and empty
string in Fortran). In Fortran at non-root processes, the count argument must be set to
a value that is consistent with the provided array_of_argv although the content of these
arguments has no meaning for this operation.

All of the spawned processes have the same MPI_COMM_WORLD. Their ranks in
MPI_COMM_WORLD correspond directly to the order in which the commands are specified
in MPI_COMM_SPAWN_MULTIPLE. Assume that m1 processes are generated by the first
command, m2 by the second, etc. The processes corresponding to the first command have
ranks 0, 1, . . . ,m1−1. The processes in the second command have ranks m1,m1+1, . . . ,m1+
m2−1. The processes in the third have ranks m1 +m2,m1 +m2 + 1, . . . ,m1 +m2 +m3−1,
etc.

Advice to users. Calling MPI_COMM_SPAWN multiple times would create many
sets of children with different MPI_COMM_WORLDs whereas
MPI_COMM_SPAWN_MULTIPLE creates children with a single MPI_COMM_WORLD,
so the two methods are not completely equivalent. There are also two performance-
related reasons why, if you need to spawn multiple executables, you may want to
use MPI_COMM_SPAWN_MULTIPLE instead of calling MPI_COMM_SPAWN several
times. First, spawning several things at once may be faster than spawning them
sequentially. Second, in some implementations, communication between processes
spawned at the same time may be faster than communication between processes
spawned separately. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

382 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

The array_of_errcodes argument is a 1-dimensional array of size
∑count

i=1 ni, where ni is
the i-th element of array_of_maxprocs. Command number i corresponds to the ni contiguous

slots in this array from element
∑i−1

j=1 nj to
[∑i

j=1 nj
]
− 1. Error codes are treated as for

MPI_COMM_SPAWN.

Example 10.2 Examples of array_of_argv in C and Fortran
To run the program “ocean” with arguments “-gridfile” and “ocean1.grd” and the program
“atmos” with argument “atmos.grd” in C:

char *array_of_commands[2] = {"ocean", "atmos"};

char **array_of_argv[2];

char *argv0[] = {"-gridfile", "ocean1.grd", (char *)0};

char *argv1[] = {"atmos.grd", (char *)0};

array_of_argv[0] = argv0;

array_of_argv[1] = argv1;

MPI_Comm_spawn_multiple(2, array_of_commands, array_of_argv, ...);

Here is how you do it in Fortran:

CHARACTER*25 commands(2), array_of_argv(2, 3)

commands(1) = ’ ocean ’

array_of_argv(1, 1) = ’ -gridfile ’

array_of_argv(1, 2) = ’ ocean1.grd’

array_of_argv(1, 3) = ’ ’

commands(2) = ’ atmos ’

array_of_argv(2, 1) = ’ atmos.grd ’

array_of_argv(2, 2) = ’ ’

call MPI_COMM_SPAWN_MULTIPLE(2, commands, array_of_argv, ...)

10.3.4 Reserved Keys

The following keys are reserved. An implementation is not required to interpret these keys,
but if it does interpret the key, it must provide the functionality described.

host Value is a hostname. The format of the hostname is determined by the implementation.

arch Value is an architecture name. Valid architecture names and what they mean are
determined by the implementation.

wdir Value is the name of a directory on a machine on which the spawned process(es)
execute(s). This directory is made the working directory of the executing process(es).
The format of the directory name is determined by the implementation.

path Value is a directory or set of directories where the implementation should look for the
executable. The format of path is determined by the implementation.

file Value is the name of a file in which additional information is specified. The format of
the filename and internal format of the file are determined by the implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.3. PROCESS MANAGER INTERFACE 383

soft Value specifies a set of numbers which are allowed values for the number of processes
that MPI_COMM_SPAWN (et al.) may create. The format of the value is a comma-
separated list of Fortran-90 triplets each of which specifies a set of integers and which
together specify the set formed by the union of these sets. Negative values in this set
and values greater than maxprocs are ignored. MPI will spawn the largest number of
processes it can, consistent with some number in the set. The order in which triplets
are given is not significant.

By Fortran-90 triplets, we mean:

1. a means a

2. a:b means a, a+ 1, a+ 2, . . . , b

3. a:b:c means a, a+ c, a+ 2c, . . . , a+ ck, where for c > 0, k is the largest integer
for which a+ ck ≤ b and for c < 0, k is the largest integer for which a+ ck ≥ b.
If b > a then c must be positive. If b < a then c must be negative.

Examples:

1. a:b gives a range between a and b

2. 0:N gives full “soft” functionality

3. 1,2,4,8,16,32,64,128,256,512,1024,2048,4096 allows a power-of-two num-
ber of processes.

4. 2:10000:2 allows an even number of processes.

5. 2:10:2,7 allows 2, 4, 6, 7, 8, or 10 processes.

10.3.5 Spawn Example

Manager-worker Example Using MPI_COMM_SPAWN

/* manager */

#include "mpi.h"

int main(int argc, char *argv[])

{

int world_size, universe_size, *universe_sizep, flag;

MPI_Comm everyone; /* intercommunicator */

char worker_program[100];

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &world_size);

if (world_size != 1) error("Top heavy with management");

MPI_Comm_get_attr(MPI_COMM_WORLD, MPI_UNIVERSE_SIZE,

&universe_sizep, &flag);

if (!flag) {

printf("This MPI does not support UNIVERSE_SIZE. How many\n\

processes total?");

scanf("%d", &universe_size);

} else universe_size = *universe_sizep;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

384 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

if (universe_size == 1) error("No room to start workers");

/*

* Now spawn the workers. Note that there is a run-time determination

* of what type of worker to spawn, and presumably this calculation must

* be done at run time and cannot be calculated before starting

* the program. If everything is known when the application is

* first started, it is generally better to start them all at once

* in a single MPI_COMM_WORLD.

*/

choose_worker_program(worker_program);

MPI_Comm_spawn(worker_program, MPI_ARGV_NULL, universe_size-1,

MPI_INFO_NULL, 0, MPI_COMM_SELF, &everyone,

MPI_ERRCODES_IGNORE);

/*

* Parallel code here. The communicator "everyone" can be used

* to communicate with the spawned processes, which have ranks 0,..

* MPI_UNIVERSE_SIZE-1 in the remote group of the intercommunicator

* "everyone".

*/

MPI_Finalize();

return 0;

}

/* worker */

#include "mpi.h"

int main(int argc, char *argv[])

{

int size;

MPI_Comm parent;

MPI_Init(&argc, &argv);

MPI_Comm_get_parent(&parent);

if (parent == MPI_COMM_NULL) error("No parent!");

MPI_Comm_remote_size(parent, &size);

if (size != 1) error("Something’s wrong with the parent");

/*

* Parallel code here.

* The manager is represented as the process with rank 0 in (the remote

* group of) the parent communicator. If the workers need to communicate

* among themselves, they can use MPI_COMM_WORLD.

*/

MPI_Finalize();

return 0;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.4. ESTABLISHING COMMUNICATION 385

}

10.4 Establishing Communication

This section provides functions that establish communication between two sets of MPI
processes that do not share a communicator.

Some situations in which these functions are useful are:

1. Two parts of an application that are started independently need to communicate.

2. A visualization tool wants to attach to a running process.

3. A server wants to accept connections from multiple clients. Both clients and server
may be parallel programs.

In each of these situations, MPI must establish communication channels where none existed
before, and there is no parent/child relationship. The routines described in this section
establish communication between the two sets of processes by creating an MPI intercom-
municator, where the two groups of the intercommunicator are the original sets of processes.

Establishing contact between two groups of processes that do not share an existing
communicator is a collective but asymmetric process. One group of processes indicates its
willingness to accept connections from other groups of processes. We will call this group
the (parallel) server, even if this is not a client/server type of application. The other group
connects to the server; we will call it the client.

Advice to users. While the names client and server are used throughout this section,
MPI does not guarantee the traditional robustness of client/server systems. The func-
tionality described in this section is intended to allow two cooperating parts of the
same application to communicate with one another. For instance, a client that gets a
segmentation fault and dies, or one that does not participate in a collective operation
may cause a server to crash or hang. (End of advice to users.)

10.4.1 Names, Addresses, Ports, and All That

Almost all of the complexity in MPI client/server routines addresses the question “how
does the client find out how to contact the server?” The difficulty, of course, is that there
is no existing communication channel between them, yet they must somehow agree on a
rendezvous point where they will establish communication.

Agreeing on a rendezvous point always involves a third party. The third party may
itself provide the rendezvous point or may communicate rendezvous information from server
to client. Complicating matters might be the fact that a client does not really care what
server it contacts, only that it be able to get in touch with one that can handle its request.

Ideally, MPI can accommodate a wide variety of run-time systems while retaining the
ability to write simple, portable code. The following should be compatible with MPI:

• The server resides at a well-known internet address host:port.

• The server prints out an address to the terminal; the user gives this address to the
client program.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

386 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

• The server places the address information on a nameserver, where it can be retrieved
with an agreed-upon name.

• The server to which the client connects is actually a broker, acting as a middleman
between the client and the real server.

MPI does not require a nameserver, so not all implementations will be able to support
all of the above scenarios. However, MPI provides an optional nameserver interface, and is
compatible with external name servers.

A port_name is a system-supplied string that encodes a low-level network address at
which a server can be contacted. Typically this is an IP address and a port number, but
an implementation is free to use any protocol. The server establishes a port_name with
the MPI_OPEN_PORT routine. It accepts a connection to a given port with
MPI_COMM_ACCEPT. A client uses port_name to connect to the server.

By itself, the port_name mechanism is completely portable, but it may be clumsy
to use because of the necessity to communicate port_name to the client. It would be more
convenient if a server could specify that it be known by an application-supplied service_name
so that the client could connect to that service_name without knowing the port_name.

An MPI implementation may allow the server to publish a (port_name, service_name)
pair with MPI_PUBLISH_NAME and the client to retrieve the port name from the service
name with MPI_LOOKUP_NAME. This allows three levels of portability, with increasing
levels of functionality.

1. Applications that do not rely on the ability to publish names are the most portable.
Typically the port_name must be transferred “by hand” from server to client.

2. Applications that use the MPI_PUBLISH_NAME mechanism are completely portable
among implementations that provide this service. To be portable among all imple-
mentations, these applications should have a fall-back mechanism that can be used
when names are not published.

3. Applications may ignore MPI’s name publishing functionality and use their own mech-
anism (possibly system-supplied) to publish names. This allows arbitrary flexibility
but is not portable.

10.4.2 Server Routines

A server makes itself available with two routines. First it must call MPI_OPEN_PORT to
establish a port at which it may be contacted. Secondly it must call MPI_COMM_ACCEPT
to accept connections from clients.

MPI_OPEN_PORT(info, port_name)

IN info implementation-specific information on how to estab-

lish an address (handle)

OUT port_name newly established port (string)

int MPI_Open_port(MPI_Info info, char *port_name)

MPI_Open_port(info, port_name, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.4. ESTABLISHING COMMUNICATION 387

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

This function establishes a network address, encoded in the port_name string, at which
the server will be able to accept connections from clients. port_name is supplied by the
system, possibly using information in the info argument.

MPI copies a system-supplied port name into port_name. port_name identifies the newly
opened port and can be used by a client to contact the server. The maximum size string
that may be supplied by the system is MPI_MAX_PORT_NAME.

Advice to users. The system copies the port name into port_name. The application
must pass a buffer of sufficient size to hold this value. (End of advice to users.)

port_name is essentially a network address. It is unique within the communication
universe to which it belongs (determined by the implementation), and may be used by any
client within that communication universe. For instance, if it is an internet (host:port)
address, it will be unique on the internet. If it is a low level switch address on an IBM SP,
it will be unique to that SP.

Advice to implementors. These examples are not meant to constrain implementa-
tions. A port_name could, for instance, contain a user name or the name of a batch
job, as long as it is unique within some well-defined communication domain. The
larger the communication domain, the more useful MPI’s client/server functionality
will be. (End of advice to implementors.)

The precise form of the address is implementation-defined. For instance, an internet address
may be a host name or IP address, or anything that the implementation can decode into
an IP address. A port name may be reused after it is freed with MPI_CLOSE_PORT and
released by the system.

Advice to implementors. Since the user may type in port_name by hand, it is useful
to choose a form that is easily readable and does not have embedded spaces. (End of
advice to implementors.)

info may be used to tell the implementation how to establish the address. It may, and
usually will, be MPI_INFO_NULL in order to get the implementation defaults.

MPI_CLOSE_PORT(port_name)

IN port_name a port (string)

int MPI_Close_port(const char *port_name)

MPI_Close_port(port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

388 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

This function releases the network address represented by port_name.

MPI_COMM_ACCEPT(port_name, info, root, comm, newcomm)

IN port_name port name (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with client as remote group (han-

dle)

int MPI_Comm_accept(const char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_Comm_accept(port_name, info, root, comm, newcomm, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_ACCEPT establishes communication with a client. It is collective over the
calling communicator. It returns an intercommunicator that allows communication with the
client.

The port_name must have been established through a call to MPI_OPEN_PORT.
info can be used to provide directives that may influence the behavior of the ACCEPT

call.

10.4.3 Client Routines

There is only one routine on the client side.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.4. ESTABLISHING COMMUNICATION 389

MPI_COMM_CONNECT(port_name, info, root, comm, newcomm)

IN port_name network address (string, used only on root)

IN info implementation-dependent information (handle, used

only on root)

IN root rank in comm of root node (integer)

IN comm intracommunicator over which call is collective (han-

dle)

OUT newcomm intercommunicator with server as remote group (han-

dle)

int MPI_Comm_connect(const char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

MPI_Comm_connect(port_name, info, root, comm, newcomm, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

This routine establishes communication with a server specified by port_name. It is
collective over the calling communicator and returns an intercommunicator in which the
remote group participated in an MPI_COMM_ACCEPT.

If the named port does not exist (or has been closed), MPI_COMM_CONNECT raises
an error of class MPI_ERR_PORT.

If the port exists, but does not have a pending MPI_COMM_ACCEPT, the connection
attempt will eventually time out after an implementation-defined time, or succeed when
the server calls MPI_COMM_ACCEPT. In the case of a time out, MPI_COMM_CONNECT
raises an error of class MPI_ERR_PORT.

Advice to implementors. The time out period may be arbitrarily short or long.
However, a high-quality implementation will try to queue connection attempts so
that a server can handle simultaneous requests from several clients. A high-quality
implementation may also provide a mechanism, through the info arguments to
MPI_OPEN_PORT, MPI_COMM_ACCEPT, and/or MPI_COMM_CONNECT, for the
user to control timeout and queuing behavior. (End of advice to implementors.)

MPI provides no guarantee of fairness in servicing connection attempts. That is, connec-
tion attempts are not necessarily satisfied in the order they were initiated and competition
from other connection attempts may prevent a particular connection attempt from being
satisfied.

port_name is the address of the server. It must be the same as the name returned
by MPI_OPEN_PORT on the server. Some freedom is allowed here. If there are equivalent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

390 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

forms of port_name, an implementation may accept them as well. For instance, if port_name
is (hostname:port), an implementation may accept (ip_address:port) as well.

10.4.4 Name Publishing

The routines in this section provide a mechanism for publishing names. A (service_name,
port_name) pair is published by the server, and may be retrieved by a client using the
service_name only. An MPI implementation defines the scope of the service_name, that
is, the domain over which the service_name can be retrieved. If the domain is the empty
set, that is, if no client can retrieve the information, then we say that name publishing
is not supported. Implementations should document how the scope is determined. High-
quality implementations will give some control to users through the info arguments to name
publishing functions. Examples are given in the descriptions of individual functions.

MPI_PUBLISH_NAME(service_name, info, port_name)

IN service_name a service name to associate with the port (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Publish_name(const char *service_name, MPI_Info info, const

char *port_name)

MPI_Publish_name(service_name, info, port_name, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

This routine publishes the pair (port_name, service_name) so that an application may
retrieve a system-supplied port_name using a well-known service_name.

The implementation must define the scope of a published service name, that is, the
domain over which the service name is unique, and conversely, the domain over which the
(port name, service name) pair may be retrieved. For instance, a service name may be
unique to a job (where job is defined by a distributed operating system or batch scheduler),
unique to a machine, or unique to a Kerberos realm. The scope may depend on the info
argument to MPI_PUBLISH_NAME.

MPI permits publishing more than one service_name for a single port_name. On the
other hand, if service_name has already been published within the scope determined by info,
the behavior of MPI_PUBLISH_NAME is undefined. An MPI implementation may, through
a mechanism in the info argument to MPI_PUBLISH_NAME, provide a way to allow multiple
servers with the same service in the same scope. In this case, an implementation-defined
policy will determine which of several port names is returned by MPI_LOOKUP_NAME.

Note that while service_name has a limited scope, determined by the implementation,
port_name always has global scope within the communication universe used by the imple-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.4. ESTABLISHING COMMUNICATION 391

mentation (i.e., it is globally unique).
port_name should be the name of a port established by MPI_OPEN_PORT and not yet

released by MPI_CLOSE_PORT. If it is not, the result is undefined.

Advice to implementors. In some cases, an MPI implementation may use a name
service that a user can also access directly. In this case, a name published by MPI
could easily conflict with a name published by a user. In order to avoid such conflicts,
MPI implementations should mangle service names so that they are unlikely to conflict
with user code that makes use of the same service. Such name mangling will of course
be completely transparent to the user.

The following situation is problematic but unavoidable, if we want to allow implemen-
tations to use nameservers. Suppose there are multiple instances of “ocean” running
on a machine. If the scope of a service name is confined to a job, then multiple
oceans can coexist. If an implementation provides site-wide scope, however, multiple
instances are not possible as all calls to MPI_PUBLISH_NAME after the first may fail.
There is no universal solution to this.

To handle these situations, a high-quality implementation should make it possible to
limit the domain over which names are published. (End of advice to implementors.)

MPI_UNPUBLISH_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

IN port_name a port name (string)

int MPI_Unpublish_name(const char *service_name, MPI_Info info, const

char *port_name)

MPI_Unpublish_name(service_name, info, port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

This routine unpublishes a service name that has been previously published. Attempt-
ing to unpublish a name that has not been published or has already been unpublished is
erroneous and is indicated by the error class MPI_ERR_SERVICE.

All published names must be unpublished before the corresponding port is closed and
before the publishing process exits. The behavior of MPI_UNPUBLISH_NAME is implemen-
tation dependent when a process tries to unpublish a name that it did not publish.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, the implementation may require that info passed to
MPI_UNPUBLISH_NAME contain information to tell the implementation how to unpublish
a name.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

392 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

MPI_LOOKUP_NAME(service_name, info, port_name)

IN service_name a service name (string)

IN info implementation-specific information (handle)

OUT port_name a port name (string)

int MPI_Lookup_name(const char *service_name, MPI_Info info,

char *port_name)

MPI_Lookup_name(service_name, info, port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: service_name

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

This function retrieves a port_name published by MPI_PUBLISH_NAME with
service_name. If service_name has not been published, it raises an error in the error class
MPI_ERR_NAME. The application must supply a port_name buffer large enough to hold the
largest possible port name (see discussion above under MPI_OPEN_PORT).

If an implementation allows multiple entries with the same service_name within the
same scope, a particular port_name is chosen in a way determined by the implementation.

If the info argument was used with MPI_PUBLISH_NAME to tell the implementation
how to publish names, a similar info argument may be required for MPI_LOOKUP_NAME.

10.4.5 Reserved Key Values

The following key values are reserved. An implementation is not required to interpret these
key values, but if it does interpret the key value, it must provide the functionality described.

ip_port Value contains IP port number at which to establish a port. (Reserved for
MPI_OPEN_PORT only).

ip_address Value contains IP address at which to establish a port. If the address is not a
valid IP address of the host on which the MPI_OPEN_PORT call is made, the results
are undefined. (Reserved for MPI_OPEN_PORT only).

10.4.6 Client/Server Examples

Simplest Example — Completely Portable.

The following example shows the simplest way to use the client/server interface. It does
not use service names at all.

On the server side:

char myport[MPI_MAX_PORT_NAME];

MPI_Comm intercomm;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.4. ESTABLISHING COMMUNICATION 393

/* ... */

MPI_Open_port(MPI_INFO_NULL, myport);

printf("port name is: %s\n", myport);

MPI_Comm_accept(myport, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

The server prints out the port name to the terminal and the user must type it in when
starting up the client (assuming the MPI implementation supports stdin such that this
works). On the client side:

MPI_Comm intercomm;

char name[MPI_MAX_PORT_NAME];

printf("enter port name: ");

gets(name);

MPI_Comm_connect(name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

Ocean/Atmosphere — Relies on Name Publishing

In this example, the “ocean” application is the “server” side of a coupled ocean-atmosphere
climate model. It assumes that the MPI implementation publishes names.

MPI_Open_port(MPI_INFO_NULL, port_name);

MPI_Publish_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF, &intercomm);

/* do something with intercomm */

MPI_Unpublish_name("ocean", MPI_INFO_NULL, port_name);

On the client side:

MPI_Lookup_name("ocean", MPI_INFO_NULL, port_name);

MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_SELF,

&intercomm);

Simple Client-Server Example

This is a simple example; the server accepts only a single connection at a time and serves
that connection until the client requests to be disconnected. The server is a single process.

Here is the server. It accepts a single connection and then processes data until it
receives a message with tag 1. A message with tag 0 tells the server to exit.

#include "mpi.h"

int main(int argc, char *argv[])

{

MPI_Comm client;

MPI_Status status;

char port_name[MPI_MAX_PORT_NAME];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

394 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

double buf[MAX_DATA];

int size, again;

MPI_Init(&argc, &argv);

MPI_Comm_size(MPI_COMM_WORLD, &size);

if (size != 1) error(FATAL, "Server too big");

MPI_Open_port(MPI_INFO_NULL, port_name);

printf("server available at %s\n", port_name);

while (1) {

MPI_Comm_accept(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&client);

again = 1;

while (again) {

MPI_Recv(buf, MAX_DATA, MPI_DOUBLE,

MPI_ANY_SOURCE, MPI_ANY_TAG, client, &status);

switch (status.MPI_TAG) {

case 0: MPI_Comm_free(&client);

MPI_Close_port(port_name);

MPI_Finalize();

return 0;

case 1: MPI_Comm_disconnect(&client);

again = 0;

break;

case 2: /* do something */

...

default:

/* Unexpected message type */

MPI_Abort(MPI_COMM_WORLD, 1);

}

}

}

}

Here is the client.

#include "mpi.h"

int main(int argc, char **argv)

{

MPI_Comm server;

double buf[MAX_DATA];

char port_name[MPI_MAX_PORT_NAME];

MPI_Init(&argc, &argv);

strcpy(port_name, argv[1]);/* assume server’s name is cmd-line arg */

MPI_Comm_connect(port_name, MPI_INFO_NULL, 0, MPI_COMM_WORLD,

&server);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.5. OTHER FUNCTIONALITY 395

while (!done) {

tag = 2; /* Action to perform */

MPI_Send(buf, n, MPI_DOUBLE, 0, tag, server);

/* etc */

}

MPI_Send(buf, 0, MPI_DOUBLE, 0, 1, server);

MPI_Comm_disconnect(&server);

MPI_Finalize();

return 0;

}

10.5 Other Functionality

10.5.1 Universe Size

Many “dynamic” MPI applications are expected to exist in a static runtime environment,
in which resources have been allocated before the application is run. When a user (or
possibly a batch system) runs one of these quasi-static applications, she will usually specify
a number of processes to start and a total number of processes that are expected. An
application simply needs to know how many slots there are, i.e., how many processes it
should spawn.

MPI provides an attribute on MPI_COMM_WORLD, MPI_UNIVERSE_SIZE, that allows
the application to obtain this information in a portable manner. This attribute indicates
the total number of processes that are expected. In Fortran, the attribute is the integer
value. In C, the attribute is a pointer to the integer value. An application typically subtracts
the size of MPI_COMM_WORLD from MPI_UNIVERSE_SIZE to find out how many processes it
should spawn. MPI_UNIVERSE_SIZE is initialized in MPI_INIT and is not changed by MPI. If
defined, it has the same value on all processes of MPI_COMM_WORLD. MPI_UNIVERSE_SIZE

is determined by the application startup mechanism in a way not specified by MPI. (The
size of MPI_COMM_WORLD is another example of such a parameter.)

Possibilities for how MPI_UNIVERSE_SIZE might be set include

• A -universe_size argument to a program that starts MPI processes.

• Automatic interaction with a batch scheduler to figure out how many processors have
been allocated to an application.

• An environment variable set by the user.

• Extra information passed to MPI_COMM_SPAWN through the info argument.

An implementation must document how MPI_UNIVERSE_SIZE is set. An implementation
may not support the ability to set MPI_UNIVERSE_SIZE, in which case the attribute
MPI_UNIVERSE_SIZE is not set.

MPI_UNIVERSE_SIZE is a recommendation, not necessarily a hard limit. For instance,
some implementations may allow an application to spawn 50 processes per processor, if
they are requested. However, it is likely that the user only wants to spawn one process per
processor.

MPI_UNIVERSE_SIZE is assumed to have been specified when an application was started,
and is in essence a portable mechanism to allow the user to pass to the application (through

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

396 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

the MPI process startup mechanism, such as mpiexec) a piece of critical runtime informa-
tion. Note that no interaction with the runtime environment is required. If the runtime
environment changes size while an application is running, MPI_UNIVERSE_SIZE is not up-
dated, and the application must find out about the change through direct communication
with the runtime system.

10.5.2 Singleton MPI_INIT

A high-quality implementation will allow any process (including those not started with a
“parallel application” mechanism) to become an MPI process by calling MPI_INIT. Such
a process can then connect to other MPI processes using the MPI_COMM_ACCEPT and
MPI_COMM_CONNECT routines, or spawn other MPI processes. MPI does not mandate
this behavior, but strongly encourages it where technically feasible.

Advice to implementors. To start MPI processes belonging to the same
MPI_COMM_WORLD requires some special coordination. The processes must be started
at the “same” time, they must have a mechanism to establish communication, etc.
Either the user or the operating system must take special steps beyond simply starting
processes.

When an application enters MPI_INIT, clearly it must be able to determine if these
special steps were taken. If a process enters MPI_INIT and determines that no
special steps were taken (i.e., it has not been given the information to form an
MPI_COMM_WORLD with other processes) it succeeds and forms a singleton MPI pro-
gram, that is, one in which MPI_COMM_WORLD has size 1.

In some implementations, MPI may not be able to function without an “MPI environ-
ment.” For example, MPI may require that daemons be running or MPI may not be
able to work at all on the front-end of an MPP. In this case, an MPI implementation
may either

1. Create the environment (e.g., start a daemon) or

2. Raise an error if it cannot create the environment and the environment has not
been started independently.

A high-quality implementation will try to create a singleton MPI process and not raise
an error.

(End of advice to implementors.)

10.5.3 MPI_APPNUM

There is a predefined attribute MPI_APPNUM of MPI_COMM_WORLD. In Fortran, the at-
tribute is an integer value. In C, the attribute is a pointer to an integer value. If a process
was spawned with MPI_COMM_SPAWN_MULTIPLE, MPI_APPNUM is the command number
that generated the current process. Numbering starts from zero. If a process was spawned
with MPI_COMM_SPAWN, it will have MPI_APPNUM equal to zero.

Additionally, if the process was not started by a spawn call, but by an implementation-
specific startup mechanism that can handle multiple process specifications, MPI_APPNUM

should be set to the number of the corresponding process specification. In particular, if it
is started with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.5. OTHER FUNCTIONALITY 397

mpiexec spec0 [: spec1 : spec2 : ...]

MPI_APPNUM should be set to the number of the corresponding specification.
If an application was not spawned with MPI_COMM_SPAWN or

MPI_COMM_SPAWN_MULTIPLE, and MPI_APPNUM does not make sense in the context of
the implementation-specific startup mechanism, MPI_APPNUM is not set.

MPI implementations may optionally provide a mechanism to override the value of
MPI_APPNUM through the info argument. MPI reserves the following key for all SPAWN
calls.

appnum Value contains an integer that overrides the default value for MPI_APPNUM in the
child.

Rationale. When a single application is started, it is able to figure out how many pro-
cesses there are by looking at the size of MPI_COMM_WORLD. An application consisting
of multiple SPMD sub-applications has no way to find out how many sub-applications
there are and to which sub-application the process belongs. While there are ways to
figure it out in special cases, there is no general mechanism. MPI_APPNUM provides
such a general mechanism. (End of rationale.)

10.5.4 Releasing Connections

Before a client and server connect, they are independent MPI applications. An error in one
does not affect the other. After establishing a connection with MPI_COMM_CONNECT and
MPI_COMM_ACCEPT, an error in one may affect the other. It is desirable for a client and
server to be able to disconnect, so that an error in one will not affect the other. Similarly,
it might be desirable for a parent and child to disconnect, so that errors in the child do not
affect the parent, or vice-versa.

• Two processes are connected if there is a communication path (direct or indirect)
between them. More precisely:

1. Two processes are connected if

(a) they both belong to the same communicator (inter- or intra-, including
MPI_COMM_WORLD) or

(b) they have previously belonged to a communicator that was freed with
MPI_COMM_FREE instead of MPI_COMM_DISCONNECT or

(c) they both belong to the group of the same window or filehandle.

2. If A is connected to B and B to C, then A is connected to C.

• Two processes are disconnected (also independent) if they are not connected.

• By the above definitions, connectivity is a transitive property, and divides the uni-
verse of MPI processes into disconnected (independent) sets (equivalence classes) of
processes.

• Processes which are connected, but do not share the same MPI_COMM_WORLD, may
become disconnected (independent) if the communication path between them is bro-
ken by using MPI_COMM_DISCONNECT.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

398 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

The following additional rules apply to MPI routines in other chapters:

• MPI_FINALIZE is collective over a set of connected processes.

• MPI_ABORT does not abort independent processes. It may abort all processes in
the caller’s MPI_COMM_WORLD (ignoring its comm argument). Additionally, it may
abort connected processes as well, though it makes a “best attempt” to abort only
the processes in comm.

• If a process terminates without calling MPI_FINALIZE, independent processes are not
affected but the effect on connected processes is not defined.

MPI_COMM_DISCONNECT(comm)

INOUT comm communicator (handle)

int MPI_Comm_disconnect(MPI_Comm *comm)

MPI_Comm_disconnect(comm, ierror)

TYPE(MPI_Comm), INTENT(INOUT) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

This function waits for all pending communication on comm to complete internally,
deallocates the communicator object, and sets the handle to MPI_COMM_NULL. It is a
collective operation.

It may not be called with the communicator MPI_COMM_WORLD or MPI_COMM_SELF.
MPI_COMM_DISCONNECT may be called only if all communication is complete and

matched, so that buffered data can be delivered to its destination. This requirement is the
same as for MPI_FINALIZE.

MPI_COMM_DISCONNECT has the same action as MPI_COMM_FREE, except that it
waits for pending communication to finish internally and enables the guarantee about the
behavior of disconnected processes.

Advice to users. To disconnect two processes you may need to call
MPI_COMM_DISCONNECT, MPI_WIN_FREE, and MPI_FILE_CLOSE to remove all
communication paths between the two processes. Note that it may be necessary
to disconnect several communicators (or to free several windows or files) before two
processes are completely independent. (End of advice to users.)

Rationale. It would be nice to be able to use MPI_COMM_FREE instead, but that
function explicitly does not wait for pending communication to complete. (End of
rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10.5. OTHER FUNCTIONALITY 399

10.5.5 Another Way to Establish MPI Communication

MPI_COMM_JOIN(fd, intercomm)

IN fd socket file descriptor

OUT intercomm new intercommunicator (handle)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

MPI_Comm_join(fd, intercomm, ierror)

INTEGER, INTENT(IN) :: fd

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

MPI_COMM_JOIN is intended for MPI implementations that exist in an environment
supporting the Berkeley Socket interface [45, 49]. Implementations that exist in an environ-
ment not supporting Berkeley Sockets should provide the entry point for MPI_COMM_JOIN
and should return MPI_COMM_NULL.

This call creates an intercommunicator from the union of two MPI processes which are
connected by a socket. MPI_COMM_JOIN should normally succeed if the local and remote
processes have access to the same implementation-defined MPI communication universe.

Advice to users. An MPI implementation may require a specific communication
medium for MPI communication, such as a shared memory segment or a special switch.
In this case, it may not be possible for two processes to successfully join even if there
is a socket connecting them and they are using the same MPI implementation. (End
of advice to users.)

Advice to implementors. A high-quality implementation will attempt to establish
communication over a slow medium if its preferred one is not available. If implemen-
tations do not do this, they must document why they cannot do MPI communication
over the medium used by the socket (especially if the socket is a TCP connection).
(End of advice to implementors.)

fd is a file descriptor representing a socket of type SOCK_STREAM (a two-way reliable
byte-stream connection). Nonblocking I/O and asynchronous notification via SIGIO must
not be enabled for the socket. The socket must be in a connected state. The socket must
be quiescent when MPI_COMM_JOIN is called (see below). It is the responsibility of the
application to create the socket using standard socket API calls.

MPI_COMM_JOIN must be called by the process at each end of the socket. It does not
return until both processes have called MPI_COMM_JOIN. The two processes are referred
to as the local and remote processes.

MPI uses the socket to bootstrap creation of the intercommunicator, and for nothing
else. Upon return from MPI_COMM_JOIN, the file descriptor will be open and quiescent
(see below).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

400 CHAPTER 10. PROCESS CREATION AND MANAGEMENT

If MPI is unable to create an intercommunicator, but is able to leave the socket in its
original state, with no pending communication, it succeeds and sets intercomm to
MPI_COMM_NULL.

The socket must be quiescent before MPI_COMM_JOIN is called and after
MPI_COMM_JOIN returns. More specifically, on entry to MPI_COMM_JOIN, a read on the
socket will not read any data that was written to the socket before the remote process called
MPI_COMM_JOIN. On exit from MPI_COMM_JOIN, a read will not read any data that was
written to the socket before the remote process returned from MPI_COMM_JOIN. It is the
responsibility of the application to ensure the first condition, and the responsibility of the
MPI implementation to ensure the second. In a multithreaded application, the application
must ensure that one thread does not access the socket while another is calling
MPI_COMM_JOIN, or call MPI_COMM_JOIN concurrently.

Advice to implementors. MPI is free to use any available communication path(s)
for MPI messages in the new communicator; the socket is only used for the initial
handshaking. (End of advice to implementors.)

MPI_COMM_JOIN uses non-MPI communication to do its work. The interaction of
non-MPI communication with pending MPI communication is not defined. Therefore, the
result of calling MPI_COMM_JOIN on two connected processes (see Section 10.5.4 for the
definition of connected) is undefined.

The returned communicator may be used to establish MPI communication with addi-
tional processes, through the usual MPI communicator creation mechanisms.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 11

One-Sided Communications

11.1 Introduction

Remote Memory Access (RMA) extends the communication mechanisms of MPI by allowing
one process to specify all communication parameters, both for the sending side and for the
receiving side. This mode of communication facilitates the coding of some applications with
dynamically changing data access patterns where the data distribution is fixed or slowly
changing. In such a case, each process can compute what data it needs to access or to update
at other processes. However, the programmer may not be able to easily determine which
data in a process may need to be accessed or to be updated by operations executed by a
different process, and may not even know which processes may perform such updates. Thus,
the transfer parameters are all available only on one side. Regular send/receive communi-
cation requires matching operations by sender and receiver. In order to issue the matching
operations, an application needs to distribute the transfer parameters. This distribution
may require all processes to participate in a time-consuming global computation, or to poll
for potential communication requests to receive and upon which to act periodically. The
use of RMA communication mechanisms avoids the need for global computations or explicit
polling. A generic example of this nature is the execution of an assignment of the form A =

B(map), where map is a permutation vector, and A, B, and map are distributed in the same
manner.

Message-passing communication achieves two effects: communication of data from
sender to receiver and synchronization of sender with receiver. The RMA design separates
these two functions. The following communication calls are provided:

• Remote write: MPI_PUT, MPI_RPUT

• Remote read: MPI_GET, MPI_RGET

• Remote update: MPI_ACCUMULATE, MPI_RACCUMULATE

• Remote read and update: MPI_GET_ACCUMULATE, MPI_RGET_ACCUMULATE,
and MPI_FETCH_AND_OP

• Remote atomic swap operations: MPI_COMPARE_AND_SWAP

This chapter refers to an operations set that includes all remote update, remote read and
update, and remote atomic swap operations as “accumulate” operations.

401

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

402 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI supports two fundamentally different memory models: separate and unified. The
separate model makes no assumption about memory consistency and is highly portable.
This model is similar to that of weakly coherent memory systems: the user must impose
correct ordering of memory accesses through synchronization calls. The unified model can
exploit cache-coherent hardware and hardware-accelerated, one-sided operations that are
commonly available in high-performance systems. The two different models are discussed
in detail in Section 11.4. Both models support several synchronization calls to support
different synchronization styles.

The design of the RMA functions allows implementors to take advantage of fast or
asynchronous communication mechanisms provided by various platforms, such as coherent
or noncoherent shared memory, DMA engines, hardware-supported put/get operations, and
communication coprocessors. The most frequently used RMA communication mechanisms
can be layered on top of message-passing. However, certain RMA functions might need
support for asynchronous communication agents in software (handlers, threads, etc.) in a
distributed memory environment.

We shall denote by origin the process that performs the call, and by target the process
in which the memory is accessed. Thus, in a put operation, source=origin and destina-
tion=target; in a get operation, source=target and destination=origin.

11.2 Initialization

MPI provides the following window initialization functions: MPI_WIN_CREATE,
MPI_WIN_ALLOCATE, MPI_WIN_ALLOCATE_SHARED, and
MPI_WIN_CREATE_DYNAMIC, which are collective on an intracommunicator.
MPI_WIN_CREATE allows each process to specify a “window” in its memory that is made
accessible to accesses by remote processes. The call returns an opaque object that represents
the group of processes that own and access the set of windows, and the attributes of each
window, as specified by the initialization call. MPI_WIN_ALLOCATE differs from
MPI_WIN_CREATE in that the user does not pass allocated memory;
MPI_WIN_ALLOCATE returns a pointer to memory allocated by the MPI implementation.
MPI_WIN_ALLOCATE_SHARED differs from MPI_WIN_ALLOCATE in that the allocated
memory can be accessed from all processes in the window’s group with direct load/store
instructions. Some restrictions may apply to the specified communicator.
MPI_WIN_CREATE_DYNAMIC creates a window that allows the user to dynamically control
which memory is exposed by the window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 403

11.2.1 Window Creation

MPI_WIN_CREATE(base, size, disp_unit, info, comm, win)

IN base initial address of window (choice)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm intra-communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

This is a collective call executed by all processes in the group of comm. It returns
a window object that can be used by these processes to perform RMA operations. Each
process specifies a window of existing memory that it exposes to RMA accesses by the
processes in the group of comm. The window consists of size bytes, starting at address
base. In C, base is the starting address of a memory region. In Fortran, one can pass the
first element of a memory region or a whole array, which must be ‘simply contiguous’ (for
‘simply contiguous’, see also Section 17.1.12. A process may elect to expose no memory by
specifying size = 0.

The displacement unit argument is provided to facilitate address arithmetic in RMA
operations: the target displacement argument of an RMA operation is scaled by the factor
disp_unit specified by the target process, at window creation.

Rationale. The window size is specified using an address-sized integer, to allow
windows that span more than 4 GB of address space. (Even if the physical memory
size is less than 4 GB, the address range may be larger than 4 GB, if addresses are
not contiguous.) (End of rationale.)

Advice to users. Common choices for disp_unit are 1 (no scaling), and (in C syntax)
sizeof(type), for a window that consists of an array of elements of type type. The

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

404 CHAPTER 11. ONE-SIDED COMMUNICATIONS

later choice will allow one to use array indices in RMA calls, and have those scaled
correctly to byte displacements, even in a heterogeneous environment. (End of advice
to users.)

The info argument provides optimization hints to the runtime about the expected usage
pattern of the window. The following info keys are predefined:

no_locks — if set to true, then the implementation may assume that passive target synchro-
nization (i.e., MPI_WIN_LOCK, MPI_WIN_LOCK_ALL) will not be used on the given
window. This implies that this window is not used for 3-party communication, and
RMA can be implemented with no (less) asynchronous agent activity at this process.

accumulate_ordering — controls the ordering of accumulate operations at the target. See
Section 11.7.2 for details.

accumulate_ops — if set to same_op, the implementation will assume that all concurrent
accumulate calls to the same target address will use the same operation. If set to
same_op_no_op, then the implementation will assume that all concurrent accumulate
calls to the same target address will use the same operation or MPI_NO_OP. This can
eliminate the need to protect access for certain operation types where the hardware
can guarantee atomicity. The default is same_op_no_op.

same_size — if set to true, then the implementation may assume that the argument size is
identical on all processes.

Advice to users. The info query mechanism described in Section 11.2.7 can be used
to query the specified info arguments windows that have been passed to a library. It
is recommended that libraries check attached info keys for each passed window. (End
of advice to users.)

The various processes in the group of comm may specify completely different target
windows, in location, size, displacement units, and info arguments. As long as all the get,
put and accumulate accesses to a particular process fit their specific target window this
should pose no problem. The same area in memory may appear in multiple windows, each
associated with a different window object. However, concurrent communications to distinct,
overlapping windows may lead to undefined results.

Rationale. The reason for specifying the memory that may be accessed from another
process in an RMA operation is to permit the programmer to specify what memory
can be a target of RMA operations and for the implementation to enforce that spec-
ification. For example, with this definition, a server process can safely allow a client
process to use RMA operations, knowing that (under the assumption that the MPI
implementation does enforce the specified limits on the exposed memory) an error in
the client cannot affect any memory other than what was explicitly exposed. (End of
rationale.)

Advice to users. A window can be created in any part of the process memory.
However, on some systems, the performance of windows in memory allocated by
MPI_ALLOC_MEM (Section 8.2) will be better. Also, on some systems, performance
is improved when window boundaries are aligned at “natural” boundaries (word,
double-word, cache line, page frame, etc.). (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 405

Advice to implementors. In cases where RMA operations use different mechanisms
in different memory areas (e.g., load/store in a shared memory segment, and an asyn-
chronous handler in private memory), the MPI_WIN_CREATE call needs to figure
out which type of memory is used for the window. To do so, MPI maintains, in-
ternally, the list of memory segments allocated by MPI_ALLOC_MEM, or by other,
implementation-specific, mechanisms, together with information on the type of mem-
ory segment allocated. When a call to MPI_WIN_CREATE occurs, then MPI checks
which segment contains each window, and decides, accordingly, which mechanism to
use for RMA operations.

Vendors may provide additional, implementation-specific mechanisms to allocate or
to specify memory regions that are preferable for use in one-sided communication. In
particular, such mechanisms can be used to place static variables into such preferred
regions.

Implementors should document any performance impact of window alignment. (End
of advice to implementors.)

11.2.2 Window That Allocates Memory

MPI_WIN_ALLOCATE(size, disp_unit, info, comm, baseptr, win)

IN size size of window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm intra-communicator (handle)

OUT baseptr initial address of window (choice)

OUT win window object returned by the call (handle)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(C_PTR), INTENT(OUT) :: baseptr

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

406 CHAPTER 11. ONE-SIDED COMMUNICATIONS

This is a collective call executed by all processes in the group of comm. On each
process, it allocates memory of at least size bytes, returns a pointer to it, and returns a
window object that can be used by all processes in comm to perform RMA operations. The
returned memory consists of size bytes local to each process, starting at address baseptr
and is associated with the window as if the user called MPI_WIN_CREATE on existing
memory. The size argument may be different at each process and size = 0 is valid; however, a
library might allocate and expose more memory in order to create a fast, globally symmetric
allocation. The discussion of and rationales for MPI_ALLOC_MEM and MPI_FREE_MEM in
Section 8.2 also apply to MPI_WIN_ALLOCATE; in particular, see the rationale in Section 8.2
for an explanation of the type used for baseptr.

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must
be provided in the mpi module and should be provided in mpif.h through overloading,
i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND)

BASEPTR, but with a different specific procedure name:

INTERFACE MPI_WIN_ALLOCATE

SUBROUTINE MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

The base procedure name of this overloaded function is MPI_WIN_ALLOCATE_CPTR.
The specific procedure names are described in Section 17.1.5.

Rationale. By allocating (potentially aligned) memory instead of allowing the user
to pass in an arbitrary buffer, this call can improve the performance for systems with
remote direct memory access. This also permits the collective allocation of memory
and supports what is sometimes called the “symmetric allocation” model that can be
more scalable (for example, the implementation can arrange to return an address for
the allocated memory that is the same on all processes). (End of rationale.)

The info argument can be used to specify hints similar to the info argument for
MPI_WIN_CREATE and MPI_ALLOC_MEM.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 407

11.2.3 Window That Allocates Shared Memory

MPI_WIN_ALLOCATE_SHARED(size, disp_unit, info, comm, baseptr, win)

IN size size of local window in bytes (non-negative integer)

IN disp_unit local unit size for displacements, in bytes (positive in-

teger)

IN info info argument (handle)

IN comm intra-communicator (handle)

OUT baseptr address of local allocated window segment (choice)

OUT win window object returned by the call (handle)

int MPI_Win_allocate_shared(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

MPI_Win_allocate_shared(size, disp_unit, info, comm, baseptr, win, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(C_PTR), INTENT(OUT) :: baseptr

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

This is a collective call executed by all processes in the group of comm. On each
process i, it allocates memory of at least size bytes that is shared among all processes in
comm, and returns a pointer to the locally allocated segment in baseptr that can be used
for load/store accesses on the calling process. The locally allocated memory can be the
target of load/store accesses by remote processes; the base pointers for other processes
can be queried using the function MPI_WIN_SHARED_QUERY. The call also returns a
window object that can be used by all processes in comm to perform RMA operations.
The size argument may be different at each process and size = 0 is valid. It is the user’s
responsibility to ensure that the communicator comm represents a group of processes that
can create a shared memory segment that can be accessed by all processes in the group.
The discussions of rationales for MPI_ALLOC_MEM and MPI_FREE_MEM in Section 8.2
also apply to MPI_WIN_ALLOCATE_SHARED; in particular, see the rationale in Section 8.2
for an explanation of the type used for baseptr. The allocated memory is contiguous across
process ranks unless the info key alloc_shared_noncontig is specified. Contiguous across process
ranks means that the first address in the memory segment of process i is consecutive with
the last address in the memory segment of process i − 1. This may enable the user to
calculate remote address offsets with local information only.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

408 CHAPTER 11. ONE-SIDED COMMUNICATIONS

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must
be provided in the mpi module and should be provided in mpif.h through overloading,
i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND)

BASEPTR, but with a different specific procedure name:

INTERFACE MPI_WIN_ALLOCATE_SHARED

SUBROUTINE MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

END SUBROUTINE

SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

The base procedure name of this overloaded function is
MPI_WIN_ALLOCATE_SHARED_CPTR. The implied specific procedure names are described
in Section 17.1.5.

The info argument can be used to specify hints similar to the info argument for
MPI_WIN_CREATE, MPI_WIN_ALLOCATE, and MPI_ALLOC_MEM. The additional info
key alloc_shared_noncontig allows the library to optimize the layout of the shared memory
segments in memory.

Advice to users. If the info key alloc_shared_noncontig is not set to true, the allocation
strategy is to allocate contiguous memory across process ranks. This may limit the
performance on some architectures because it does not allow the implementation to
modify the data layout (e.g., padding to reduce access latency). (End of advice to
users.)

Advice to implementors. If the user sets the info key alloc_shared_noncontig to true,
the implementation can allocate the memory requested by each process in a location
that is close to this process. This can be achieved by padding or allocating memory
in special memory segments. Both techniques may make the address space across
consecutive ranks noncontiguous. (End of advice to implementors.)

The consistency of load/store accesses from/to the shared memory as observed by the
user program depends on the architecture. A consistent view can be created in the unified
memory model (see Section 11.4) by utilizing the window synchronization functions (see
Section 11.5) or explicitly completing outstanding store accesses (e.g., by calling
MPI_WIN_FLUSH). MPI does not define semantics for accessing shared memory windows
in the separate memory model.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 409

MPI_WIN_SHARED_QUERY(win, rank, size, disp_unit, baseptr)

IN win shared memory window object (handle)

IN rank rank in the group of window win (non-negative inte-

ger) or MPI_PROC_NULL

OUT size size of the window segment (non-negative integer)

OUT disp_unit local unit size for displacements, in bytes (positive in-

teger)

OUT baseptr address for load/store access to window segment

(choice)

int MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint *size,

int *disp_unit, void *baseptr)

MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size

INTEGER, INTENT(OUT) :: disp_unit

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR)

INTEGER WIN, RANK, DISP_UNIT, IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

This function queries the process-local address for remote memory segments created
with MPI_WIN_ALLOCATE_SHARED. This function can return different process-local ad-
dresses for the same physical memory on different processes. The returned memory can be
used for load/store accesses subject to the constraints defined in Section 11.7. This func-
tion can only be called with windows of type MPI_WIN_FLAVOR_SHARED. If the passed
window is not of flavor MPI_WIN_FLAVOR_SHARED, the error MPI_ERR_RMA_FLAVOR is
raised. When rank is MPI_PROC_NULL, the pointer, disp_unit, and size returned are the
pointer, disp_unit, and size of the memory segment belonging the lowest rank that specified
size > 0. If all processes in the group attached to the window specified size = 0, then the
call returns size = 0 and a baseptr as if MPI_ALLOC_MEM was called with size = 0.

If the Fortran compiler provides TYPE(C_PTR), then the following generic interface must
be provided in the mpi module and should be provided in mpif.h through overloading,
i.e., with the same routine name as the routine with INTEGER(KIND=MPI_ADDRESS_KIND)

BASEPTR, but with a different specific procedure name:

INTERFACE MPI_WIN_SHARED_QUERY

SUBROUTINE MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

IMPORT :: MPI_ADDRESS_KIND

INTEGER WIN, RANK, DISP_UNIT, IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

410 CHAPTER 11. ONE-SIDED COMMUNICATIONS

END SUBROUTINE

SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

IMPORT :: MPI_ADDRESS_KIND

INTEGER :: WIN, RANK, DISP_UNIT, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

The base procedure name of this overloaded function is MPI_WIN_SHARED_QUERY_CPTR.
The implied linker names are described in Section 17.1.5.

11.2.4 Window of Dynamically Attached Memory

The MPI-2 RMA model requires the user to identify the local memory that may be a
target of RMA calls at the time the window is created. This has advantages for both
the programmer (only this memory can be updated by one-sided operations and provides
greater safety) and the MPI implementation (special steps may be taken to make one-
sided access to such memory more efficient). However, consider implementing a modifiable
linked list using RMA operations; as new items are added to the list, memory must be
allocated. In a C or C++ program, this memory is typically allocated using malloc or
new respectively. In MPI-2 RMA, the programmer must create a window with a predefined
amount of memory and then implement routines for allocating memory from within the
window’s memory. In addition, there is no easy way to handle the situation where the
predefined amount of memory turns out to be inadequate. To support this model, the
routine MPI_WIN_CREATE_DYNAMIC creates a window that makes it possible to expose
memory without remote synchronization. It must be used in combination with the local
routines MPI_WIN_ATTACH and MPI_WIN_DETACH.

MPI_WIN_CREATE_DYNAMIC(info, comm, win)

IN info info argument (handle)

IN comm intra-communicator (handle)

OUT win window object returned by the call (handle)

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)

MPI_Win_create_dynamic(info, comm, win, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_CREATE_DYNAMIC(INFO, COMM, WIN, IERROR)

INTEGER INFO, COMM, WIN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 411

This is a collective call executed by all processes in the group of comm. It returns
a window win without memory attached. Existing process memory can be attached as
described below. This routine returns a window object that can be used by these processes to
perform RMA operations on attached memory. Because this window has special properties,
it will sometimes be referred to as a dynamic window.

The info argument can be used to specify hints similar to the info argument for
MPI_WIN_CREATE.

In the case of a window created with MPI_WIN_CREATE_DYNAMIC, the target_disp
for all RMA functions is the address at the target; i.e., the effective window_base is
MPI_BOTTOM and the disp_unit is one. For dynamic windows, the target_disp argument to
RMA communication operations is not restricted to non-negative values. Users should use
MPI_GET_ADDRESS at the target process to determine the address of a target memory
location and communicate this address to the origin process.

Advice to users. Users are cautioned that displacement arithmetic can overflow in
variables of type MPI_Aint and result in unexpected values on some platforms. This
issue may be addressed in a future version of MPI. (End of advice to users.)

Advice to implementors. In environments with heterogeneous data representations,
care must be exercised in communicating addresses between processes. For example,
it is possible that an address valid at the target process (for example, a 64-bit pointer)
cannot be expressed as an address at the origin (for example, the origin uses 32-bit
pointers). For this reason, a portable MPI implementation should ensure that the
type MPI_AINT (see Table 3.3) is able to store addresses from any process. (End of
advice to implementors.)

Memory in this window may not be used as the target of one-sided accesses in this
window until it is attached using the function MPI_WIN_ATTACH. That is, in addition to
using MPI_WIN_CREATE_DYNAMIC to create an MPI window, the user must use
MPI_WIN_ATTACH before any local memory may be the target of an MPI RMA operation.
Only memory that is currently accessible may be attached.

MPI_WIN_ATTACH(win, base, size)

IN win window object (handle)

IN base initial address of memory to be attached

IN size size of memory to be attached in bytes

int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

MPI_Win_attach(win, base, size, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_ATTACH(WIN, BASE, SIZE, IERROR)

INTEGER WIN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

412 CHAPTER 11. ONE-SIDED COMMUNICATIONS

<type> BASE(*)

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE

Attaches a local memory region beginning at base for remote access within the given
window. The memory region specified must not contain any part that is already attached
to the window win, that is, attaching overlapping memory concurrently within the same
window is erroneous. The argument win must be a window that was created with
MPI_WIN_CREATE_DYNAMIC. Multiple (but non-overlapping) memory regions may be
attached to the same window.

Rationale. Requiring that memory be explicitly attached before it is exposed to
one-sided access by other processes can significantly simplify implementations and
improve performance. The ability to make memory available for RMA operations
without requiring a collective MPI_WIN_CREATE call is needed for some one-sided
programming models. (End of rationale.)

Advice to users. Attaching memory to a window may require the use of scarce
resources; thus, attaching large regions of memory is not recommended in portable
programs. Attaching memory to a window may fail if sufficient resources are not
available; this is similar to the behavior of MPI_ALLOC_MEM.

The user is also responsible for ensuring that MPI_WIN_ATTACH at the target has
returned before a process attempts to target that memory with an MPI RMA call.

Performing an RMA operation to memory that has not been attached to a window
created with MPI_WIN_CREATE_DYNAMIC is erroneous. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to make as
much memory available for attaching as possible. Any limitations should be docu-
mented by the implementor. (End of advice to implementors.)

Attaching memory is a local operation as defined by MPI, which means that the call
is not collective and completes without requiring any MPI routine to be called in any other
process. Memory may be detached with the routine MPI_WIN_DETACH. After memory has
been detached, it may not be the target of an MPI RMA operation on that window (unless
the memory is re-attached with MPI_WIN_ATTACH).

MPI_WIN_DETACH(win, base)

IN win window object (handle)

IN base initial address of memory to be detached

int MPI_Win_detach(MPI_Win win, const void *base)

MPI_Win_detach(win, base, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_DETACH(WIN, BASE, IERROR)

INTEGER WIN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 413

<type> BASE(*)

Detaches a previously attached memory region beginning at base. The arguments base
and win must match the arguments passed to a previous call to MPI_WIN_ATTACH.

Advice to users. Detaching memory may permit the implementation to make more
efficient use of special memory or provide memory that may be needed by a subsequent
MPI_WIN_ATTACH. Users are encouraged to detach memory that is no longer needed.
Memory should be detached before it is freed by the user. (End of advice to users.)

Memory becomes detached when the associated dynamic memory window is freed, see
Section 11.2.5.

11.2.5 Window Destruction

MPI_WIN_FREE(win)

INOUT win window object (handle)

int MPI_Win_free(MPI_Win *win)

MPI_Win_free(win, ierror)

TYPE(MPI_Win), INTENT(INOUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

Frees the window object win and returns a null handle (equal to MPI_WIN_NULL). This
is a collective call executed by all processes in the group associated with
win. MPI_WIN_FREE(win) can be invoked by a process only after it has completed its
involvement in RMA communications on window win: e.g., the process has called
MPI_WIN_FENCE, or called MPI_WIN_WAIT to match a previous call to MPI_WIN_POST
or called MPI_WIN_COMPLETE to match a previous call to MPI_WIN_START or called
MPI_WIN_UNLOCK to match a previous call to MPI_WIN_LOCK. The memory associated
with windows created by a call to MPI_WIN_CREATE may be freed after the call returns. If
the window was created with MPI_WIN_ALLOCATE, MPI_WIN_FREE will free the window
memory that was allocated in MPI_WIN_ALLOCATE. If the window was created with
MPI_WIN_ALLOCATE_SHARED, MPI_WIN_FREE will free the window memory that was
allocated in MPI_WIN_ALLOCATE_SHARED.

Freeing a window that was created with a call to MPI_WIN_CREATE_DYNAMIC de-
taches all associated memory; i.e., it has the same effect as if all attached memory was
detached by calls to MPI_WIN_DETACH.

Advice to implementors. MPI_WIN_FREE requires a barrier synchronization: no
process can return from free until all processes in the group of
win call free. This ensures that no process will attempt to access a remote window
(e.g., with lock/unlock) after it was freed. The only exception to this rule is when the
user sets the no_locks info key to true when creating the window. In that case, an MPI

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

414 CHAPTER 11. ONE-SIDED COMMUNICATIONS

implementation may free the local window without barrier synchronization. (End of
advice to implementors.)

11.2.6 Window Attributes

The following attributes are cached with a window when the window is created.

MPI_WIN_BASE window base address.
MPI_WIN_SIZE window size, in bytes.
MPI_WIN_DISP_UNIT displacement unit associated with the window.
MPI_WIN_CREATE_FLAVOR how the window was created.
MPI_WIN_MODEL memory model for window.

In C, calls to MPI_Win_get_attr(win, MPI_WIN_BASE, &base, &flag),
MPI_Win_get_attr(win, MPI_WIN_SIZE, &size, &flag),
MPI_Win_get_attr(win, MPI_WIN_DISP_UNIT, &disp_unit, &flag),
MPI_Win_get_attr(win, MPI_WIN_CREATE_FLAVOR, &create_kind, &flag), and
MPI_Win_get_attr(win, MPI_WIN_MODEL, &memory_model, &flag) will return in base a
pointer to the start of the window win, and will return in size, disp_unit, create_kind, and
memory_model pointers to the size, displacement unit of the window, the kind of routine
used to create the window, and the memory model, respectively. A detailed listing of the
type of the pointer in the attribute value argument to MPI_WIN_GET_ATTR and
MPI_WIN_SET_ATTR is shown in Table 11.1.

Attribute C Type

MPI_WIN_BASE void *

MPI_WIN_SIZE MPI_Aint *

MPI_WIN_DISP_UNIT int *

MPI_WIN_CREATE_FLAVOR int *

MPI_WIN_MODEL int *

Table 11.1: C types of attribute value argument to MPI_WIN_GET_ATTR and
MPI_WIN_SET_ATTR.

In Fortran, calls to MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, base, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_SIZE, size, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_DISP_UNIT, disp_unit, flag, ierror),
MPI_WIN_GET_ATTR(win, MPI_WIN_CREATE_FLAVOR, create_kind, flag, ierror), and
MPI_WIN_GET_ATTR(win, MPI_WIN_MODEL, memory_model, flag, ierror) will return in
base, size, disp_unit, create_kind, and memory_model the (integer representation of) the
base address, the size, the displacement unit of the window win, the kind of routine used to
create the window, and the memory model, respectively.

The values of create_kind are

MPI_WIN_FLAVOR_CREATE Window was created with MPI_WIN_CREATE.
MPI_WIN_FLAVOR_ALLOCATE Window was created with

MPI_WIN_ALLOCATE.
MPI_WIN_FLAVOR_DYNAMIC Window was created with

MPI_WIN_CREATE_DYNAMIC.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.2. INITIALIZATION 415

MPI_WIN_FLAVOR_SHARED Window was created with
MPI_WIN_ALLOCATE_SHARED.

The values of memory_model are MPI_WIN_SEPARATE and MPI_WIN_UNIFIED. The mean-
ing of these is described in Section 11.4.

In the case of windows created with MPI_WIN_CREATE_DYNAMIC, the base address
is MPI_BOTTOM and the size is 0. In C, pointers are returned, and in Fortran, the values are
returned, for the respective attributes. (The window attribute access functions are defined
in Section 6.7.3.) The value returned for an attribute on a window is constant over the
lifetime of the window.

The other “window attribute,” namely the group of processes attached to the window,
can be retrieved using the call below.

MPI_WIN_GET_GROUP(win, group)

IN win window object (handle)

OUT group group of processes which share access to the window

(handle)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

MPI_Win_get_group(win, group, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

MPI_WIN_GET_GROUP returns a duplicate of the group of the communicator used to
create the window associated with win. The group is returned in group.

11.2.7 Window Info

Hints specified via info (see Section 9) allow a user to provide information to direct opti-
mization. Providing hints may enable an implementation to deliver increased performance
or use system resources more efficiently. However, hints do not change the semantics of
any MPI interfaces. In other words, an implementation is free to ignore all hints. Hints are
specified on a per window basis, in window creation functions and MPI_WIN_SET_INFO,
via the opaque info object. When an info object that specifies a subset of valid hints is
passed to MPI_WIN_SET_INFO there will be no effect on previously set or default hints
that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for the hint. (End of advice
to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

416 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_WIN_SET_INFO(win, info)

INOUT win window object (handle)

IN info info object (handle)

int MPI_Win_set_info(MPI_Win win, MPI_Info info)

MPI_Win_set_info(win, info, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SET_INFO(WIN, INFO, IERROR)

INTEGER WIN, INFO, IERROR

MPI_WIN_SET_INFO sets new values for the hints of the window associated with win.
The call is collective on the group of win. The info object may be different on each process,
but any info entries that an implementation requires to be the same on all processes must
appear with the same value in each process’s info object.

Advice to users. Some info items that an implementation can use when it creates
a window cannot easily be changed once the window has been created. Thus, an
implementation may ignore hints issued in this call that it would have accepted in a
creation call. (End of advice to users.)

MPI_WIN_GET_INFO(win, info_used)

IN win window object (handle)

OUT info_used new info object (handle)

int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)

MPI_Win_get_info(win, info_used, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_GET_INFO(WIN, INFO_USED, IERROR)

INTEGER WIN, INFO_USED, IERROR

MPI_WIN_GET_INFO returns a new info object containing the hints of the window
associated with win. The current setting of all hints actually used by the system related to
this window is returned in info_used. If no such hints exist, a handle to a newly created
info object is returned that contains no key/value pair. The user is responsible for freeing
info_used via MPI_INFO_FREE.

Advice to users. The info object returned in info_used will contain all hints currently
active for this window. This set of hints may be greater or smaller than the set of
hints specified when the window was created, as the system may not recognize some

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 417

hints set by the user, and may recognize other hints that the user has not set. (End
of advice to users.)

11.3 Communication Calls

MPI supports the following RMA communication calls: MPI_PUT and MPI_RPUT transfer
data from the caller memory (origin) to the target memory; MPI_GET and MPI_RGET
transfer data from the target memory to the caller memory; MPI_ACCUMULATE and
MPI_RACCUMULATE update locations in the target memory, e.g., by adding to these lo-
cations values sent from the caller memory; MPI_GET_ACCUMULATE,
MPI_RGET_ACCUMULATE, and MPI_FETCH_AND_OP perform atomic read-modify-write
and return the data before the accumulate operation; and MPI_COMPARE_AND_SWAP per-
forms a remote atomic compare and swap operation. These operations are nonblocking : the
call initiates the transfer, but the transfer may continue after the call returns. The transfer
is completed, at the origin or both the origin and the target, when a subsequent synchro-
nization call is issued by the caller on the involved window object. These synchronization
calls are described in Section 11.5. Transfers can also be completed with calls to flush rou-
tines; see Section 11.5.4 for details. For the MPI_RPUT, MPI_RGET, MPI_RACCUMULATE,
and MPI_RGET_ACCUMULATE calls, the transfer can be locally completed by using the
MPI test or wait operations described in Section 3.7.3.

The local communication buffer of an RMA call should not be updated, and the local
communication buffer of a get call should not be accessed after the RMA call until the
operation completes at the origin.

The outcome of concurrent conflicting accesses to the same memory locations is un-
defined; if a location is updated by a put or accumulate operation, then the outcome of
loads or other RMA operations is undefined until the updating operation has completed at
the target. There is one exception to this rule; namely, the same location can be updated
by several concurrent accumulate calls, the outcome being as if these updates occurred
in some order. In addition, the outcome of concurrent load/store and RMA updates to
the same memory location is undefined. These restrictions are described in more detail in
Section 11.7.

The calls use general datatype arguments to specify communication buffers at the origin
and at the target. Thus, a transfer operation may also gather data at the source and scatter
it at the destination. However, all arguments specifying both communication buffers are
provided by the caller.

For all RMA calls, the target process may be identical with the origin process; i.e., a
process may use an RMA operation to move data in its memory.

Rationale. The choice of supporting “self-communication” is the same as for message-
passing. It simplifies some coding, and is very useful with accumulate operations, to
allow atomic updates of local variables. (End of rationale.)

MPI_PROC_NULL is a valid target rank in all MPI RMA communication calls. The effect
is the same as for MPI_PROC_NULL in MPI point-to-point communication. After any RMA
operation with rank MPI_PROC_NULL, it is still necessary to finish the RMA epoch with the
synchronization method that started the epoch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

418 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.1 Put

The execution of a put operation is similar to the execution of a send by the origin process
and a matching receive by the target process. The obvious difference is that all arguments
are provided by one call — the call executed by the origin process.

MPI_PUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer

(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

MPI_Put(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

Transfers origin_count successive entries of the type specified by the origin_datatype,
starting at address origin_addr on the origin node, to the target node specified by the win,
target_rank pair. The data are written in the target buffer at address target_addr =
window_base+target_disp×disp_unit, where window_base and disp_unit are the base address
and window displacement unit specified at window initialization, by the target process.

The target buffer is specified by the arguments target_count and target_datatype.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 419

The data transfer is the same as that which would occur if the origin process executed
a send operation with arguments origin_addr, origin_count, origin_datatype, target_rank, tag,
comm, and the target process executed a receive operation with arguments target_addr,
target_count, target_datatype, source, tag, comm, where target_addr is the target buffer
address computed as explained above, the values of tag are arbitrary valid matching tag
values, and comm is a communicator for the group of win.

The communication must satisfy the same constraints as for a similar message-passing
communication. The target_datatype may not specify overlapping entries in the target
buffer. The message sent must fit, without truncation, in the target buffer. Furthermore,
the target buffer must fit in the target window or in attached memory in a dynamic window.

The target_datatype argument is a handle to a datatype object defined at the origin
process. However, this object is interpreted at the target process: the outcome is as if
the target datatype object was defined at the target process by the same sequence of calls
used to define it at the origin process. The target datatype must contain only relative
displacements, not absolute addresses. The same holds for get and accumulate.

Advice to users. The target_datatype argument is a handle to a datatype object that
is defined at the origin process, even though it defines a data layout in the target
process memory. This causes no problems in a homogeneous environment, or in a
heterogeneous environment if only portable datatypes are used (portable datatypes
are defined in Section 2.4).

The performance of a put transfer can be significantly affected, on some systems, by
the choice of window location and the shape and location of the origin and target
buffer: transfers to a target window in memory allocated by MPI_ALLOC_MEM or
MPI_WIN_ALLOCATE may be much faster on shared memory systems; transfers from
contiguous buffers will be faster on most, if not all, systems; the alignment of the
communication buffers may also impact performance. (End of advice to users.)

Advice to implementors. A high-quality implementation will attempt to prevent
remote accesses to memory outside the window that was exposed by the process.
This, both for debugging purposes, and for protection with client-server codes that
use RMA. I.e., a high-quality implementation will check, if possible, window bounds
on each RMA call, and raise an MPI exception at the origin call if an out-of-bound
situation occurs. Note that the condition can be checked at the origin. Of course,
the added safety achieved by such checks has to be weighed against the added cost of
such checks. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

420 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.2 Get

MPI_GET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

int MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win)

MPI_Get(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

Similar to MPI_PUT, except that the direction of data transfer is reversed. Data
are copied from the target memory to the origin. The origin_datatype may not specify
overlapping entries in the origin buffer. The target buffer must be contained within the
target window or within attached memory in a dynamic window, and the copied data must
fit, without truncation, in the origin buffer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 421

11.3.3 Examples for Communication Calls

These examples show the use of the MPI_GET function. As all MPI RMA communication
functions are nonblocking, they must be completed. In the following, this is accomplished
with the routine MPI_WIN_FENCE, introduced in Section 11.5.

Example 11.1 We show how to implement the generic indirect assignment A = B(map),
where A, B, and map have the same distribution, and map is a permutation. To simplify, we
assume a block distribution with equal size blocks.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER otype(p), oindex(m), & ! used to construct origin datatypes

ttype(p), tindex(m), & ! used to construct target datatypes

count(p), total(p), &

disp_int, win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint

! This part does the work that depends on the locations of B.

! Can be reused while this does not change

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)

disp_int = realextent

size = m * realextent

CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &

comm, win, ierr)

! This part does the work that depends on the value of map and

! the locations of the arrays.

! Can be reused while these do not change

! Compute number of entries to be received from each process

DO i=1,p

count(i) = 0

END DO

DO i=1,m

j = map(i)/m+1

count(j) = count(j)+1

END DO

total(1) = 0

DO i=2,p

total(i) = total(i-1) + count(i-1)

END DO

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

422 CHAPTER 11. ONE-SIDED COMMUNICATIONS

DO i=1,p

count(i) = 0

END DO

! compute origin and target indices of entries.

! entry i at current process is received from location

! k at process (j-1), where map(i) = (j-1)*m + (k-1),

! j = 1..p and k = 1..m

DO i=1,m

j = map(i)/m+1

k = MOD(map(i),m)+1

count(j) = count(j)+1

oindex(total(j) + count(j)) = i

tindex(total(j) + count(j)) = k

END DO

! create origin and target datatypes for each get operation

DO i=1,p

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, &

oindex(total(i)+1:total(i)+count(i)), &

MPI_REAL, otype(i), ierr)

CALL MPI_TYPE_COMMIT(otype(i), ierr)

CALL MPI_TYPE_CREATE_INDEXED_BLOCK(count(i), 1, &

tindex(total(i)+1:total(i)+count(i)), &

MPI_REAL, ttype(i), ierr)

CALL MPI_TYPE_COMMIT(ttype(i), ierr)

END DO

! this part does the assignment itself

CALL MPI_WIN_FENCE(0, win, ierr)

disp_aint = 0

DO i=1,p

CALL MPI_GET(A, 1, otype(i), i-1, disp_aint, 1, ttype(i), win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

DO i=1,p

CALL MPI_TYPE_FREE(otype(i), ierr)

CALL MPI_TYPE_FREE(ttype(i), ierr)

END DO

RETURN

END

Example 11.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 423

A simpler version can be written that does not require that a datatype be built for the
target buffer. But, one then needs a separate get call for each entry, as illustrated below.
This code is much simpler, but usually much less efficient, for large arrays.

SUBROUTINE MAPVALS(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p

REAL A(m), B(m)

INTEGER disp_int, win, ierr

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)

disp_int = realextent

size = m * realextent

CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

disp_aint = MOD(map(i),m)

CALL MPI_GET(A(i), 1, MPI_REAL, j, disp_aint, 1, MPI_REAL, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

11.3.4 Accumulate Functions

It is often useful in a put operation to combine the data moved to the target process with the
data that resides at that process, rather then replacing the data there. This will allow, for
example, the accumulation of a sum by having all involved processes add their contributions
to the sum variable in the memory of one process. The accumulate functions have slightly
different semantics with respect to overlapping data accesses than the put and get functions;
see Section 11.7 for details.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

424 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Accumulate Function

MPI_ACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each entry (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

Accumulate the contents of the origin buffer (as defined by origin_addr, origin_count, and
origin_datatype) to the buffer specified by arguments target_count and target_datatype, at
offset target_disp, in the target window specified by target_rank and win, using the operation
op. This is like MPI_PUT except that data is combined into the target area instead of
overwriting it.

Any of the predefined operations for MPI_REDUCE can be used. User-defined functions
cannot be used. For example, if op is MPI_SUM, each element of the origin buffer is added

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 425

to the corresponding element in the target, replacing the former value in the target.
Each datatype argument must be a predefined datatype or a derived datatype, where

all basic components are of the same predefined datatype. Both datatype arguments must
be constructed from the same predefined datatype. The operation op applies to elements of
that predefined type. The parameter target_datatype must not specify overlapping entries,
and the target buffer must fit in the target window.

A new predefined operation, MPI_REPLACE, is defined. It corresponds to the associative
function f(a, b) = b; i.e., the current value in the target memory is replaced by the value
supplied by the origin.

MPI_REPLACE can be used only in MPI_ACCUMULATE, MPI_RACCUMULATE,
MPI_GET_ACCUMULATE, MPI_FETCH_AND_OP, and MPI_RGET_ACCUMULATE, but not
in collective reduction operations such as MPI_REDUCE.

Advice to users. MPI_PUT is a special case of MPI_ACCUMULATE, with the op-
eration MPI_REPLACE. Note, however, that MPI_PUT and MPI_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Example 11.3 We want to compute B(j) =
∑
map(i)=j A(i). The arrays A, B, and map

are distributed in the same manner. We write the simple version.

SUBROUTINE SUM(A, B, map, m, comm, p)

USE MPI

INTEGER m, map(m), comm, p, win, ierr, disp_int

REAL A(m), B(m)

INTEGER (KIND=MPI_ADDRESS_KIND) lowerbound, size, realextent, disp_aint

CALL MPI_TYPE_GET_EXTENT(MPI_REAL, lowerbound, realextent, ierr)

size = m * realextent

disp_int = realextent

CALL MPI_WIN_CREATE(B, size, disp_int, MPI_INFO_NULL, &

comm, win, ierr)

CALL MPI_WIN_FENCE(0, win, ierr)

DO i=1,m

j = map(i)/m

disp_aint = MOD(map(i),m)

CALL MPI_ACCUMULATE(A(i), 1, MPI_REAL, j, disp_aint, 1, MPI_REAL, &

MPI_SUM, win, ierr)

END DO

CALL MPI_WIN_FENCE(0, win, ierr)

CALL MPI_WIN_FREE(win, ierr)

RETURN

END

This code is identical to the code in Example 11.2, except that a call to get has been
replaced by a call to accumulate. (Note that, if map is one-to-one, the code computes
B = A(map−1), which is the reverse assignment to the one computed in that previous

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

426 CHAPTER 11. ONE-SIDED COMMUNICATIONS

example.) In a similar manner, we can replace in Example 11.1, the call to get by a call to
accumulate, thus performing the computation with only one communication between any
two processes.

Get Accumulate Function

It is often useful to have fetch-and-accumulate semantics such that the remote data is
returned to the caller before the sent data is accumulated into the remote data. The get
and accumulate steps are executed atomically for each basic element in the datatype (see
Section 11.7 for details). The predefined operation MPI_REPLACE provides fetch-and-set
behavior.

MPI_GET_ACCUMULATE(origin_addr, origin_count, origin_datatype, result_addr,
result_count, result_datatype, target_rank, target_disp, target_count,
target_datatype, op, win)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

OUT result_addr initial address of result buffer (choice)

IN result_count number of entries in result buffer (non-negative inte-

ger)

IN result_datatype datatype of each entry in result buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Get_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr,

int result_count, MPI_Datatype result_datatype,

int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,

result_count, result_datatype, target_rank, target_disp,

target_count, target_datatype, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 427

INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,

target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype,

result_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR,

RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_DISP,

TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,

TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR

Accumulate origin_count elements of type origin_datatype from the origin buffer (
origin_addr) to the buffer at offset target_disp, in the target window specified by target_rank
and win, using the operation op and return in the result buffer result_addr the content
of the target buffer before the accumulation, specified by target_disp, target_count, and
target_datatype. The data transferred from origin to target must fit, without truncation,
in the target buffer. Likewise, the data copied from target to origin must fit, without
truncation, in the result buffer.

The origin and result buffers (origin_addr and result_addr) must be disjoint. Each
datatype argument must be a predefined datatype or a derived datatype where all basic
components are of the same predefined datatype. All datatype arguments must be con-
structed from the same predefined datatype. The operation op applies to elements of that
predefined type. target_datatype must not specify overlapping entries, and the target buffer
must fit in the target window or in attached memory in a dynamic window. The operation
is executed atomically for each basic datatype; see Section 11.7 for details.

Any of the predefined operations for MPI_REDUCE, as well as MPI_NO_OP or
MPI_REPLACE can be specified as op. User-defined functions cannot be used. A new
predefined operation, MPI_NO_OP, is defined. It corresponds to the associative function
f(a, b) = a; i.e., the current value in the target memory is returned in the result buffer at
the origin and no operation is performed on the target buffer. When MPI_NO_OP is specified
as the operation, the origin_addr, origin_count, and origin_datatype arguments are ignored.
MPI_NO_OP can be used only in MPI_GET_ACCUMULATE, MPI_RGET_ACCUMULATE,
and MPI_FETCH_AND_OP. MPI_NO_OP cannot be used in MPI_ACCUMULATE,
MPI_RACCUMULATE, or collective reduction operations, such as MPI_REDUCE and others.

Advice to users. MPI_GET is similar to MPI_GET_ACCUMULATE, with the opera-
tion MPI_NO_OP. Note, however, that MPI_GET and MPI_GET_ACCUMULATE have
different constraints on concurrent updates. (End of advice to users.)

Fetch and Op Function

The generic functionality of MPI_GET_ACCUMULATE might limit the performance of fetch-
and-increment or fetch-and-add calls that might be supported by special hardware oper-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

428 CHAPTER 11. ONE-SIDED COMMUNICATIONS

ations. MPI_FETCH_AND_OP thus allows for a fast implementation of a commonly used
subset of the functionality of MPI_GET_ACCUMULATE.

MPI_FETCH_AND_OP(origin_addr, result_addr, datatype, target_rank, target_disp, op, win)

IN origin_addr initial address of buffer (choice)

OUT result_addr initial address of result buffer (choice)

IN datatype datatype of the entry in origin, result, and target buf-

fers (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN op reduce operation (handle)

IN win window object (handle)

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,

MPI_Op op, MPI_Win win)

MPI_Fetch_and_op(origin_addr, result_addr, datatype, target_rank,

target_disp, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: target_rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FETCH_AND_OP(ORIGIN_ADDR, RESULT_ADDR, DATATYPE, TARGET_RANK,

TARGET_DISP, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER DATATYPE, TARGET_RANK, OP, WIN, IERROR

Accumulate one element of type datatype from the origin buffer (origin_addr) to the
buffer at offset target_disp, in the target window specified by target_rank and win, using
the operation op and return in the result buffer result_addr the content of the target buffer
before the accumulation.

The origin and result buffers (origin_addr and result_addr) must be disjoint. Any of the
predefined operations for MPI_REDUCE, as well as MPI_NO_OP or MPI_REPLACE, can be
specified as op; user-defined functions cannot be used. The datatype argument must be a
predefined datatype. The operation is executed atomically.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 429

Compare and Swap Function

Another useful operation is an atomic compare and swap where the value at the origin is
compared to the value at the target, which is atomically replaced by a third value only if
the values at origin and target are equal.

MPI_COMPARE_AND_SWAP(origin_addr, compare_addr, result_addr, datatype, target_rank,
target_disp, win)

IN origin_addr initial address of buffer (choice)

IN compare_addr initial address of compare buffer (choice)

OUT result_addr initial address of result buffer (choice)

IN datatype datatype of the element in all buffers (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN win window object (handle)

int MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,

void *result_addr, MPI_Datatype datatype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

MPI_Compare_and_swap(origin_addr, compare_addr, result_addr, datatype,

target_rank, target_disp, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: compare_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: target_rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_COMPARE_AND_SWAP(ORIGIN_ADDR, COMPARE_ADDR, RESULT_ADDR, DATATYPE,

TARGET_RANK, TARGET_DISP, WIN, IERROR)

<type> ORIGIN_ADDR(*), COMPARE_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER DATATYPE, TARGET_RANK, WIN, IERROR

This function compares one element of type datatype in the compare buffer
compare_addr with the buffer at offset target_disp in the target window specified by
target_rank and win and replaces the value at the target with the value in the origin buffer
origin_addr if the compare buffer and the target buffer are identical. The original value at
the target is returned in the buffer result_addr. The parameter datatype must belong to
one of the following categories of predefined datatypes: C integer, Fortran integer, Logical,
Multi-language types, or Byte as specified in Section 5.9.2. The origin and result buffers
(origin_addr and result_addr) must be disjoint.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

430 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.3.5 Request-based RMA Communication Operations

Request-based RMA communication operations allow the user to associate a request handle
with the RMA operations and test or wait for the completion of these requests using the
functions described in Section 3.7.3. Request-based RMA operations are only valid within
a passive target epoch (see Section 11.5).

Upon returning from a completion call in which an RMA operation completes, the
MPI_ERROR field in the associated status object is set appropriately (see Section 3.2.5). All
other fields of status and the results of status query functions (e.g., MPI_GET_COUNT)
are undefined. It is valid to mix different request types (e.g., any combination of RMA
requests, collective requests, I/O requests, generalized requests, or point-to-point requests)
in functions that enable multiple completions (e.g., MPI_WAITALL). It is erroneous to call
MPI_REQUEST_FREE or MPI_CANCEL for a request associated with an RMA operation.
RMA requests are not persistent.

The end of the epoch, or explicit bulk synchronization using
MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL, MPI_WIN_FLUSH_LOCAL, or
MPI_WIN_FLUSH_LOCAL_ALL, also indicates completion of the RMA operations. How-
ever, users must still wait or test on the request handle to allow the MPI implementation to
clean up any resources associated with these requests; in such cases the wait operation will
complete locally.

MPI_RPUT(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win, request)

IN origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to target buffer

(non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

OUT request RMA request (handle)

int MPI_Rput(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_Request *request)

MPI_Rput(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, request,

ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 431

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RPUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, REQUEST, IERROR

MPI_RPUT is similar to MPI_PUT (Section 11.3.1), except that it allocates a commu-
nication request object and associates it with the request handle (the argument request).
The completion of an MPI_RPUT operation (i.e., after the corresponding test or wait) in-
dicates that the sender is now free to update the locations in the origin buffer. It does
not indicate that the data is available at the target window. If remote completion is re-
quired, MPI_WIN_FLUSH, MPI_WIN_FLUSH_ALL, MPI_WIN_UNLOCK, or
MPI_WIN_UNLOCK_ALL can be used.

MPI_RGET(origin_addr, origin_count, origin_datatype, target_rank, target_disp, target_count,
target_datatype, win, request)

OUT origin_addr initial address of origin buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from window start to the beginning of

the target buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN win window object used for communication (handle)

OUT request RMA request (handle)

int MPI_Rget(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

432 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_Rget(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, request,

ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RGET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, REQUEST, IERROR

MPI_RGET is similar to MPI_GET (Section 11.3.2), except that it allocates a commu-
nication request object and associates it with the request handle (the argument request)
that can be used to wait or test for completion. The completion of an MPI_RGET operation
indicates that the data is available in the origin buffer. If origin_addr points to memory
attached to a window, then the data becomes available in the private copy of this window.

MPI_RACCUMULATE(origin_addr, origin_count, origin_datatype, target_rank, target_disp,
target_count, target_datatype, op, win, request)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in buffer (non-negative integer)

IN origin_datatype datatype of each entry in origin buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

OUT request RMA request (handle)

int MPI_Raccumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,

MPI_Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.3. COMMUNICATION CALLS 433

MPI_Raccumulate(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, REQUEST, IERROR

MPI_RACCUMULATE is similar to MPI_ACCUMULATE (Section 11.3.4), except that
it allocates a communication request object and associates it with the request handle (the
argument request) that can be used to wait or test for completion. The completion of an
MPI_RACCUMULATE operation indicates that the origin buffer is free to be updated. It
does not indicate that the operation has completed at the target window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

434 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_RGET_ACCUMULATE(origin_addr, origin_count, origin_datatype, result_addr,
result_count, result_datatype, target_rank, target_disp, target_count,
target_datatype, op, win, request)

IN origin_addr initial address of buffer (choice)

IN origin_count number of entries in origin buffer (non-negative inte-

ger)

IN origin_datatype datatype of each entry in origin buffer (handle)

OUT result_addr initial address of result buffer (choice)

IN result_count number of entries in result buffer (non-negative inte-

ger)

IN result_datatype datatype of each entry in result buffer (handle)

IN target_rank rank of target (non-negative integer)

IN target_disp displacement from start of window to beginning of tar-

get buffer (non-negative integer)

IN target_count number of entries in target buffer (non-negative inte-

ger)

IN target_datatype datatype of each entry in target buffer (handle)

IN op reduce operation (handle)

IN win window object (handle)

OUT request RMA request (handle)

int MPI_Rget_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr,

int result_count, MPI_Datatype result_datatype,

int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,

MPI_Request *request)

MPI_Rget_accumulate(origin_addr, origin_count, origin_datatype,

result_addr, result_count, result_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,

target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype,

result_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.4. MEMORY MODEL 435

MPI_RGET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE,

RESULT_ADDR, RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,

TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR

MPI_RGET_ACCUMULATE is similar to MPI_GET_ACCUMULATE (Section 11.3.4),
except that it allocates a communication request object and associates it with the request
handle (the argument request) that can be used to wait or test for completion. The com-
pletion of an MPI_RGET_ACCUMULATE operation indicates that the data is available in
the result buffer and the origin buffer is free to be updated. It does not indicate that the
operation has been completed at the target window.

11.4 Memory Model

The memory semantics of RMA are best understood by using the concept of public and
private window copies. We assume that systems have a public memory region that is
addressable by all processes (e.g., the shared memory in shared memory machines or the
exposed main memory in distributed memory machines). In addition, most machines have
fast private buffers (e.g., transparent caches or explicit communication buffers) local to each
process where copies of data elements from the main memory can be stored for faster access.
Such buffers are either coherent, i.e., all updates to main memory are reflected in all private
copies consistently, or non-coherent, i.e., conflicting accesses to main memory need to be
synchronized and updated in all private copies explicitly. Coherent systems allow direct
updates to remote memory without any participation of the remote side. Non-coherent
systems, however, need to call RMA functions in order to reflect updates to the public
window in their private memory. Thus, in coherent memory, the public and the private
window are identical while they remain logically separate in the non-coherent case. MPI
thus differentiates between two memory models called RMA unified, if public and private
window are logically identical, and RMA separate, otherwise.

In the RMA separate model, there is only one instance of each variable in process
memory, but a distinct public copy of the variable for each window that contains it. A load
accesses the instance in process memory (this includes MPI sends). A local store accesses
and updates the instance in process memory (this includes MPI receives), but the update
may affect other public copies of the same locations. A get on a window accesses the public
copy of that window. A put or accumulate on a window accesses and updates the public
copy of that window, but the update may affect the private copy of the same locations
in process memory, and public copies of other overlapping windows. This is illustrated in
Figure 11.1.

In the RMA unified model, public and private copies are identical and updates via put
or accumulate calls are eventually observed by load operations without additional RMA
calls. A store access to a window is eventually visible to remote get or accumulate calls
without additional RMA calls. These stronger semantics of the RMA unified model allow
the user to omit some synchronization calls and potentially improve performance.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

436 CHAPTER 11. ONE-SIDED COMMUNICATIONS

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

? ? ? ? ?

public window copy

STORE LOAD

process memory

PUTPUT GET

Window RMA Update Local Update

STORE

public window copy

Figure 11.1: Schematic description of the public/private window operations in the
MPI_WIN_SEPARATE memory model for two overlapping windows.

Advice to users. If accesses in the RMA unified model are not synchronized (with
locks or flushes, see Section 11.5.3), load and store operations might observe changes
to the memory while they are in progress. The order in which data is written is not
specified unless further synchronization is used. This might lead to inconsistent views
on memory and programs that assume that a transfer is complete by only checking
parts of the message are erroneous. (End of advice to users.)

The memory model for a particular RMA window can be determined by accessing the
attribute MPI_WIN_MODEL. If the memory model is the unified model, the value of this
attribute is MPI_WIN_UNIFIED; otherwise, the value is MPI_WIN_SEPARATE.

11.5 Synchronization Calls

RMA communications fall in two categories:

• active target communication, where data is moved from the memory of one process to
the memory of another, and both are explicitly involved in the communication. This
communication pattern is similar to message passing, except that all the data transfer
arguments are provided by one process, and the second process only participates in
the synchronization.

• passive target communication, where data is moved from the memory of one process
to the memory of another, and only the origin process is explicitly involved in the
transfer. Thus, two origin processes may communicate by accessing the same location
in a target window. The process that owns the target window may be distinct from
the two communicating processes, in which case it does not participate explicitly in
the communication. This communication paradigm is closest to a shared memory
model, where shared data can be accessed by all processes, irrespective of location.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 437

RMA communication calls with argument win must occur at a process only within an
access epoch for win. Such an epoch starts with an RMA synchronization call on win; it
proceeds with zero or more RMA communication calls (e.g., MPI_PUT,
MPI_GET or MPI_ACCUMULATE) on win; it completes with another synchronization call
on win. This allows users to amortize one synchronization with multiple data transfers and
provide implementors more flexibility in the implementation of RMA operations.

Distinct access epochs for win at the same process must be disjoint. On the other hand,
epochs pertaining to different win arguments may overlap. Local operations or other MPI
calls may also occur during an epoch.

In active target communication, a target window can be accessed by RMA operations
only within an exposure epoch. Such an epoch is started and completed by RMA synchro-
nization calls executed by the target process. Distinct exposure epochs at a process on
the same window must be disjoint, but such an exposure epoch may overlap with exposure
epochs on other windows or with access epochs for the same or other win arguments. There
is a one-to-one matching between access epochs at origin processes and exposure epochs
on target processes: RMA operations issued by an origin process for a target window will
access that target window during the same exposure epoch if and only if they were issued
during the same access epoch.

In passive target communication the target process does not execute RMA synchro-
nization calls, and there is no concept of an exposure epoch.

MPI provides three synchronization mechanisms:

1. The MPI_WIN_FENCE collective synchronization call supports a simple synchroniza-
tion pattern that is often used in parallel computations: namely a loosely-synchronous
model, where global computation phases alternate with global communication phases.
This mechanism is most useful for loosely synchronous algorithms where the graph
of communicating processes changes very frequently, or where each process communi-
cates with many others.

This call is used for active target communication. An access epoch at an origin
process or an exposure epoch at a target process are started and completed by calls to
MPI_WIN_FENCE. A process can access windows at all processes in the group of win
during such an access epoch, and the local window can be accessed by all processes
in the group of win during such an exposure epoch.

2. The four functions MPI_WIN_START, MPI_WIN_COMPLETE, MPI_WIN_POST, and
MPI_WIN_WAIT can be used to restrict synchronization to the minimum: only pairs
of communicating processes synchronize, and they do so only when a synchronization
is needed to order correctly RMA accesses to a window with respect to local accesses
to that same window. This mechanism may be more efficient when each process
communicates with few (logical) neighbors, and the communication graph is fixed or
changes infrequently.

These calls are used for active target communication. An access epoch is started
at the origin process by a call to MPI_WIN_START and is terminated by a call to
MPI_WIN_COMPLETE. The start call has a group argument that specifies the group
of target processes for that epoch. An exposure epoch is started at the target process
by a call to MPI_WIN_POST and is completed by a call to MPI_WIN_WAIT. The post
call has a group argument that specifies the set of origin processes for that epoch.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

438 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Local

accesses

window
Local

accesses

load

wait

post

store

memory

executed

put

in origin

in target

memory

executed

put

exposed
to RMA

Window is

accesses

.

.

.

.

.

.

.

window

.

store

.

PROCESS

put

ORIGIN

start

.

.

.

.

.

.

.

.

.

.

.

.

complete

TARGET
PROCESS

load

wait

post

Figure 11.2: Active target communication. Dashed arrows represent synchronizations (or-
dering of events).

3. Finally, shared lock access is provided by the functions MPI_WIN_LOCK,
MPI_WIN_LOCK_ALL, MPI_WIN_UNLOCK, and MPI_WIN_UNLOCK_ALL.
MPI_WIN_LOCK and MPI_WIN_UNLOCK also provide exclusive lock capability. Lock
synchronization is useful for MPI applications that emulate a shared memory model
via MPI calls; e.g., in a “billboard” model, where processes can, at random times,
access or update different parts of the billboard.

These four calls provide passive target communication. An access epoch is started
by a call to MPI_WIN_LOCK or MPI_WIN_LOCK_ALL and terminated by a call to
MPI_WIN_UNLOCK or MPI_WIN_UNLOCK_ALL, respectively.

Figure 11.2 illustrates the general synchronization pattern for active target communi-
cation. The synchronization between post and start ensures that the put call of the origin
process does not start until the target process exposes the window (with the post call);
the target process will expose the window only after preceding local accesses to the window
have completed. The synchronization between complete and wait ensures that the put call
of the origin process completes before the window is unexposed (with the wait call). The
target process will execute following local accesses to the target window only after the wait

returned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 439

Local

accesses

exposed
to RMA

Window is

accesses
in target

memory

executed

put

.

.

.

.

.

.

.

.

.

complete

memory

executed

put

in origin

Local

window

put

window
accesses

PROCESSPROCESS
ORIGIN

.

.

start

TARGET

load

load

wait

wait

post

post

store

store

.

.

.

.

.

.

.

.

.

Figure 11.3: Active target communication, with weak synchronization. Dashed arrows
represent synchronizations (ordering of events)

Figure 11.2 shows operations occurring in the natural temporal order implied by the
synchronizations: the post occurs before the matching start, and complete occurs before
the matching wait. However, such strong synchronization is more than needed for correct
ordering of window accesses. The semantics of MPI calls allow weak synchronization, as
illustrated in Figure 11.3. The access to the target window is delayed until the window is ex-
posed, after the post. However the start may complete earlier; the put and complete may
also terminate earlier, if put data is buffered by the implementation. The synchronization
calls order correctly window accesses, but do not necessarily synchronize other operations.
This weaker synchronization semantic allows for more efficient implementations.

Figure 11.4 illustrates the general synchronization pattern for passive target commu-
nication. The first origin process communicates data to the second origin process, through
the memory of the target process; the target process is not explicitly involved in the com-
munication. The lock and unlock calls ensure that the two RMA accesses do not occur
concurrently. However, they do not ensure that the put by origin 1 will precede the get by
origin 2.

Rationale. RMA does not define fine-grained mutexes in memory (only logical coarse-
grained process locks). MPI provides the primitives (compare and swap, accumulate,
send/receive, etc.) needed to implement high-level synchronization operations. (End
of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

440 CHAPTER 11. ONE-SIDED COMMUNICATIONS

PROCESS

memory

executed

put

in origin

.

.

.

.

.

lock

.

.

unlock

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

in target

memory

executed

get

memory

executed

in origin

get

in target

memory

executed

TARGET

put

unlock

.

.

.

.

.

.

.

.

unlock

lock

ORIGIN
PROCESS

1

put

lock

ORIGIN
PROCESS

2

.

.

.

.

.

.

.

.

.

.

lock

get

unlock

Figure 11.4: Passive target communication. Dashed arrows represent synchronizations
(ordering of events).

11.5.1 Fence

MPI_WIN_FENCE(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_fence(int assert, MPI_Win win)

MPI_Win_fence(assert, win, ierror)

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 441

INTEGER ASSERT, WIN, IERROR

The MPI call MPI_WIN_FENCE(assert, win) synchronizes RMA calls on win. The call
is collective on the group of win. All RMA operations on win originating at a given process
and started before the fence call will complete at that process before the fence call returns.
They will be completed at their target before the fence call returns at the target. RMA
operations on win started by a process after the fence call returns will access their target
window only after MPI_WIN_FENCE has been called by the target process.

The call completes an RMA access epoch if it was preceded by another fence call and
the local process issued RMA communication calls on win between these two calls. The call
completes an RMA exposure epoch if it was preceded by another fence call and the local
window was the target of RMA accesses between these two calls. The call starts an RMA
access epoch if it is followed by another fence call and by RMA communication calls issued
between these two fence calls. The call starts an exposure epoch if it is followed by another
fence call and the local window is the target of RMA accesses between these two fence calls.
Thus, the fence call is equivalent to calls to a subset of post, start, complete, wait.

A fence call usually entails a barrier synchronization: a process completes a call to
MPI_WIN_FENCE only after all other processes in the group entered their matching call.
However, a call to MPI_WIN_FENCE that is known not to end any epoch (in particular, a
call with assert equal to MPI_MODE_NOPRECEDE) does not necessarily act as a barrier.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.5.5. A value of assert =
0 is always valid.

Advice to users. Calls to MPI_WIN_FENCE should both precede and follow calls to
RMA communication functions that are synchronized with fence calls. (End of advice
to users.)

11.5.2 General Active Target Synchronization

MPI_WIN_START(group, assert, win)

IN group group of target processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

MPI_Win_start(group, assert, win, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

Starts an RMA access epoch for win. RMA calls issued on win during this epoch must
access only windows at processes in group. Each process in group must issue a matching

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

442 CHAPTER 11. ONE-SIDED COMMUNICATIONS

call to MPI_WIN_POST. RMA accesses to each target window will be delayed, if necessary,
until the target process executed the matching call to MPI_WIN_POST. MPI_WIN_START
is allowed to block until the corresponding MPI_WIN_POST calls are executed, but is not
required to.

The assert argument is used to provide assertions on the context of the call that may
be used for various optimizations. This is described in Section 11.5.5. A value of assert =
0 is always valid.

MPI_WIN_COMPLETE(win)

IN win window object (handle)

int MPI_Win_complete(MPI_Win win)

MPI_Win_complete(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

Completes an RMA access epoch on win started by a call to MPI_WIN_START. All
RMA communication calls issued on win during this epoch will have completed at the origin
when the call returns.

MPI_WIN_COMPLETE enforces completion of preceding RMA calls at the origin, but
not at the target. A put or accumulate call may not have completed at the target when it
has completed at the origin.

Consider the sequence of calls in the example below.

Example 11.4

MPI_Win_start(group, flag, win);

MPI_Put(..., win);

MPI_Win_complete(win);

The call to MPI_WIN_COMPLETE does not return until the put call has completed
at the origin; and the target window will be accessed by the put operation only after the
call to MPI_WIN_START has matched a call to MPI_WIN_POST by the target process.
This still leaves much choice to implementors. The call to MPI_WIN_START can block
until the matching call to MPI_WIN_POST occurs at all target processes. One can also
have implementations where the call to MPI_WIN_START is nonblocking, but the call to
MPI_PUT blocks until the matching call to MPI_WIN_POST occurs; or implementations
where the first two calls are nonblocking, but the call to MPI_WIN_COMPLETE blocks
until the call to MPI_WIN_POST occurred; or even implementations where all three calls
can complete before any target process has called MPI_WIN_POST — the data put must
be buffered, in this last case, so as to allow the put to complete at the origin ahead of its
completion at the target. However, once the call to MPI_WIN_POST is issued, the sequence
above must complete, without further dependencies.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 443

MPI_WIN_POST(group, assert, win)

IN group group of origin processes (handle)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

MPI_Win_post(group, assert, win, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

Starts an RMA exposure epoch for the local window associated with win. Only processes
in group should access the window with RMA calls on win during this epoch. Each process
in group must issue a matching call to MPI_WIN_START. MPI_WIN_POST does not block.

MPI_WIN_WAIT(win)

IN win window object (handle)

int MPI_Win_wait(MPI_Win win)

MPI_Win_wait(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

Completes an RMA exposure epoch started by a call to MPI_WIN_POST on win. This
call matches calls to MPI_WIN_COMPLETE(win) issued by each of the origin processes that
were granted access to the window during this epoch. The call to MPI_WIN_WAIT will block
until all matching calls to MPI_WIN_COMPLETE have occurred. This guarantees that all
these origin processes have completed their RMA accesses to the local window. When the
call returns, all these RMA accesses will have completed at the target window.

Figure 11.5 illustrates the use of these four functions. Process 0 puts data in the
windows of processes 1 and 2 and process 3 puts data in the window of process 2. Each
start call lists the ranks of the processes whose windows will be accessed; each post call lists
the ranks of the processes that access the local window. The figure illustrates a possible
timing for the events, assuming strong synchronization; in a weak synchronization, the start,
put or complete calls may occur ahead of the matching post calls.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

444 CHAPTER 11. ONE-SIDED COMMUNICATIONS

PROCESS 0 PROCESS 1 PROCESS 2

post(0,3)

PROCESS 3

wait() wait()

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

put(1)

put(2)

complete()

start(1,2)

post(0)

start(2)

complete()

put(2)

Figure 11.5: Active target communication. Dashed arrows represent synchronizations and
solid arrows represent data transfer.

MPI_WIN_TEST(win, flag)

IN win window object (handle)

OUT flag success flag (logical)

int MPI_Win_test(MPI_Win win, int *flag)

MPI_Win_test(win, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

This is the nonblocking version of MPI_WIN_WAIT. It returns flag = true if all accesses
to the local window by the group to which it was exposed by the corresponding
MPI_WIN_POST call have been completed as signalled by matching MPI_WIN_COMPLETE
calls, and flag = false otherwise. In the former case MPI_WIN_WAIT would have returned
immediately. The effect of return of MPI_WIN_TEST with flag = true is the same as the
effect of a return of MPI_WIN_WAIT. If flag = false is returned, then the call has no visible
effect.

MPI_WIN_TEST should be invoked only where MPI_WIN_WAIT can be invoked. Once
the call has returned flag = true, it must not be invoked anew, until the window is posted
anew.

Assume that window win is associated with a “hidden” communicator wincomm, used
for communication by the processes of win. The rules for matching of post and start calls
and for matching complete and wait calls can be derived from the rules for matching sends
and receives, by considering the following (partial) model implementation.

MPI_WIN_POST(group,0,win) initiate a nonblocking send with tag tag0 to each process
in group, using wincomm. There is no need to wait for the completion of these sends.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 445

MPI_WIN_START(group,0,win) initiates a nonblocking receive with tag tag0 from each
process in group, using wincomm. An RMA access to a window in target process i is
delayed until the receive from i is completed.

MPI_WIN_COMPLETE(win) initiate a nonblocking send with tag tag1 to each process
in the group of the preceding start call. No need to wait for the completion of these
sends.

MPI_WIN_WAIT(win) initiate a nonblocking receive with tag tag1 from each process in
the group of the preceding post call. Wait for the completion of all receives.

No races can occur in a correct program: each of the sends matches a unique receive,
and vice versa.

Rationale. The design for general active target synchronization requires the user to
provide complete information on the communication pattern, at each end of a com-
munication link: each origin specifies a list of targets, and each target specifies a list
of origins. This provides maximum flexibility (hence, efficiency) for the implementor:
each synchronization can be initiated by either side, since each “knows” the identity
of the other. This also provides maximum protection from possible races. On the
other hand, the design requires more information than RMA needs: in general, it is
sufficient for the origin to know the rank of the target, but not vice versa. Users
that want more “anonymous” communication will be required to use the fence or lock
mechanisms. (End of rationale.)

Advice to users. Assume a communication pattern that is represented by a directed
graph G = 〈V,E〉, where V = {0, . . . , n − 1} and ij ∈ E if origin process i accesses
the window at target process j. Then each process i issues a call to
MPI_WIN_POST(ingroupi, . . .), followed by a call to
MPI_WIN_START(outgroupi,. . .), where outgroupi = {j : ij ∈ E} and ingroupi =
{j : ji ∈ E}. A call is a noop, and can be skipped, if the group argument is empty.
After the communications calls, each process that issued a start will issue a complete.
Finally, each process that issued a post will issue a wait.

Note that each process may call with a group argument that has different members.
(End of advice to users.)

11.5.3 Lock

MPI_WIN_LOCK(lock_type, rank, assert, win)

IN lock_type either MPI_LOCK_EXCLUSIVE or

MPI_LOCK_SHARED (state)

IN rank rank of locked window (non-negative integer)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

446 CHAPTER 11. ONE-SIDED COMMUNICATIONS

MPI_Win_lock(lock_type, rank, assert, win, ierror)

INTEGER, INTENT(IN) :: lock_type, rank, assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

Starts an RMA access epoch. Only the window at the process with rank rank can be
accessed by RMA operations on win during that epoch.

MPI_WIN_LOCK_ALL(assert, win)

IN assert program assertion (integer)

IN win window object (handle)

int MPI_Win_lock_all(int assert, MPI_Win win)

MPI_Win_lock_all(assert, win, ierror)

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

Starts an RMA access epoch to all processes in win, with a lock type of
MPI_LOCK_SHARED. During the epoch, the calling process can access the window memory on
all processes in win by using RMA operations. A window locked with MPI_WIN_LOCK_ALL
must be unlocked with MPI_WIN_UNLOCK_ALL. This routine is not collective — the ALL
refers to a lock on all members of the group of the window.

Advice to users. There may be additional overheads associated with using
MPI_WIN_LOCK and MPI_WIN_LOCK_ALL concurrently on the same window. These
overheads could be avoided by specifying the assertion MPI_MODE_NOCHECK when
possible (see Section 11.5.5). (End of advice to users.)

MPI_WIN_UNLOCK(rank, win)

IN rank rank of window (non-negative integer)

IN win window object (handle)

int MPI_Win_unlock(int rank, MPI_Win win)

MPI_Win_unlock(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 447

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

Completes an RMA access epoch started by a call to MPI_WIN_LOCK(. . .,win). RMA
operations issued during this period will have completed both at the origin and at the target
when the call returns.

MPI_WIN_UNLOCK_ALL(win)

IN win window object (handle)

int MPI_Win_unlock_all(MPI_Win win)

MPI_Win_unlock_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_UNLOCK_ALL(WIN, IERROR)

INTEGER WIN, IERROR

Completes a shared RMA access epoch started by a call to MPI_WIN_LOCK_ALL(assert,
win). RMA operations issued during this epoch will have completed both at the origin and
at the target when the call returns.

Locks are used to protect accesses to the locked target window effected by RMA calls
issued between the lock and unlock calls, and to protect load/store accesses to a locked local
or shared memory window executed between the lock and unlock calls. Accesses that are
protected by an exclusive lock will not be concurrent at the window site with other accesses
to the same window that are lock protected. Accesses that are protected by a shared lock
will not be concurrent at the window site with accesses protected by an exclusive lock to
the same window.

It is erroneous to have a window locked and exposed (in an exposure epoch) concur-
rently. For example, a process may not call MPI_WIN_LOCK to lock a target window if
the target process has called MPI_WIN_POST and has not yet called MPI_WIN_WAIT; it
is erroneous to call MPI_WIN_POST while the local window is locked.

Rationale. An alternative is to require MPI to enforce mutual exclusion between
exposure epochs and locking periods. But this would entail additional overheads
when locks or active target synchronization do not interact in support of those rare
interactions between the two mechanisms. The programming style that we encourage
here is that a set of windows is used with only one synchronization mechanism at
a time, with shifts from one mechanism to another being rare and involving global
synchronization. (End of rationale.)

Advice to users. Users need to use explicit synchronization code in order to enforce
mutual exclusion between locking periods and exposure epochs on a window. (End of
advice to users.)

Implementors may restrict the use of RMA communication that is synchronized by
lock calls to windows in memory allocated by MPI_ALLOC_MEM (Section 8.2),
MPI_WIN_ALLOCATE (Section 11.2.2), or attached with MPI_WIN_ATTACH (Section 11.2.4).
Locks can be used portably only in such memory.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

448 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Rationale. The implementation of passive target communication when memory
is not shared may require an asynchronous software agent. Such an agent can be
implemented more easily, and can achieve better performance, if restricted to specially
allocated memory. It can be avoided altogether if shared memory is used. It seems
natural to impose restrictions that allows one to use shared memory for third party
communication in shared memory machines.

The downside of this decision is that passive target communication cannot be used
without taking advantage of nonstandard Fortran features: namely, the availability of
C-like pointers; these are not supported by some Fortran compilers. (End of rationale.)

Consider the sequence of calls in the example below.

Example 11.5

MPI_Win_lock(MPI_LOCK_EXCLUSIVE, rank, assert, win);

MPI_Put(..., rank, ..., win);

MPI_Win_unlock(rank, win);

The call to MPI_WIN_UNLOCK will not return until the put transfer has completed at
the origin and at the target. This still leaves much freedom to implementors. The call to
MPI_WIN_LOCK may block until an exclusive lock on the window is acquired; or, the first
two calls may not block, while MPI_WIN_UNLOCK blocks until a lock is acquired — the
update of the target window is then postponed until the call to MPI_WIN_UNLOCK occurs.
However, if the call to MPI_WIN_LOCK is used to lock a local window, then the call must
block until the lock is acquired, since the lock may protect local load/store accesses to the
window issued after the lock call returns.

11.5.4 Flush and Sync

All flush and sync functions can be called only within passive target epochs.

MPI_WIN_FLUSH(rank, win)

IN rank rank of target window (non-negative integer)

IN win window object (handle)

int MPI_Win_flush(int rank, MPI_Win win)

MPI_Win_flush(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FLUSH(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH completes all outstanding RMA operations initiated by the calling
process to the target rank on the specified window. The operations are completed both at
the origin and at the target.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 449

MPI_WIN_FLUSH_ALL(win)

IN win window object (handle)

int MPI_Win_flush_all(MPI_Win win)

MPI_Win_flush_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FLUSH_ALL(WIN, IERROR)

INTEGER WIN, IERROR

All RMA operations issued by the calling process to any target on the specified window
prior to this call and in the specified window will have completed both at the origin and at
the target when this call returns.

MPI_WIN_FLUSH_LOCAL(rank, win)

IN rank rank of target window (non-negative integer)

IN win window object (handle)

int MPI_Win_flush_local(int rank, MPI_Win win)

MPI_Win_flush_local(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FLUSH_LOCAL(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

Locally completes at the origin all outstanding RMA operations initiated by the calling
process to the target process specified by rank on the specified window. For example, after
this routine completes, the user may reuse any buffers provided to put, get, or accumulate
operations.

MPI_WIN_FLUSH_LOCAL_ALL(win)

IN win window object (handle)

int MPI_Win_flush_local_all(MPI_Win win)

MPI_Win_flush_local_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_FLUSH_LOCAL_ALL(WIN, IERROR)

INTEGER WIN, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

450 CHAPTER 11. ONE-SIDED COMMUNICATIONS

All RMA operations issued to any target prior to this call in this window will have
completed at the origin when MPI_WIN_FLUSH_LOCAL_ALL returns.

MPI_WIN_SYNC(win)

IN win window object (handle)

int MPI_Win_sync(MPI_Win win)

MPI_Win_sync(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_SYNC(WIN, IERROR)

INTEGER WIN, IERROR

The call MPI_WIN_SYNC synchronizes the private and public window copies of win.
For the purposes of synchronizing the private and public window, MPI_WIN_SYNC has the
effect of ending and reopening an access and exposure epoch on the window (note that it
does not actually end an epoch or complete any pending MPI RMA operations).

11.5.5 Assertions

The assert argument in the calls MPI_WIN_POST, MPI_WIN_START, MPI_WIN_FENCE,
MPI_WIN_LOCK, and MPI_WIN_LOCK_ALL is used to provide assertions on the context of
the call that may be used to optimize performance. The assert argument does not change
program semantics if it provides correct information on the program — it is erroneous to
provide incorrect information. Users may always provide assert = 0 to indicate a general
case where no guarantees are made.

Advice to users. Many implementations may not take advantage of the information
in assert; some of the information is relevant only for noncoherent shared memory ma-
chines. Users should consult their implementation’s manual to find which information
is useful on each system. On the other hand, applications that provide correct asser-
tions whenever applicable are portable and will take advantage of assertion specific
optimizations whenever available. (End of advice to users.)

Advice to implementors. Implementations can always ignore the
assert argument. Implementors should document which assert values are significant
on their implementation. (End of advice to implementors.)

assert is the bit-vector OR of zero or more of the following integer constants:
MPI_MODE_NOCHECK, MPI_MODE_NOSTORE, MPI_MODE_NOPUT,
MPI_MODE_NOPRECEDE, and MPI_MODE_NOSUCCEED. The significant options are listed
below for each call.

Advice to users. C/C++ users can use bit vector or (|) to combine these constants;
Fortran 90 users can use the bit-vector IOR intrinsic. Fortran 77 users can use (non-
portably) bit vector IOR on systems that support it. Alternatively, Fortran users can
portably use integer addition to OR the constants (each constant should appear at
most once in the addition!). (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.5. SYNCHRONIZATION CALLS 451

MPI_WIN_START: MPI_MODE_NOCHECK — the matching calls to
MPI_WIN_POST have already completed on all target processes when the call
to MPI_WIN_START is made. The nocheck option can be specified in a start
call if and only if it is specified in each matching post call. This is similar to the
optimization of “ready-send” that may save a handshake when the handshake
is implicit in the code. (However, ready-send is matched by a regular receive,
whereas both start and post must specify the nocheck option.)

MPI_WIN_POST: MPI_MODE_NOCHECK — the matching calls to
MPI_WIN_START have not yet occurred on any origin processes when the call
to MPI_WIN_POST is made. The nocheck option can be specified by a post call
if and only if it is specified by each matching start call.

MPI_MODE_NOSTORE — the local window was not updated by stores (or local get
or receive calls) since last synchronization. This may avoid the need for cache
synchronization at the post call.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the post call, until the ensuing (wait) synchronization. This may avoid
the need for cache synchronization at the wait call.

MPI_WIN_FENCE: MPI_MODE_NOSTORE — the local window was not updated by stores
(or local get or receive calls) since last synchronization.

MPI_MODE_NOPUT — the local window will not be updated by put or accumulate
calls after the fence call, until the ensuing (fence) synchronization.

MPI_MODE_NOPRECEDE — the fence does not complete any sequence of locally issued
RMA calls. If this assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_MODE_NOSUCCEED — the fence does not start any sequence of locally issued
RMA calls. If the assertion is given by any process in the window group, then it
must be given by all processes in the group.

MPI_WIN_LOCK, MPI_WIN_LOCK_ALL: MPI_MODE_NOCHECK — no other process
holds, or will attempt to acquire, a conflicting lock, while the caller holds the
window lock. This is useful when mutual exclusion is achieved by other means,
but the coherence operations that may be attached to the lock and unlock calls
are still required.

Advice to users. Note that the nostore and noprecede flags provide information on
what happened before the call; the noput and nosucceed flags provide information on
what will happen after the call. (End of advice to users.)

11.5.6 Miscellaneous Clarifications

Once an RMA routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the datatype argument of a MPI_PUT call can be freed as
soon as the call returns, even though the communication may not be complete.

As in message-passing, datatypes must be committed before they can be used in RMA
communication.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

452 CHAPTER 11. ONE-SIDED COMMUNICATIONS

11.6 Error Handling

11.6.1 Error Handlers

Errors occurring during calls to routines that create MPI windows (e.g., MPI_WIN_CREATE
(. . .,comm,. . .)) cause the error handler currently associated with comm to be invoked. All
other RMA calls have an input win argument. When an error occurs during such a call, the
error handler currently associated with win is invoked.

The default error handler associated with win is MPI_ERRORS_ARE_FATAL. Users may
change this default by explicitly associating a new error handler with win (see Section 8.3).

11.6.2 Error Classes

The error classes for one-sided communication are defined in Table 11.2. RMA routines
may (and almost certainly will) use other MPI error classes, such as MPI_ERR_OP or
MPI_ERR_RANK.

MPI_ERR_WIN invalid win argument
MPI_ERR_BASE invalid base argument
MPI_ERR_SIZE invalid size argument
MPI_ERR_DISP invalid disp argument
MPI_ERR_LOCKTYPE invalid locktype argument
MPI_ERR_ASSERT invalid assert argument
MPI_ERR_RMA_CONFLICT conflicting accesses to window
MPI_ERR_RMA_SYNC invalid synchronization of RMA calls
MPI_ERR_RMA_RANGE target memory is not part of the window (in the case

of a window created with
MPI_WIN_CREATE_DYNAMIC, target memory is not
attached)

MPI_ERR_RMA_ATTACH memory cannot be attached (e.g., because of resource
exhaustion)

MPI_ERR_RMA_SHARED memory cannot be shared (e.g., some process in the
group of the specified communicator cannot expose
shared memory)

MPI_ERR_RMA_FLAVOR passed window has the wrong flavor for the called
function

Table 11.2: Error classes in one-sided communication routines

11.7 Semantics and Correctness

The following rules specify the latest time at which an operation must complete at the
origin or the target. The update performed by a get call in the origin process memory is
visible when the get operation is complete at the origin (or earlier); the update performed
by a put or accumulate call in the public copy of the target window is visible when the put
or accumulate has completed at the target (or earlier). The rules also specify the latest
time at which an update of one window copy becomes visible in another overlapping copy.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 453

1. An RMA operation is completed at the origin by the ensuing call to
MPI_WIN_COMPLETE, MPI_WIN_FENCE, MPI_WIN_FLUSH,
MPI_WIN_FLUSH_ALL, MPI_WIN_FLUSH_LOCAL, MPI_WIN_FLUSH_LOCAL_ALL,
MPI_WIN_UNLOCK, or MPI_WIN_UNLOCK_ALL that synchronizes this access at the
origin.

2. If an RMA operation is completed at the origin by a call to MPI_WIN_FENCE then
the operation is completed at the target by the matching call to MPI_WIN_FENCE by
the target process.

3. If an RMA operation is completed at the origin by a call to MPI_WIN_COMPLETE
then the operation is completed at the target by the matching call to MPI_WIN_WAIT
by the target process.

4. If an RMA operation is completed at the origin by a call to MPI_WIN_UNLOCK,
MPI_WIN_UNLOCK_ALL, MPI_WIN_FLUSH(rank=target), or
MPI_WIN_FLUSH_ALL, then the operation is completed at the target by that same
call.

5. An update of a location in a private window copy in process memory becomes visible
in the public window copy at latest when an ensuing call to MPI_WIN_POST,
MPI_WIN_FENCE, MPI_WIN_UNLOCK, MPI_WIN_UNLOCK_ALL, or
MPI_WIN_SYNC is executed on that window by the window owner. In the RMA
unified memory model, an update of a location in a private window in process memory
becomes visible without additional RMA calls.

6. An update by a put or accumulate call to a public window copy becomes visible in the
private copy in process memory at latest when an ensuing call to MPI_WIN_WAIT,
MPI_WIN_FENCE, MPI_WIN_LOCK, MPI_WIN_LOCK_ALL, or MPI_WIN_SYNC is
executed on that window by the window owner. In the RMA unified memory model,
an update by a put or accumulate call to a public window copy eventually becomes
visible in the private copy in process memory without additional RMA calls.

The MPI_WIN_FENCE or MPI_WIN_WAIT call that completes the transfer from public
copy to private copy (6) is the same call that completes the put or accumulate operation in
the window copy (2, 3). If a put or accumulate access was synchronized with a lock, then
the update of the public window copy is complete as soon as the updating process executed
MPI_WIN_UNLOCK or MPI_WIN_UNLOCK_ALL. In the RMA separate memory model, the
update of a private copy in the process memory may be delayed until the target process
executes a synchronization call on that window (6). Thus, updates to process memory can
always be delayed in the RMA separate memory model until the process executes a suitable
synchronization call, while they must complete in the RMA unified model without additional
synchronization calls. If fence or post-start-complete-wait synchronization is used, updates
to a public window copy can be delayed in both memory models until the window owner
executes a synchronization call. When passive target synchronization (lock/unlock or even
flush) is used, it is necessary to update the public window copy in the RMA separate model,
or the private window copy in the RMA unified model, even if the window owner does not
execute any related synchronization call.

The rules above also define, by implication, when an update to a public window copy
becomes visible in another overlapping public window copy. Consider, for example, two

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

454 CHAPTER 11. ONE-SIDED COMMUNICATIONS

overlapping windows, win1 and win2. A call to MPI_WIN_FENCE(0, win1) by the window
owner makes visible in the process memory previous updates to window win1 by remote
processes. A subsequent call to MPI_WIN_FENCE(0, win2) makes these updates visible in
the public copy of win2.

The behavior of some MPI RMA operations may be undefined in certain situations. For
example, the result of several origin processes performing concurrent MPI_PUT operations
to the same target location is undefined. In addition, the result of a single origin process
performing multiple MPI_PUT operations to the same target location within the same
access epoch is also undefined. The result at the target may have all of the data from one
of the MPI_PUT operations (the “last” one, in some sense), bytes from some of each of the
operations, or something else. In MPI-2, such operations were erroneous. That meant that
an MPI implementation was permitted to signal an MPI exception. Thus, user programs or
tools that used MPI RMA could not portably permit such operations, even if the application
code could function correctly with such an undefined result. In MPI-3, these operations are
not erroneous, but do not have a defined behavior.

Rationale. As discussed in [6], requiring operations such as overlapping puts to
be erroneous makes it difficult to use MPI RMA to implement programming models—
such as Unified Parallel C (UPC) or SHMEM—that permit these operations. Further,
while MPI-2 defined these operations as erroneous, the MPI Forum is unaware of any
implementation that enforces this rule, as it would require significant overhead. Thus,
relaxing this condition does not impact existing implementations or applications. (End
of rationale.)

Advice to implementors. Overlapping accesses are undefined. However, to assist
users in debugging code, implementations may wish to provide a mode in which such
operations are detected and reported to the user. Note, however, that in MPI-3, such
operations must not generate an MPI exception. (End of advice to implementors.)

A program with a well-defined outcome in the MPI_WIN_SEPARATE memory model
must obey the following rules.

1. A location in a window must not be accessed with load/store operations once an
update to that location has started, until the update becomes visible in the private
window copy in process memory.

2. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started, until the update becomes visible in the public
window copy. There is one exception to this rule, in the case where the same variable
is updated by two concurrent accumulates with the same predefined datatype, on
the same window. Additional restrictions on the operation apply, see the info key
accumulate_ops in Section 11.2.1.

3. A put or accumulate must not access a target window once a store or a put or accu-
mulate update to another (overlapping) target window has started on a location in
the target window, until the update becomes visible in the public copy of the win-
dow. Conversely, a store to process memory to a location in a window must not start
once a put or accumulate update to that target window has started, until the put or
accumulate update becomes visible in process memory. In both cases, the restriction
applies to operations even if they access disjoint locations in the window.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 455

Rationale. The last constraint on correct RMA accesses may seem unduly restric-
tive, as it forbids concurrent accesses to nonoverlapping locations in a window. The
reason for this constraint is that, on some architectures, explicit coherence restor-
ing operations may be needed at synchronization points. A different operation may
be needed for locations that were updated by stores and for locations that were re-
motely updated by put or accumulate operations. Without this constraint, the MPI
library would have to track precisely which locations in a window were updated by a
put or accumulate call. The additional overhead of maintaining such information is
considered prohibitive. (End of rationale.)

Note that MPI_WIN_SYNC may be used within a passive target epoch to synchronize
the private and public window copies (that is, updates to one are made visible to the other).

In the MPI_WIN_UNIFIED memory model, the rules are much simpler because the public
and private windows are the same. However, there are restrictions to avoid concurrent
access to the same memory locations by different processes. The rules that a program with
a well-defined outcome must obey in this case are:

1. A location in a window must not be accessed with load/store operations once an
update to that location has started, until the update is complete, subject to the
following special case.

2. Accessing a location in the window that is also the target of a remote update is valid
(not erroneous) but the precise result will depend on the behavior of the implemen-
tation. Updates from a remote process will appear in the memory of the target, but
there are no atomicity or ordering guarantees if more than one byte is updated. Up-
dates are stable in the sense that once data appears in memory of the target, the data
remains until replaced by another update. This permits polling on a location for a
change from zero to non-zero or for a particular value, but not polling and comparing
the relative magnitude of values. Users are cautioned that polling on one memory
location and then accessing a different memory location has defined behavior only if
the other rules given here and in this chapter are followed.

Advice to users. Some compiler optimizations can result in code that maintains
the sequential semantics of the program, but violates this rule by introducing
temporary values into locations in memory. Most compilers only apply such
transformations under very high levels of optimization and users should be aware
that such aggressive optimization may produce unexpected results. (End of
advice to users.)

3. Updating a location in the window with a store operation that is also the target
of a remote read (but not update) is valid (not erroneous) but the precise result
will depend on the behavior of the implementation. Store updates will appear in
memory, but there are no atomicity or ordering guarantees if more than one byte is
updated. Updates are stable in the sense that once data appears in memory, the data
remains until replaced by another update. This permits updates to memory with
store operations without requiring an RMA epoch. Users are cautioned that remote
accesses to a window that is updated by the local process has defined behavior only
if the other rules given here and elsewhere in this chapter are followed.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

456 CHAPTER 11. ONE-SIDED COMMUNICATIONS

4. A location in a window must not be accessed as a target of an RMA operation once
an update to that location has started and until the update completes at the target.
There is one exception to this rule: in the case where the same location is updated by
two concurrent accumulates with the same predefined datatype on the same window.
Additional restrictions on the operation apply; see the info key accumulate_ops in
Section 11.2.1.

5. A put or accumulate must not access a target window once a store, put, or accumulate
update to another (overlapping) target window has started on the same location in
the target window and until the update completes at the target window. Conversely,
a store operation to a location in a window must not start once a put or accumulate
update to the same location in that target window has started and until the put or
accumulate update completes at the target.

Note that MPI_WIN_FLUSH and MPI_WIN_FLUSH_ALL may be used within a passive
target epoch to complete RMA operations at the target process.

A program that violates these rules has undefined behavior.

Advice to users. A user can write correct programs by following the following rules:

fence: During each period between fence calls, each window is either updated by put
or accumulate calls, or updated by stores, but not both. Locations updated by
put or accumulate calls should not be accessed during the same period (with
the exception of concurrent updates to the same location by accumulate calls).
Locations accessed by get calls should not be updated during the same period.

post-start-complete-wait: A window should not be updated with store operations
while posted if it is being updated by put or accumulate calls. Locations updated
by put or accumulate calls should not be accessed while the window is posted
(with the exception of concurrent updates to the same location by accumulate
calls). Locations accessed by get calls should not be updated while the window
is posted.

With the post-start synchronization, the target process can tell the origin process
that its window is now ready for RMA access; with the complete-wait synchro-
nization, the origin process can tell the target process that it has finished its
RMA accesses to the window.

lock: Updates to the window are protected by exclusive locks if they may conflict.
Nonconflicting accesses (such as read-only accesses or accumulate accesses) are
protected by shared locks, both for load/store accesses and for RMA accesses.

changing window or synchronization mode: One can change synchronization mode,
or change the window used to access a location that belongs to two overlapping
windows, when the process memory and the window copy are guaranteed to
have the same values. This is true after a local call to MPI_WIN_FENCE, if
RMA accesses to the window are synchronized with fences; after a local call
to MPI_WIN_WAIT, if the accesses are synchronized with post-start-complete-
wait; after the call at the origin (local or remote) to MPI_WIN_UNLOCK or
MPI_WIN_UNLOCK_ALL if the accesses are synchronized with locks.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 457

In addition, a process should not access the local buffer of a get operation until the
operation is complete, and should not update the local buffer of a put or accumulate
operation until that operation is complete.

The RMA synchronization operations define when updates are guaranteed to become
visible in public and private windows. Updates may become visible earlier, but such
behavior is implementation dependent. (End of advice to users.)

The semantics are illustrated by the following examples:

Example 11.6 The following example demonstrates updating a memory location inside
a window for the separate memory model, according to Rule 5. The MPI_WIN_LOCK
and MPI_WIN_UNLOCK calls around the store to X in process B are necessary to ensure
consistency between the public and private copies of the window.

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

store X /* local update to private copy of B */

MPI_Win_unlock(B)

/* now visible in public window copy */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

MPI_Get(X) /* ok, read from public window */

MPI_Win_unlock(B)

Example 11.7 In the RMA unified model, although the public and private copies of the
windows are synchronized, caution must be used when combining load/stores and multi-
process synchronization. Although the following example appears correct, the compiler or
hardware may delay the store to X after the barrier, possibly resulting in the MPI_GET
returning an incorrect value of X.

Process A: Process B:

window location X

store X /* update to private&public copy of B */

MPI_Barrier MPI_Barrier

MPI_Win_lock_all

MPI_Get(X) /* ok, read from window */

MPI_Win_flush_local(B)

/* read value in X */

MPI_Win_unlock_all

MPI_BARRIER provides process synchronization, but not memory synchronization. The
example could potentially be made safe through the use of compiler- and hardware-specific
notations to ensure the store to X occurs before process B enters the MPI_BARRIER. The
use of one-sided synchronization calls, as shown in Example 11.6, also ensures the correct
result.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

458 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Example 11.8 The following example demonstrates the reading of a memory location
updated by a remote process (Rule 6) in the RMA separate memory model. Although the
MPI_WIN_UNLOCK on process A and the MPI_BARRIER ensure that the public copy on
process B reflects the updated value of X, the call to MPI_WIN_LOCK by process B is
necessary to synchronize the private copy with the public copy.

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,B)

/* now visible in private copy of B */

load X

MPI_Win_unlock(B)

Note that in this example, the barrier is not critical to the semantic correctness. The
use of exclusive locks guarantees a remote process will not modify the public copy after
MPI_WIN_LOCK synchronizes the private and public copies. A polling implementation
looking for changes in X on process B would be semantically correct. The barrier is required
to ensure that process A performs the put operation before process B performs the load of
X.

Example 11.9 Similar to Example 11.7, the following example is unsafe even in the unified
model, because the load of X can not be guaranteed to occur after the MPI_BARRIER. While
Process B does not need to explicitly synchronize the public and private copies through
MPI_WIN_LOCK as the MPI_PUT will update both the public and private copies of the
window, the scheduling of the load could result in old values of X being returned. Compiler
and hardware specific notations could ensure the load occurs after the data is updated, or
explicit one-sided synchronization calls can be used to ensure the proper result.

Process A: Process B:

window location X

MPI_Win_lock_all

MPI_Put(X) /* update to window */

MPI_Win_flush(B)

MPI_Barrier MPI_Barrier

load X

MPI_Win_unlock_all

Example 11.10 The following example further clarifies Rule 5. MPI_WIN_LOCK and
MPI_WIN_LOCK_ALL do not update the public copy of a window with changes to the
private copy. Therefore, there is no guarantee that process A in the following sequence will
see the value of X as updated by the local store by process B before the lock.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 459

Process A: Process B:

window location X

store X /* update to private copy of B */

MPI_Win_lock(SHARED,B)

MPI_Barrier MPI_Barrier

MPI_Win_lock(SHARED,B)

MPI_Get(X) /* X may be the X before the store */

MPI_Win_unlock(B)

MPI_Win_unlock(B)

/* update on X now visible in public window */

The addition of an MPI_WIN_SYNC before the call to MPI_BARRIER by process B would
guarantee process A would see the updated value of X, as the public copy of the window
would be explicitly synchronized with the private copy.

Example 11.11 Similar to the previous example, Rule 5 can have unexpected implications
for general active target synchronization with the RMA separate memory model. It is not
guaranteed that process B reads the value of X as per the local update by process A, because
neither MPI_WIN_WAIT nor MPI_WIN_COMPLETE calls by process A ensure visibility in
the public window copy.

Process A: Process B:

window location X

window location Y

store Y

MPI_Win_post(A,B) /* Y visible in public window */

MPI_Win_start(A) MPI_Win_start(A)

store X /* update to private window */

MPI_Win_complete MPI_Win_complete

MPI_Win_wait

/* update on X may not yet visible in public window */

MPI_Barrier MPI_Barrier

MPI_Win_lock(EXCLUSIVE,A)

MPI_Get(X) /* may return an obsolete value */

MPI_Get(Y)

MPI_Win_unlock(A)

To allow process B to read the value of X stored by A the local store must be replaced by
a local MPI_PUT that updates the public window copy. Note that by this replacement X
may become visible in the private copy of process A only after the MPI_WIN_WAIT call in
process A. The update to Y made before the MPI_WIN_POST call is visible in the public
window after the MPI_WIN_POST call and therefore process B will read the proper value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

460 CHAPTER 11. ONE-SIDED COMMUNICATIONS

of Y. The MPI_GET(Y) call could be moved to the epoch started by the MPI_WIN_START
operation, and process B would still get the value stored by process A.

Example 11.12 The following example demonstrates the interaction of general active
target synchronization with local read operations with the RMA separate memory model.
Rules 5 and 6 do not guarantee that the private copy of X at process B has been updated
before the load takes place.

Process A: Process B:

window location X

MPI_Win_lock(EXCLUSIVE,B)

MPI_Put(X) /* update to public window */

MPI_Win_unlock(B)

MPI_Barrier MPI_Barrier

MPI_Win_post(B)

MPI_Win_start(B)

load X /* access to private window */

/* may return an obsolete value */

MPI_Win_complete

MPI_Win_wait

To ensure that the value put by process A is read, the local load must be replaced with a
local MPI_GET operation, or must be placed after the call to MPI_WIN_WAIT.

11.7.1 Atomicity

The outcome of concurrent accumulate operations to the same location with the same
predefined datatype is as if the accumulates were done at that location in some serial
order. Additional restrictions on the operation apply; see the info key accumulate_ops in
Section 11.2.1. Concurrent accumulate operations with different origin and target pairs are
not ordered. Thus, there is no guarantee that the entire call to an accumulate operation is
executed atomically. The effect of this lack of atomicity is limited: The previous correctness
conditions imply that a location updated by a call to an accumulate operation cannot be
accessed by a load or an RMA call other than accumulate until the accumulate operation has
completed (at the target). Different interleavings can lead to different results only to the
extent that computer arithmetics are not truly associative or commutative. The outcome
of accumulate operations with overlapping types of different sizes or target displacements
is undefined.

11.7.2 Ordering

Accumulate calls enable element-wise atomic read and write to remote memory locations.
MPI specifies ordering between accumulate operations from one process to the same (or

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 461

overlapping) memory locations at another process on a per-datatype granularity. The de-
fault ordering is strict ordering, which guarantees that overlapping updates from the same
source to a remote location are committed in program order and that reads (e.g., with
MPI_GET_ACCUMULATE) and writes (e.g., with MPI_ACCUMULATE) are executed and
committed in program order. Ordering only applies to operations originating at the same
origin that access overlapping target memory regions. MPI does not provide any guarantees
for accesses or updates from different origins to overlapping target memory regions.

The default strict ordering may incur a significant performance penalty. MPI specifies
the info key accumulate_ordering to allow relaxation of the ordering semantics when specified
to any window creation function. The values for this key are as follows. If set to none, then
no ordering will be guaranteed for accumulate calls. This was the behavior for RMA in MPI-
2 but is not the default in MPI-3. The key can be set to a comma-separated list of required
access orderings at the target. Allowed values in the comma-separated list are rar, war,
raw, and waw for read-after-read, write-after-read, read-after-write, and write-after-write
ordering, respectively. These indicate whether operations of the specified type complete
in the order they were issued. For example, raw means that any writes must complete at
the target before any reads. These ordering requirements apply only to operations issued
by the same origin process and targeting the same target process. The default value for
accumulate_ordering is rar,raw,war,waw, which implies that writes complete at the target in the
order in which they were issued, reads complete at the target before any writes that are
issued after the reads, and writes complete at the target before any reads that are issued after
the writes. Any subset of these four orderings can be specified. For example, if only read-
after-read and write-after-write ordering is required, then the value of the accumulate_ordering

key could be set to rar,waw. The order of values is not significant.
Note that the above ordering semantics apply only to accumulate operations, not put

and get. Put and get within an epoch are unordered.

11.7.3 Progress

One-sided communication has the same progress requirements as point-to-point communi-
cation: once a communication is enabled it is guaranteed to complete. RMA calls must have
local semantics, except when required for synchronization with other RMA calls.

There is some fuzziness in the definition of the time when a RMA communication
becomes enabled. This fuzziness provides to the implementor more flexibility than with
point-to-point communication. Access to a target window becomes enabled once the corre-
sponding synchronization (such as MPI_WIN_FENCE or MPI_WIN_POST) has executed. On
the origin process, an RMA communication may become enabled as soon as the correspond-
ing put, get or accumulate call has executed, or as late as when the ensuing synchronization
call is issued. Once the communication is enabled both at the origin and at the target, the
communication must complete.

Consider the code fragment in Example 11.4. Some of the calls may block if the target
window is not posted. However, if the target window is posted, then the code fragment
must complete. The data transfer may start as soon as the put call occurs, but may be
delayed until the ensuing complete call occurs.

Consider the code fragment in Example 11.5. Some of the calls may block if another
process holds a conflicting lock. However, if no conflicting lock is held, then the code
fragment must complete.

Consider the code illustrated in Figure 11.6. Each process updates the window of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

462 CHAPTER 11. ONE-SIDED COMMUNICATIONS

PROCESS 0

post(1)

start(1)

put(1)

complete

wait

loadload

PROCESS 1

post(0)

start(0)

put(0)

complete

wait

Figure 11.6: Symmetric communication

start

put

recv

complete

PROCESS 1

post

send

wait

PROCESS 0

Figure 11.7: Deadlock situation

the other process using a put operation, then accesses its own window. The post calls are
nonblocking, and should complete. Once the post calls occur, RMA access to the windows is
enabled, so that each process should complete the sequence of calls start-put-complete. Once
these are done, the wait calls should complete at both processes. Thus, this communication
should not deadlock, irrespective of the amount of data transferred.

Assume, in the last example, that the order of the post and start calls is reversed at
each process. Then, the code may deadlock, as each process may block on the start call,
waiting for the matching post to occur. Similarly, the program will deadlock if the order of
the complete and wait calls is reversed at each process.

The following two examples illustrate the fact that the synchronization between com-
plete and wait is not symmetric: the wait call blocks until the complete executes, but not
vice versa. Consider the code illustrated in Figure 11.7. This code will deadlock: the wait
of process 1 blocks until process 0 calls complete, and the receive of process 0 blocks until
process 1 calls send. Consider, on the other hand, the code illustrated in Figure 11.8. This
code will not deadlock. Once process 1 calls post, then the sequence start, put, complete
on process 0 can proceed to completion. Process 0 will reach the send call, allowing the
receive call of process 1 to complete.

Rationale. MPI implementations must guarantee that a process makes progress on all
enabled communications it participates in, while blocked on an MPI call. This is true
for send-receive communication and applies to RMA communication as well. Thus, in
the example in Figure 11.8, the put and complete calls of process 0 should complete

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.7. SEMANTICS AND CORRECTNESS 463

put

complete

send

start

PROCESS 1

post

recv

wait

PROCESS 0

Figure 11.8: No deadlock

while process 1 is blocked on the receive call. This may require the involvement of
process 1, e.g., to transfer the data put, while it is blocked on the receive call.

A similar issue is whether such progress must occur while a process is busy comput-
ing, or blocked in a non-MPI call. Suppose that in the last example the send-receive
pair is replaced by a write-to-socket/read-from-socket pair. Then MPI does not spec-
ify whether deadlock is avoided. Suppose that the blocking receive of process 1 is
replaced by a very long compute loop. Then, according to one interpretation of the
MPI standard, process 0 must return from the complete call after a bounded delay,
even if process 1 does not reach any MPI call in this period of time. According to
another interpretation, the complete call may block until process 1 reaches the wait
call, or reaches another MPI call. The qualitative behavior is the same, under both
interpretations, unless a process is caught in an infinite compute loop, in which case
the difference may not matter. However, the quantitative expectations are different.
Different MPI implementations reflect these different interpretations. While this am-
biguity is unfortunate, the MPI Forum decided not to define which interpretation of
the standard is the correct one, since the issue is contentious. (End of rationale.)

11.7.4 Registers and Compiler Optimizations

Advice to users. All the material in this section is an advice to users. (End of advice
to users.)

A coherence problem exists between variables kept in registers and the memory values
of these variables. An RMA call may access a variable in memory (or cache), while the
up-to-date value of this variable is in register. A get will not return the latest variable
value, and a put may be overwritten when the register is stored back in memory. Note that
these issues are unrelated to the RMA memory model; that is, these issues apply even if the
memory model is MPI_WIN_UNIFIED.

The problem is illustrated by the following code:

Source of Process 1 Source of Process 2 Executed in Process 2

bbbb = 777 buff = 999 reg_A:=999

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb stop appl. thread

into buff of process 2) buff:=777 in PUT handler

continue appl. thread

call MPI_WIN_FENCE call MPI_WIN_FENCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

464 CHAPTER 11. ONE-SIDED COMMUNICATIONS

ccc = buff ccc:=reg_A

In this example, variable buff is allocated in the register reg_A and therefore ccc will
have the old value of buff and not the new value 777.

This problem, which also afflicts in some cases send/receive communication, is discussed
more at length in Section 17.1.16.

Programs written in C avoid this problem, because of the semantics of C. Many Fortran
compilers will avoid this problem, without disabling compiler optimizations. However, in
order to avoid register coherence problems in a completely portable manner, users should
restrict their use of RMA windows to variables stored in modules or
COMMON blocks. To prevent problems with the argument copying and register optimization
done by Fortran compilers, please note the hints in Sections 17.1.10–17.1.20. Sections
Solutions to The (Poorly Performing) Fortran VOLATILE Attribute on pages 635–640
discuss several solutions for the problem in this example.

11.8 Examples

Example 11.13 The following example shows a generic loosely synchronous, iterative
code, using fence synchronization. The window at each process consists of array A, which
contains the origin and target buffers of the put calls.

...

while(!converged(A)){

update(A);

MPI_Win_fence(MPI_MODE_NOPRECEDE, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_fence((MPI_MODE_NOSTORE | MPI_MODE_NOSUCCEED), win);

}

The same code could be written with get rather than put. Note that, during the commu-
nication phase, each window is concurrently read (as origin buffer of puts) and written (as
target buffer of puts). This is OK, provided that there is no overlap between the target
buffer of a put and another communication buffer.

Example 11.14 Same generic example, with more computation/communication overlap.
We assume that the update phase is broken into two subphases: the first, where the “bound-
ary,” which is involved in communication, is updated, and the second, where the “core,”
which neither uses nor provides communicated data, is updated.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.8. EXAMPLES 465

...

while(!converged(A)){

update_boundary(A);

MPI_Win_fence((MPI_MODE_NOPUT | MPI_MODE_NOPRECEDE), win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_fence(MPI_MODE_NOSUCCEED, win);

}

The get communication can be concurrent with the core update, since they do not access the
same locations, and the local update of the origin buffer by the get call can be concurrent
with the local update of the core by the update_core call. In order to get similar overlap
with put communication we would need to use separate windows for the core and for the
boundary. This is required because we do not allow local stores to be concurrent with puts
on the same, or on overlapping, windows.

Example 11.15 Same code as in Example 11.13, rewritten using post-start-complete-wait.

...

while(!converged(A)){

update(A);

MPI_Win_post(fromgroup, 0, win);

MPI_Win_start(togroup, 0, win);

for(i=0; i < toneighbors; i++)

MPI_Put(&frombuf[i], 1, fromtype[i], toneighbor[i],

todisp[i], 1, totype[i], win);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

Example 11.16 Same example, with split phases, as in Example 11.14.

...

while(!converged(A)){

update_boundary(A);

MPI_Win_post(togroup, MPI_MODE_NOPUT, win);

MPI_Win_start(fromgroup, 0, win);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf[i], 1, totype[i], fromneighbor[i],

fromdisp[i], 1, fromtype[i], win);

update_core(A);

MPI_Win_complete(win);

MPI_Win_wait(win);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

466 CHAPTER 11. ONE-SIDED COMMUNICATIONS

Example 11.17 A checkerboard, or double buffer communication pattern, that allows
more computation/communication overlap. Array A0 is updated using values of array A1,
and vice versa. We assume that communication is symmetric: if process A gets data from
process B, then process B gets data from process A. Window wini consists of array Ai.

...

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Barrier(comm0);

/* the barrier is needed because the start call inside the

loop uses the nocheck option */

while(!converged(A0, A1)){

/* communication on A0 and computation on A1 */

update2(A1, A0); /* local update of A1 that depends on A0 (and A1) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win0);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf0[i], 1, totype0[i], neighbor[i],

fromdisp0[i], 1, fromtype0[i], win0);

update1(A1); /* local update of A1 that is

concurrent with communication that updates A0 */

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win1);

MPI_Win_complete(win0);

MPI_Win_wait(win0);

/* communication on A1 and computation on A0 */

update2(A0, A1); /* local update of A0 that depends on A1 (and A0) */

MPI_Win_start(neighbors, MPI_MODE_NOCHECK, win1);

for(i=0; i < fromneighbors; i++)

MPI_Get(&tobuf1[i], 1, totype1[i], neighbor[i],

fromdisp1[i], 1, fromtype1[i], win1);

update1(A0); /* local update of A0 that depends on A0 only,

concurrent with communication that updates A1 */

if (!converged(A0,A1))

MPI_Win_post(neighbors, (MPI_MODE_NOCHECK | MPI_MODE_NOPUT), win0);

MPI_Win_complete(win1);

MPI_Win_wait(win1);

}

A process posts the local window associated with win0 before it completes RMA accesses
to the remote windows associated with win1. When the wait(win1) call returns, then all
neighbors of the calling process have posted the windows associated with win0. Conversely,
when the wait(win0) call returns, then all neighbors of the calling process have posted the
windows associated with win1. Therefore, the nocheck option can be used with the calls to
MPI_WIN_START.

Put calls can be used, instead of get calls, if the area of array A0 (resp. A1) used by
the update(A1, A0) (resp. update(A0, A1)) call is disjoint from the area modified by the
RMA communication. On some systems, a put call may be more efficient than a get call,
as it requires information exchange only in one direction.

In the next several examples, for conciseness, the expression

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.8. EXAMPLES 467

z = MPI_Get_accumulate(...)

means to perform an MPI_GET_ACCUMULATE with the result buffer (given by result_addr
in the description of MPI_GET_ACCUMULATE) on the left side of the assignment, in this
case, z. This format is also used with MPI_COMPARE_AND_SWAP.

Example 11.18 The following example implements a naive, non-scalable counting sema-
phore. The example demonstrates the use of MPI_WIN_SYNC to manipulate the public copy
of X, as well as MPI_WIN_FLUSH to complete operations without ending the access epoch
opened with MPI_WIN_LOCK_ALL. To avoid the rules regarding synchronization of the
public and private copies of windows, MPI_ACCUMULATE and MPI_GET_ACCUMULATE
are used to write to or read from the local public copy.

Process A: Process B:

MPI_Win_lock_all MPI_Win_lock_all

window location X

X=2

MPI_Win_sync

MPI_Barrier MPI_Barrier

MPI_Accumulate(X, MPI_SUM, -1) MPI_Accumulate(X, MPI_SUM, -1)

stack variable z stack variable z

do do

z = MPI_Get_accumulate(X, z = MPI_Get_accumulate(X,

MPI_NO_OP, 0) MPI_NO_OP, 0)

MPI_Win_flush(A) MPI_Win_flush(A)

while(z!=0) while(z!=0)

MPI_Win_unlock_all MPI_Win_unlock_all

Example 11.19 Implementing a critical region between two processes (Peterson’s al-
gorithm). Despite their appearance in the following example, MPI_WIN_LOCK_ALL and
MPI_WIN_UNLOCK_ALL are not collective calls, but it is frequently useful to start shared
access epochs to all processes from all other processes in a window. Once the access epochs
are established, accumulate communication operations and flush and sync synchronization
operations can be used to read from or write to the public copy of the window.

Process A: Process B:

window location X window location Y

window location T

MPI_Win_lock_all MPI_Win_lock_all

X=1 Y=1

MPI_Win_sync MPI_Win_sync

MPI_Barrier MPI_Barrier

MPI_Accumulate(T, MPI_REPLACE, 1) MPI_Accumulate(T, MPI_REPLACE, 0)

stack variables t,y stack variable t,x

t=1 t=0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

468 CHAPTER 11. ONE-SIDED COMMUNICATIONS

y=MPI_Get_accumulate(Y, x=MPI_Get_accumulate(X,

MPI_NO_OP, 0) MPI_NO_OP, 0)

while(y==1 && t==1) do while(x==1 && t==0) do

y=MPI_Get_accumulate(Y, x=MPI_Get_accumulate(X,

MPI_NO_OP, 0) MPI_NO_OP, 0)

t=MPI_Get_accumulate(T, t=MPI_Get_accumulate(T,

MPI_NO_OP, 0) MPI_NO_OP, 0)

MPI_Win_flush_all MPI_Win_flush(A)

done done

// critical region // critical region

MPI_Accumulate(X, MPI_REPLACE, 0) MPI_Accumulate(Y, MPI_REPLACE, 0)

MPI_Win_unlock_all MPI_Win_unlock_all

Example 11.20 Implementing a critical region between multiple processes with compare
and swap. The call to MPI_WIN_SYNC is necessary on Process A after local initialization
of A to guarantee the public copy has been updated with the initialization value found in
the private copy. It would also be valid to call MPI_ACCUMULATE with MPI_REPLACE to
directly initialize the public copy. A call to MPI_WIN_FLUSH would be necessary to assure
A in the public copy of Process A had been updated before the barrier.

Process A: Process B...:

MPI_Win_lock_all MPI_Win_lock_all

atomic location A

A=0

MPI_Win_sync

MPI_Barrier MPI_Barrier

stack variable r=1 stack variable r=1

while(r != 0) do while(r != 0) do

r = MPI_Compare_and_swap(A, 0, 1) r = MPI_Compare_and_swap(A, 0, 1)

MPI_Win_flush(A) MPI_Win_flush(A)

done done

// critical region // critical region

r = MPI_Compare_and_swap(A, 1, 0) r = MPI_Compare_and_swap(A, 1, 0)

MPI_Win_unlock_all MPI_Win_unlock_all

Example 11.21 The following example shows how request-based operations can be used
to overlap communication with computation. Each process fetches, processes, and writes
the result for NSTEPS chunks of data. Instead of a single buffer, M local buffers are used to
allow up to M communication operations to overlap with computation.

int i, j;

MPI_Win win;

MPI_Request put_req[M] = { MPI_REQUEST_NULL };

MPI_Request get_req;

double *baseptr;

double data[M][N];

MPI_Win_allocate(NSTEPS*N*sizeof(double), sizeof(double), MPI_INFO_NULL,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.8. EXAMPLES 469

MPI_COMM_WORLD, &baseptr, &win);

MPI_Win_lock_all(0, win);

for (i = 0; i < NSTEPS; i++) {

if (i<M)

j=i;

else

MPI_Waitany(M, put_req, &j, MPI_STATUS_IGNORE);

MPI_Rget(data[j], N, MPI_DOUBLE, target, i*N, N, MPI_DOUBLE, win,

&get_req);

MPI_Wait(&get_req,MPI_STATUS_IGNORE);

compute(i, data[j], ...);

MPI_Rput(data[j], N, MPI_DOUBLE, target, i*N, N, MPI_DOUBLE, win,

&put_req[j]);

}

MPI_Waitall(M, put_req, MPI_STATUSES_IGNORE);

MPI_Win_unlock_all(win);

Example 11.22 The following example constructs a distributed shared linked list using
dynamic windows. Initially process 0 creates the head of the list, attaches it to the window,
and broadcasts the pointer to all processes. All processes then concurrently append N new
elements to the list. When a process attempts to attach its element to the tail of the
list it may discover that its tail pointer is stale and it must chase ahead to the new tail
before the element can be attached. This example requires some modification to work in
an environment where the length of a pointer is different on different processes.

...

#define NUM_ELEMS 10

/* Linked list pointer */

typedef struct {

MPI_Aint disp;

int rank;

} llist_ptr_t;

/* Linked list element */

typedef struct {

llist_ptr_t next;

int value;

} llist_elem_t;

const llist_ptr_t nil = { (MPI_Aint) MPI_BOTTOM, -1 };

/* List of locally allocated list elements. */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

470 CHAPTER 11. ONE-SIDED COMMUNICATIONS

static llist_elem_t **my_elems = NULL;

static int my_elems_size = 0;

static int my_elems_count = 0;

/* Allocate a new shared linked list element */

MPI_Aint alloc_elem(int value, MPI_Win win) {

MPI_Aint disp;

llist_elem_t *elem_ptr;

/* Allocate the new element and register it with the window */

MPI_Alloc_mem(sizeof(llist_elem_t), MPI_INFO_NULL, &elem_ptr);

elem_ptr->value = value;

elem_ptr->next = nil;

MPI_Win_attach(win, elem_ptr, sizeof(llist_elem_t));

/* Add the element to the list of local elements so we can free

it later. */

if (my_elems_size == my_elems_count) {

my_elems_size += 100;

my_elems = realloc(my_elems, my_elems_size*sizeof(void*));

}

my_elems[my_elems_count] = elem_ptr;

my_elems_count++;

MPI_Get_address(elem_ptr, &disp);

return disp;

}

int main(int argc, char *argv[]) {

int procid, nproc, i;

MPI_Win llist_win;

llist_ptr_t head_ptr, tail_ptr;

MPI_Init(&argc, &argv);

MPI_Comm_rank(MPI_COMM_WORLD, &procid);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

MPI_Win_create_dynamic(MPI_INFO_NULL, MPI_COMM_WORLD, &llist_win);

/* Process 0 creates the head node */

if (procid == 0)

head_ptr.disp = alloc_elem(-1, llist_win);

/* Broadcast the head pointer to everyone */

head_ptr.rank = 0;

MPI_Bcast(&head_ptr.disp, 1, MPI_AINT, 0, MPI_COMM_WORLD);

tail_ptr = head_ptr;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

11.8. EXAMPLES 471

/* Lock the window for shared access to all targets */

MPI_Win_lock_all(0, llist_win);

/* All processes concurrently append NUM_ELEMS elements to the list */

for (i = 0; i < NUM_ELEMS; i++) {

llist_ptr_t new_elem_ptr;

int success;

/* Create a new list element and attach it to the window */

new_elem_ptr.rank = procid;

new_elem_ptr.disp = alloc_elem(procid, llist_win);

/* Append the new node to the list. This might take multiple

attempts if others have already appended and our tail pointer

is stale. */

do {

llist_ptr_t next_tail_ptr = nil;

MPI_Compare_and_swap((void*) &new_elem_ptr.rank, (void*) &nil.rank,

(void*)&next_tail_ptr.rank, MPI_INT, tail_ptr.rank,

(MPI_Aint) &(((llist_elem_t*)tail_ptr.disp)->next.rank),

llist_win);

MPI_Win_flush(tail_ptr.rank, llist_win);

success = (next_tail_ptr.rank == nil.rank);

if (success) {

MPI_Accumulate(&new_elem_ptr.disp, 1, MPI_AINT, tail_ptr.rank,

(MPI_Aint) &(((llist_elem_t*)tail_ptr.disp)->next.disp), 1,

MPI_AINT, MPI_REPLACE, llist_win);

MPI_Win_flush(tail_ptr.rank, llist_win);

tail_ptr = new_elem_ptr;

} else {

/* Tail pointer is stale, fetch the displacement. May take

multiple tries if it is being updated. */

do {

MPI_Get_accumulate(NULL, 0, MPI_AINT, &next_tail_ptr.disp,

1, MPI_AINT, tail_ptr.rank,

(MPI_Aint) &(((llist_elem_t*)tail_ptr.disp)->next.disp),

1, MPI_AINT, MPI_NO_OP, llist_win);

MPI_Win_flush(tail_ptr.rank, llist_win);

} while (next_tail_ptr.disp == nil.disp);

tail_ptr = next_tail_ptr;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

472 CHAPTER 11. ONE-SIDED COMMUNICATIONS

} while (!success);

}

MPI_Win_unlock_all(llist_win);

MPI_Barrier(MPI_COMM_WORLD);

/* Free all the elements in the list */

for (; my_elems_count > 0; my_elems_count--) {

MPI_Win_detach(llist_win,my_elems[my_elems_count-1]);

MPI_Free_mem(my_elems[my_elems_count-1]);

}

MPI_Win_free(&llist_win);

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 12

External Interfaces

12.1 Introduction

This chapter begins with calls used to create generalized requests, which allow users to create
new nonblocking operations with an interface similar to what is present in MPI. These calls
can be used to layer new functionality on top of MPI. Next, Section 12.3 deals with setting
the information found in status. This functionality is needed for generalized requests.

The chapter continues, in Section 12.4, with a discussion of how threads are to be
handled in MPI. Although thread compliance is not required, the standard specifies how
threads are to work if they are provided.

12.2 Generalized Requests

The goal of generalized requests is to allow users to define new nonblocking operations.
Such an outstanding nonblocking operation is represented by a (generalized) request. A
fundamental property of nonblocking operations is that progress toward the completion of
this operation occurs asynchronously, i.e., concurrently with normal program execution.
Typically, this requires execution of code concurrently with the execution of the user code,
e.g., in a separate thread or in a signal handler. Operating systems provide a variety of
mechanisms in support of concurrent execution. MPI does not attempt to standardize or to
replace these mechanisms: it is assumed programmers who wish to define new asynchronous
operations will use the mechanisms provided by the underlying operating system. Thus,
the calls in this section only provide a means for defining the effect of MPI calls such as
MPI_WAIT or MPI_CANCEL when they apply to generalized requests, and for signaling to
MPI the completion of a generalized operation.

Rationale. It is tempting to also define an MPI standard mechanism for achieving
concurrent execution of user-defined nonblocking operations. However, it is difficult
to define such a mechanism without consideration of the specific mechanisms used in
the operating system. The Forum feels that concurrency mechanisms are a proper
part of the underlying operating system and should not be standardized by MPI; the
MPI standard should only deal with the interaction of such mechanisms with MPI.
(End of rationale.)

For a regular request, the operation associated with the request is performed by
the MPI implementation, and the operation completes without intervention by the ap-

473

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

474 CHAPTER 12. EXTERNAL INTERFACES

plication. For a generalized request, the operation associated with the request is per-
formed by the application; therefore, the application must notify MPI through a call to
MPI_GREQUEST_COMPLETE when the operation completes. MPI maintains the “comple-
tion” status of generalized requests. Any other request state has to be maintained by the
user.

A new generalized request is started with

MPI_GREQUEST_START(query_fn, free_fn, cancel_fn, extra_state, request)

IN query_fn callback function invoked when request status is queried

(function)

IN free_fn callback function invoked when request is freed (func-

tion)

IN cancel_fn callback function invoked when request is cancelled

(function)

IN extra_state extra state

OUT request generalized request (handle)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn,

MPI_Grequest_cancel_function *cancel_fn, void *extra_state,

MPI_Request *request)

MPI_Grequest_start(query_fn, free_fn, cancel_fn, extra_state, request,

ierror)

PROCEDURE(MPI_Grequest_query_function) :: query_fn

PROCEDURE(MPI_Grequest_free_function) :: free_fn

PROCEDURE(MPI_Grequest_cancel_function) :: cancel_fn

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

Advice to users. Note that a generalized request is of the same type as regular
requests, in C and Fortran. (End of advice to users.)

The call starts a generalized request and returns a handle to it in request.
The syntax and meaning of the callback functions are listed below. All callback func-

tions are passed the extra_state argument that was associated with the request by the
starting call MPI_GREQUEST_START; extra_state can be used to maintain user-defined
state for the request.

In C, the query function is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.2. GENERALIZED REQUESTS 475

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);

in Fortran with the mpi_f08 module
ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_query_function(extra_state, status, ierror)

TYPE(MPI_Status) :: status

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

INTEGER :: ierror

in Fortran with the mpi module and mpif.h

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The query_fn function computes the status that should be returned for the generalized
request. The status also includes information about successful/unsuccessful cancellation of
the request (result to be returned by MPI_TEST_CANCELLED).

The query_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that
completed the generalized request associated with this callback. The callback function is
also invoked by calls to MPI_REQUEST_GET_STATUS, if the request is complete when
the call occurs. In both cases, the callback is passed a reference to the corresponding
status variable passed by the user to the MPI call; the status set by the callback function
is returned by the MPI call. If the user provided MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE to the MPI function that causes query_fn to be called, then MPI
will pass a valid status object to query_fn, and this status will be ignored upon return of the
callback function. Note that query_fn is invoked only after MPI_GREQUEST_COMPLETE
is called on the request; it may be invoked several times for the same generalized request,
e.g., if the user calls MPI_REQUEST_GET_STATUS several times for this request. Note also
that a call to MPI_{WAIT|TEST}{SOME|ALL} may cause multiple invocations of query_fn
callback functions, one for each generalized request that is completed by the MPI call. The
order of these invocations is not specified by MPI.

In C, the free function is
typedef int MPI_Grequest_free_function(void *extra_state);

in Fortran with the mpi_f08 module
ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_free_function(extra_state, ierror)

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

INTEGER :: ierror

in Fortran with the mpi module and mpif.h

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The free_fn function is invoked to clean up user-allocated resources when the generalized
request is freed.

The free_fn callback is invoked by the MPI_{WAIT|TEST}{ANY|SOME|ALL} call that
completed the generalized request associated with this callback. free_fn is invoked after

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

476 CHAPTER 12. EXTERNAL INTERFACES

the call to query_fn for the same request. However, if the MPI call completed multiple
generalized requests, the order in which free_fn callback functions are invoked is not specified
by MPI.

The free_fn callback is also invoked for generalized requests that are freed by a call
to MPI_REQUEST_FREE (no call to MPI_{WAIT|TEST}{ANY|SOME|ALL} will occur for
such a request). In this case, the callback function will be called either in the MPI call
MPI_REQUEST_FREE(request), or in the MPI call MPI_GREQUEST_COMPLETE(request),
whichever happens last, i.e., in this case the actual freeing code is executed as soon as both
calls MPI_REQUEST_FREE and MPI_GREQUEST_COMPLETE have occurred. The request
is not deallocated until after free_fn completes. Note that free_fn will be invoked only once
per request by a correct program.

Advice to users. Calling MPI_REQUEST_FREE(request) will cause the request handle
to be set to MPI_REQUEST_NULL. This handle to the generalized request is no longer
valid. However, user copies of this handle are valid until after free_fn completes since
MPI does not deallocate the object until then. Since free_fn is not called until after
MPI_GREQUEST_COMPLETE, the user copy of the handle can be used to make this
call. Users should note that MPI will deallocate the object after free_fn executes. At
this point, user copies of the request handle no longer point to a valid request. MPI will
not set user copies to MPI_REQUEST_NULL in this case, so it is up to the user to avoid
accessing this stale handle. This is a special case in which MPI defers deallocating the
object until a later time that is known by the user. (End of advice to users.)

In C, the cancel function is
typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

in Fortran with the mpi_f08 module
ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_cancel_function(extra_state, complete, ierror)

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

LOGICAL :: complete

INTEGER :: ierror

in Fortran with the mpi module and mpif.h

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

The cancel_fn function is invoked to start the cancelation of a generalized request.
It is called by MPI_CANCEL(request). MPI passes complete=true to the callback function
if MPI_GREQUEST_COMPLETE was already called on the request, and
complete=false otherwise.

All callback functions return an error code. The code is passed back and dealt with as
appropriate for the error code by the MPI function that invoked the callback function. For
example, if error codes are returned then the error code returned by the callback function
will be returned by the MPI function that invoked the callback function. In the case of
an MPI_{WAIT|TEST}{ANY} call that invokes both query_fn and free_fn, the MPI call will
return the error code returned by the last callback, namely free_fn. If one or more of the
requests in a call to MPI_{WAIT|TEST}{SOME|ALL} failed, then the MPI call will return

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.2. GENERALIZED REQUESTS 477

MPI_ERR_IN_STATUS. In such a case, if the MPI call was passed an array of statuses, then
MPI will return in each of the statuses that correspond to a completed generalized request
the error code returned by the corresponding invocation of its free_fn callback function.
However, if the MPI function was passed MPI_STATUSES_IGNORE, then the individual error
codes returned by each callback functions will be lost.

Advice to users. query_fn must not set the error field of status since query_fn may be
called by MPI_WAIT or MPI_TEST, in which case the error field of status should not
change. The MPI library knows the “context” in which query_fn is invoked and can
decide correctly when to put the returned error code in the error field of status. (End
of advice to users.)

MPI_GREQUEST_COMPLETE(request)

INOUT request generalized request (handle)

int MPI_Grequest_complete(MPI_Request request)

MPI_Grequest_complete(request, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

The call informs MPI that the operations represented by the generalized request request
are complete (see definitions in Section 2.4). A call to MPI_WAIT(request, status) will
return and a call to MPI_TEST(request, flag, status) will return flag=true only after a call
to MPI_GREQUEST_COMPLETE has declared that these operations are complete.

MPI imposes no restrictions on the code executed by the callback functions. However,
new nonblocking operations should be defined so that the general semantic rules about MPI
calls such as MPI_TEST, MPI_REQUEST_FREE, or MPI_CANCEL still hold. For example,
these calls are supposed to be local and nonblocking. Therefore, the callback functions
query_fn, free_fn, or cancel_fn should invoke blocking MPI communication calls only if the
context is such that these calls are guaranteed to return in finite time. Once MPI_CANCEL
is invoked, the cancelled operation should complete in finite time, irrespective of the state of
other processes (the operation has acquired “local” semantics). It should either succeed, or
fail without side-effects. The user should guarantee these same properties for newly defined
operations.

Advice to implementors. A call to MPI_GREQUEST_COMPLETE may unblock a
blocked user process/thread. The MPI library should ensure that the blocked user
computation will resume. (End of advice to implementors.)

12.2.1 Examples

Example 12.1 This example shows the code for a user-defined reduce operation on an
int using a binary tree: each non-root node receives two messages, sums them, and sends
them up. We assume that no status is returned and that the operation cannot be cancelled.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

478 CHAPTER 12. EXTERNAL INTERFACES

typedef struct {

MPI_Comm comm;

int tag;

int root;

int valin;

int *valout;

MPI_Request request;

} ARGS;

int myreduce(MPI_Comm comm, int tag, int root,

int valin, int *valout, MPI_Request *request)

{

ARGS *args;

pthread_t thread;

/* start request */

MPI_Grequest_start(query_fn, free_fn, cancel_fn, NULL, request);

args = (ARGS*)malloc(sizeof(ARGS));

args->comm = comm;

args->tag = tag;

args->root = root;

args->valin = valin;

args->valout = valout;

args->request = *request;

/* spawn thread to handle request */

/* The availability of the pthread_create call is system dependent */

pthread_create(&thread, NULL, reduce_thread, args);

return MPI_SUCCESS;

}

/* thread code */

void* reduce_thread(void *ptr)

{

int lchild, rchild, parent, lval, rval, val;

MPI_Request req[2];

ARGS *args;

args = (ARGS*)ptr;

/* compute left and right child and parent in tree; set

to MPI_PROC_NULL if does not exist */

/* code not shown */

...

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.2. GENERALIZED REQUESTS 479

MPI_Irecv(&lval, 1, MPI_INT, lchild, args->tag, args->comm, &req[0]);

MPI_Irecv(&rval, 1, MPI_INT, rchild, args->tag, args->comm, &req[1]);

MPI_Waitall(2, req, MPI_STATUSES_IGNORE);

val = lval + args->valin + rval;

MPI_Send(&val, 1, MPI_INT, parent, args->tag, args->comm);

if (parent == MPI_PROC_NULL) *(args->valout) = val;

MPI_Grequest_complete((args->request));

free(ptr);

return(NULL);

}

int query_fn(void *extra_state, MPI_Status *status)

{

/* always send just one int */

MPI_Status_set_elements(status, MPI_INT, 1);

/* can never cancel so always true */

MPI_Status_set_cancelled(status, 0);

/* choose not to return a value for this */

status->MPI_SOURCE = MPI_UNDEFINED;

/* tag has no meaning for this generalized request */

status->MPI_TAG = MPI_UNDEFINED;

/* this generalized request never fails */

return MPI_SUCCESS;

}

int free_fn(void *extra_state)

{

/* this generalized request does not need to do any freeing */

/* as a result it never fails here */

return MPI_SUCCESS;

}

int cancel_fn(void *extra_state, int complete)

{

/* This generalized request does not support cancelling.

Abort if not already done. If done then treat as if cancel failed.*/

if (!complete) {

fprintf(stderr,

"Cannot cancel generalized request - aborting program\n");

MPI_Abort(MPI_COMM_WORLD, 99);

}

return MPI_SUCCESS;

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

480 CHAPTER 12. EXTERNAL INTERFACES

12.3 Associating Information with Status

MPI supports several different types of requests besides those for point-to-point operations.
These range from MPI calls for I/O to generalized requests. It is desirable to allow these
calls to use the same request mechanism, which allows one to wait or test on different
types of requests. However, MPI_{TEST|WAIT}{ANY|SOME|ALL} returns a status with
information about the request. With the generalization of requests, one needs to define
what information will be returned in the status object.

Each MPI call fills in the appropriate fields in the status object. Any unused fields will
have undefined values. A call to MPI_{TEST|WAIT}{ANY|SOME|ALL} can modify any of
the fields in the status object. Specifically, it can modify fields that are undefined. The
fields with meaningful values for a given request are defined in the sections with the new
request.

Generalized requests raise additional considerations. Here, the user provides the func-
tions to deal with the request. Unlike other MPI calls, the user needs to provide the
information to be returned in the status. The status argument is provided directly to the
callback function where the status needs to be set. Users can directly set the values in 3 of
the 5 status values. The count and cancel fields are opaque. To overcome this, these calls
are provided:

MPI_STATUS_SET_ELEMENTS(status, datatype, count)

INOUT status status with which to associate count (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,

int count)

MPI_Status_set_elements(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_STATUS_SET_ELEMENTS_X(status, datatype, count)

INOUT status status with which to associate count (Status)

IN datatype datatype associated with count (handle)

IN count number of elements to associate with status (integer)

int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,

MPI_Count count)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.3. ASSOCIATING INFORMATION WITH STATUS 481

MPI_Status_set_elements_x(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(IN) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_SET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR

INTEGER (KIND=MPI_COUNT_KIND) COUNT

These functions modify the opaque part of status so that a call to
MPI_GET_ELEMENTS or MPI_GET_ELEMENTS_X will return count. MPI_GET_COUNT
will return a compatible value.

Rationale. The number of elements is set instead of the count because the former
can deal with a nonintegral number of datatypes. (End of rationale.)

A subsequent call to MPI_GET_COUNT(status, datatype, count),
MPI_GET_ELEMENTS(status, datatype, count), or
MPI_GET_ELEMENTS_X(status, datatype, count) must use a datatype argument that has
the same type signature as the datatype argument that was used in the call to
MPI_STATUS_SET_ELEMENTS or MPI_STATUS_SET_ELEMENTS_X.

Rationale. The requirement of matching type signatures for these calls is similar
to the restriction that holds when count is set by a receive operation: in that case,
the calls to MPI_GET_COUNT, MPI_GET_ELEMENTS, and MPI_GET_ELEMENTS_X
must use a datatype with the same signature as the datatype used in the receive call.
(End of rationale.)

MPI_STATUS_SET_CANCELLED(status, flag)

INOUT status status with which to associate cancel flag (Status)

IN flag if true indicates request was cancelled (logical)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

MPI_Status_set_cancelled(status, flag, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

If flag is set to true then a subsequent call to MPI_TEST_CANCELLED(status, flag) will
also return flag = true, otherwise it will return false.

Advice to users. Users are advised not to reuse the status fields for values other
than those for which they were intended. Doing so may lead to unexpected results

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

482 CHAPTER 12. EXTERNAL INTERFACES

when using the status object. For example, calling MPI_GET_ELEMENTS may cause
an error if the value is out of range or it may be impossible to detect such an error.
The extra_state argument provided with a generalized request can be used to return
information that does not logically belong in status. Furthermore, modifying the
values in a status set internally by MPI, e.g., MPI_RECV, may lead to unpredictable
results and is strongly discouraged. (End of advice to users.)

12.4 MPI and Threads

This section specifies the interaction between MPI calls and threads. The section lists min-
imal requirements for thread compliant MPI implementations and defines functions that
can be used for initializing the thread environment. MPI may be implemented in environ-
ments where threads are not supported or perform poorly. Therefore, MPI implementations
are not required to be thread compliant as defined in this section. MPI_INITIALIZED,
MPI_FINALIZED, MPI_QUERY_THREAD, MPI_IS_THREAD_MAIN, MPI_GET_VERSION
and MPI_GET_LIBRARY_VERSION are exceptions to this rule and must always be thread-
safe. When a thread is executing one of these routines, if another concurrently running
thread also makes an MPI call, the outcome will be as if the calls executed in some order.

This section generally assumes a thread package similar to POSIX threads [39], but the
syntax and semantics of thread calls are not specified here — these are beyond the scope
of this document.

12.4.1 General

In a thread-compliant implementation, an MPI process is a process that may be multi-
threaded. Each thread can issue MPI calls; however, threads are not separately addressable:
a rank in a send or receive call identifies a process, not a thread. A message sent to a process
can be received by any thread in this process.

Rationale. This model corresponds to the POSIX model of interprocess communi-
cation: the fact that a process is multi-threaded, rather than single-threaded, does
not affect the external interface of this process. MPI implementations in which MPI
‘processes’ are POSIX threads inside a single POSIX process are not thread-compliant
by this definition (indeed, their “processes” are single-threaded). (End of rationale.)

Advice to users. It is the user’s responsibility to prevent races when threads within
the same application post conflicting communication calls. The user can make sure
that two threads in the same process will not issue conflicting communication calls by
using distinct communicators at each thread. (End of advice to users.)

The two main requirements for a thread-compliant implementation are listed below.

1. All MPI calls are thread-safe, i.e., two concurrently running threads may make MPI
calls and the outcome will be as if the calls executed in some order, even if their
execution is interleaved.

2. Blocking MPI calls will block the calling thread only, allowing another thread to
execute, if available. The calling thread will be blocked until the event on which it
is waiting occurs. Once the blocked communication is enabled and can proceed, then

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.4. MPI AND THREADS 483

the call will complete and the thread will be marked runnable, within a finite time.
A blocked thread will not prevent progress of other runnable threads on the same
process, and will not prevent them from executing MPI calls.

Example 12.2 Process 0 consists of two threads. The first thread executes a blocking
send call MPI_Send(buff1, count, type, 0, 0, comm), whereas the second thread executes
a blocking receive call MPI_Recv(buff2, count, type, 0, 0, comm, &status), i.e., the first
thread sends a message that is received by the second thread. This communication should
always succeed. According to the first requirement, the execution will correspond to some
interleaving of the two calls. According to the second requirement, a call can only block
the calling thread and cannot prevent progress of the other thread. If the send call went
ahead of the receive call, then the sending thread may block, but this will not prevent
the receiving thread from executing. Thus, the receive call will occur. Once both calls
occur, the communication is enabled and both calls will complete. On the other hand, a
single-threaded process that posts a send, followed by a matching receive, may deadlock.
The progress requirement for multithreaded implementations is stronger, as a blocked call
cannot prevent progress in other threads.

Advice to implementors. MPI calls can be made thread-safe by executing only one at
a time, e.g., by protecting MPI code with one process-global lock. However, blocked
operations cannot hold the lock, as this would prevent progress of other threads in
the process. The lock is held only for the duration of an atomic, locally-completing
suboperation such as posting a send or completing a send, and is released in between.
Finer locks can provide more concurrency, at the expense of higher locking overheads.
Concurrency can also be achieved by having some of the MPI protocol executed by
separate server threads. (End of advice to implementors.)

12.4.2 Clarifications

Initialization and Completion The call to MPI_FINALIZE should occur on the same thread
that initialized MPI. We call this thread the main thread . The call should occur only after
all process threads have completed their MPI calls, and have no pending communications
or I/O operations.

Rationale. This constraint simplifies implementation. (End of rationale.)

Multiple threads completing the same request. A program in which two threads block, wait-
ing on the same request, is erroneous. Similarly, the same request cannot appear in the
array of requests of two concurrent MPI_{WAIT|TEST}{ANY|SOME|ALL} calls. In MPI, a
request can only be completed once. Any combination of wait or test that violates this rule
is erroneous.

Rationale. This restriction is consistent with the view that a multithreaded execution
corresponds to an interleaving of the MPI calls. In a single threaded implementation,
once a wait is posted on a request the request handle will be nullified before it is
possible to post a second wait on the same handle. With threads, an
MPI_WAIT{ANY|SOME|ALL} may be blocked without having nullified its request(s)
so it becomes the user’s responsibility to avoid using the same request in an MPI_WAIT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

484 CHAPTER 12. EXTERNAL INTERFACES

on another thread. This constraint also simplifies implementation, as only one thread
will be blocked on any communication or I/O event. (End of rationale.)

Probe A receive call that uses source and tag values returned by a preceding call to
MPI_PROBE or MPI_IPROBE will receive the message matched by the probe call only
if there was no other matching receive after the probe and before that receive. In a multi-
threaded environment, it is up to the user to enforce this condition using suitable mutual
exclusion logic. This can be enforced by making sure that each communicator is used by
only one thread on each process. Alternatively, MPI_MPROBE or MPI_IMPROBE can be
used.

Collective calls Matching of collective calls on a communicator, window, or file handle is
done according to the order in which the calls are issued at each process. If concurrent
threads issue such calls on the same communicator, window or file handle, it is up to the
user to make sure the calls are correctly ordered, using interthread synchronization.

Advice to users. With three concurrent threads in each MPI process of a communica-
tor comm, it is allowed that thread A in each MPI process calls a collective operation
on comm, thread B calls a file operation on an existing filehandle that was formerly
opened on comm, and thread C invokes one-sided operations on an existing window
handle that was also formerly created on comm. (End of advice to users.)

Rationale. As specified in MPI_FILE_OPEN and MPI_WIN_CREATE, a file handle
and a window handle inherit only the group of processes of the underlying communi-
cator, but not the communicator itself. Accesses to communicators, window handles
and file handles cannot affect one another. (End of rationale.)

Advice to implementors. If the implementation of file or window operations internally
uses MPI communication then a duplicated communicator may be cached on the file
or window object. (End of advice to implementors.)

Exception handlers An exception handler does not necessarily execute in the context of the
thread that made the exception-raising MPI call; the exception handler may be executed
by a thread that is distinct from the thread that will return the error code.

Rationale. The MPI implementation may be multithreaded, so that part of the
communication protocol may execute on a thread that is distinct from the thread
that made the MPI call. The design allows the exception handler to be executed on
the thread where the exception occurred. (End of rationale.)

Interaction with signals and cancellations The outcome is undefined if a thread that executes
an MPI call is cancelled (by another thread), or if a thread catches a signal while executing
an MPI call. However, a thread of an MPI process may terminate, and may catch signals or
be cancelled by another thread when not executing MPI calls.

Rationale. Few C library functions are signal safe, and many have cancellation points
— points at which the thread executing them may be cancelled. The above restriction
simplifies implementation (no need for the MPI library to be “async-cancel-safe” or
“async-signal-safe”). (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.4. MPI AND THREADS 485

Advice to users. Users can catch signals in separate, non-MPI threads (e.g., by
masking signals on MPI calling threads, and unmasking them in one or more non-MPI
threads). A good programming practice is to have a distinct thread blocked in a
call to sigwait for each user expected signal that may occur. Users must not catch
signals used by the MPI implementation; as each MPI implementation is required to
document the signals used internally, users can avoid these signals. (End of advice to
users.)

Advice to implementors. The MPI library should not invoke library calls that are
not thread safe, if multiple threads execute. (End of advice to implementors.)

12.4.3 Initialization

The following function may be used to initialize MPI, and to initialize the MPI thread
environment, instead of MPI_INIT.

MPI_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

MPI_Init_thread(required, provided, ierror)

INTEGER, INTENT(IN) :: required

INTEGER, INTENT(OUT) :: provided

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

Advice to users. In C, the passing of argc and argv is optional, as with MPI_INIT as
discussed in Section 8.7. In C, null pointers may be passed in their place. (End of
advice to users.)

This call initializes MPI in the same way that a call to MPI_INIT would. In addition,
it initializes the thread environment. The argument required is used to specify the desired
level of thread support. The possible values are listed in increasing order of thread support.

MPI_THREAD_SINGLE Only one thread will execute.

MPI_THREAD_FUNNELED The process may be multi-threaded, but the application must
ensure that only the main thread makes MPI calls (for the definition of main thread,
see MPI_IS_THREAD_MAIN on page 487).

MPI_THREAD_SERIALIZED The process may be multi-threaded, and multiple threads may
make MPI calls, but only one at a time: MPI calls are not made concurrently from
two distinct threads (all MPI calls are “serialized”).

MPI_THREAD_MULTIPLE Multiple threads may call MPI, with no restrictions.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

486 CHAPTER 12. EXTERNAL INTERFACES

These values are monotonic; i.e., MPI_THREAD_SINGLE < MPI_THREAD_FUNNELED <
MPI_THREAD_SERIALIZED < MPI_THREAD_MULTIPLE.

Different processes in MPI_COMM_WORLD may require different levels of thread sup-
port.

The call returns in provided information about the actual level of thread support that
will be provided by MPI. It can be one of the four values listed above.

The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend
on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satisfied, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI_THREAD_MULTIPLE. Such an implementation may always return provided
= MPI_THREAD_MULTIPLE, irrespective of the value of required.

An MPI library that is not thread compliant must always return
provided=MPI_THREAD_SINGLE, even if MPI_INIT_THREAD is called on a multithreaded
process. The library should also return correct values for the MPI calls that can be executed
before initialization, even if multiple threads have been spawned.

Rationale. Such code is erroneous, but if the MPI initialization is performed by a
library, the error cannot be detected until MPI_INIT_THREAD is called. The require-
ments in the previous paragraph ensure that the error can be properly detected. (End
of rationale.)

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required
= MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is
available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, irre-
spective of the value of required; a call to MPI_INIT will also initialize the MPI thread support
level to MPI_THREAD_MULTIPLE. Suppose, instead, that an MPI program has been started
so that all four levels of thread support are available. Then, a call to MPI_INIT_THREAD
will return provided = required; alternatively, a call to MPI_INIT will initialize the MPI
thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conflicts with user
threads. Also, the model of one communication thread, multiple computation threads
fits many applications well, e.g., if the process code is a sequential Fortran/C program
with MPI calls that has been parallelized by a compiler for execution on an SMP node,
in a cluster of SMPs, then the process computation is multi-threaded, but MPI calls
will likely execute on a single thread.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12.4. MPI AND THREADS 487

The design accommodates a static specification of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library
should not invoke C or Fortran library calls that are not thread safe, e.g., in an
environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use different MPI libraries for different levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is specified at link time.

Note that required need not be the same value on all processes of
MPI_COMM_WORLD. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_Query_thread(provided, ierror)

INTEGER, INTENT(OUT) :: provided

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

The call returns in provided the current level of thread support, which will be the value
returned in provided by MPI_INIT_THREAD, if MPI was initialized by a call to
MPI_INIT_THREAD().

MPI_IS_THREAD_MAIN(flag)

OUT flag true if calling thread is main thread, false otherwise

(logical)

int MPI_Is_thread_main(int *flag)

MPI_Is_thread_main(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

488 CHAPTER 12. EXTERNAL INTERFACES

This function can be called by a thread to determine if it is the main thread (the thread
that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not
support threads, so that portable code that contains invocations to these functions
can link correctly. MPI_INIT continues to be supported so as to provide compatibility
with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no MPI
call other than MPI_GET_VERSION, MPI_INITIALIZED, or MPI_FINALIZED should
be executed by these threads, until MPI_INIT_THREAD is invoked by one thread
(which, thereby, becomes the main thread). In particular, it is possible to enter the
MPI execution with a multi-threaded process.

The level of thread support provided is a global property of the MPI process that can
be specified only once, when MPI is initialized on that process (or before). Portable
third party libraries have to be written so as to accommodate any provided level of
thread support. Otherwise, their usage will be restricted to specific level(s) of thread
support. If such a library can run only with specific level(s) of thread support, e.g.,
only with MPI_THREAD_MULTIPLE, then MPI_QUERY_THREAD can be used to check
whether the user initialized MPI to the correct level of thread support and, if not,
raise an exception. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 13

I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [47], collective
buffering [7, 15, 48, 52, 58], and disk-directed I/O [43]) can only be implemented if the par-
allel I/O system provides a high-level interface supporting partitioning of file data among
processes and a collective interface supporting complete transfers of global data structures
between process memories and files. In addition, further efficiencies can be gained via sup-
port for asynchronous I/O, strided accesses, and control over physical file layout on storage
devices (disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a
shared file (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of predefined
access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A file is opened collectively by a
group of processes. All collective I/O calls on a file are collective over this group.

displacement A file displacement is an absolute byte position relative to the beginning of
a file. The displacement defines the location where a view begins. Note that a “file
displacement” is distinct from a “typemap displacement.”

etype An etype (elementary datatype) is the unit of data access and positioning. It can
be any MPI predefined or derived datatype. Derived etypes can be constructed using
any of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are non-negative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. Offsets are expressed
as a count of etypes; file pointers point to the beginning of etypes. Depending on
context, the term “etype” is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.

489

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

490 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be non-negative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).

process 0 filetype

...

etype

process 1 filetype

process 2 filetype

displacement

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���

���
���
���

tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2 is
the position of the eighth etype in the file after the displacement. An “explicit offset”
is an offset that is used as an argument in explicit data access routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 491

file size and end of file The size of an MPI file is measured in bytes from the beginning
of the file. A newly created file has a size of zero bytes. Using the size as an absolute
displacement gives the position of the byte immediately following the last byte in the
file. For any given view, the end of file is the offset of the first etype accessible in the
current view starting after the last byte in the file.

file pointer A file pointer is an implicit offset maintained by MPI. “Individual file pointers”
are file pointers that are local to each process that opened the file. A “shared file
pointer” is a file pointer that is shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by
MPI_FILE_CLOSE. All operations on an open file reference the file through the file
handle.

13.2 File Manipulation

13.2.1 Opening a File

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

int MPI_File_open(MPI_Comm comm, const char *filename, int amode,

MPI_Info info, MPI_File *fh)

MPI_File_open(comm, filename, amode, info, fh, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=*), INTENT(IN) :: filename

INTEGER, INTENT(IN) :: amode

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_File), INTENT(OUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in
the comm communicator group. MPI_FILE_OPEN is a collective routine: all processes must
provide the same value for amode, and all processes must provide filenames that reference the
same file. (Values for info may vary.) comm must be an intracommunicator; it is erroneous to
pass an intercommunicator to MPI_FILE_OPEN. Errors in MPI_FILE_OPEN are raised using
the default file error handler (see Section 13.9). A process can open a file independently of

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

492 CHAPTER 13. I/O

other processes by using the MPI_COMM_SELF communicator. The file handle returned, fh,
can be subsequently used to access the file until the file is closed using MPI_FILE_CLOSE.
Before calling MPI_FINALIZE, the user is required to close (via MPI_FILE_CLOSE) all files
that were opened with MPI_FILE_OPEN. Note that the communicator comm is unaffected
by MPI_FILE_OPEN and continues to be usable in all MPI routines (e.g., MPI_SEND).
Furthermore, the use of comm will not interfere with I/O behavior.

The format for specifying the file name in the filename argument is implementation
dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a
string or strings specifying additional information about the file. Examples include
the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of
machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET). (End
of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be
identical from all processes of all applications. For example, “/tmp/foo” may denote
different files on different processes, or a single file may have many names, dependent
on process location. The user is responsible for ensuring that a single file is referenced
by the filename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
files are linear byte streams in the native representation.) The file view can be changed via
the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the
following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.

Advice to users. C users can use bit vector OR (|) to combine these constants; Fortran
90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (nonportably)
bit vector IOR on systems that support it. Alternatively, Fortran users can portably
use integer addition to OR the constants (each constant should appear at most once
in the addition.). (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 493

Advice to implementors. The values of these constants must be defined such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)

The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY,
MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counter-
parts [39]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY,
must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in
conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL

together with MPI_MODE_RDWR.
The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to

performing an MPI_FILE_DELETE) when the file is closed.
The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by

eliminating the overhead of file locking. It is erroneous to open a file in this mode unless
the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both
inside and outside the MPI environment. In particular, one needs to be aware of
potential external events which may open files (e.g., automated backup facilities).
When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that
no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to
some sequential devices (tapes and network streams). It is erroneous to attempt nonse-
quential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file
pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent
positioning of file pointers is application dependent. In particular, the implementation does
not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.
The info argument is used to provide information regarding file access patterns and file

system specifics (see Section 13.2.8). The constant MPI_INFO_NULL can be used when no
info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g.,
file permissions). These attributes must be set using either the info argument or
facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Sec-
tion 13.8.1). The more stringent atomic mode consistency semantics, required for atomicity
of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

13.2.2 Closing a File

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

494 CHAPTER 13. I/O

int MPI_File_close(MPI_File *fh)

MPI_File_close(fh, ierror)

TYPE(MPI_File), INTENT(INOUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an
MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was
opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently
accessing the file, the status of the file and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to
MPI_FILE_NULL.

13.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

int MPI_File_delete(const char *filename, MPI_Info info)

MPI_File_delete(filename, info, ierror)

CHARACTER(LEN=*), INTENT(IN) :: filename

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does
not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

The info argument can be used to provide information regarding file system specifics
(see Section 13.2.8). The constant MPI_INFO_NULL refers to the null info, and can be used
when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open file is deleted or not is also implementation dependent. If the file is not

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 495

deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised.
Errors are raised using the default error handler (see Section 13.9).

13.2.4 Resizing a File

MPI_FILE_SET_SIZE(fh, size)

INOUT fh file handle (handle)

IN size size to truncate or expand file (integer)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_File_set_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured
in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined
by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file
that have been previously written are unaffected. The values of data in the new regions in
the file (those locations with displacements between old file size and size) are undefined. It
is implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space
— use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file
pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file
after a MPI_FILE_SET_SIZE operation truncates a file. This is valid, and equivalent
to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far
as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that
conflicts with operations that access bytes at displacements between the old and new file
sizes (see Section 13.8.1).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

496 CHAPTER 13. I/O

13.2.5 Preallocating Space for a File

MPI_FILE_PREALLOCATE(fh, size)

INOUT fh file handle (handle)

IN size size to preallocate file (integer)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

MPI_File_preallocate(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes
of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the file that have previously been
written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE
has the same effect as writing undefined data. If size is larger than the current file size, the
file size increases to size. If size is less than or equal to the current file size, the file size is
unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the
same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when
the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End
of advice to users.)

13.2.6 Querying the Size of a File

MPI_FILE_GET_SIZE(fh, size)

IN fh file handle (handle)

OUT size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_File_get_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 497

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with
the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a
data access operation (see Section 13.8.1).

13.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

IN fh file handle (handle)

OUT group group which opened the file (handle)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

MPI_File_get_group(fh, group, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
open the file associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI_FILE_GET_AMODE(fh, amode)

IN fh file handle (handle)

OUT amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_File_get_amode(fh, amode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(OUT) :: amode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
fh.

Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

498 CHAPTER 13. I/O

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)

!

! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE

! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE

!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND

BIT_FOUND = 0

CP_AMODE = AMODE

100 CONTINUE

LBIT = 0

HIFOUND = 0

DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L

IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN

HIFOUND = 1

LBIT = MATCHER

CP_AMODE = CP_AMODE - MATCHER

END IF

20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1

IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100

END

This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI_MODE_RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)

IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ’ FOUND READ-ONLY BIT IN AMODE=’, AMODE

ELSE

PRINT *, ’ READ-ONLY BIT NOT FOUND IN AMODE=’, AMODE

END IF

13.2.8 File Info

Hints specified via info (see Chapter 9) allow a user to provide information such as file
access patterns and file system specifics to direct optimization. Providing hints may enable
an implementation to deliver increased I/O performance or minimize the use of system
resources. However, hints do not change the semantics of any of the I/O interfaces. In other
words, an implementation is free to ignore all hints. Hints are specified on a per file basis, in
MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO,
via the opaque info object. When an info object that specifies a subset of valid hints is passed
to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set
or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.2. FILE MANIPULATION 499

mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)

IN info info object (handle)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_File_set_info(fh, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI_FILE_SET_INFO sets new values for the hints of the file associated with fh.
MPI_FILE_SET_INFO is a collective routine. The info object may be different on each pro-
cess, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a file cannot easily be changed once the file has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)

MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_File_get_info(fh, info_used, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associ-
ated with fh. The current setting of all hints actually used by the system related to this
open file is returned in info_used. If no such hints exist, a handle to a newly created info
object is returned that contains no key/value pairs. The user is responsible for freeing
info_used via MPI_INFO_FREE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

500 CHAPTER 13. I/O

Advice to users. The info object returned in info_used will contain all hints currently
active for this file. This set of hints may be greater or smaller than the set of hints
passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, or MPI_FILE_SET_INFO, as
the system may not recognize some hints set by the user, and may recognize other
hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
“info,” see Chapter 9.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The “[SAME]” annotation specifies that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
context dependent, and are only used by an implementation at specific times (e.g., file_perm

is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which
the file will be accessed until the file is closed or until the access_style key value is
altered. The hint value is a comma separated list of the following: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may
benefit from collective buffering. Collective buffering is an optimization performed
on collective accesses. Accesses to the file are performed on behalf of all processes in
the group by a number of target nodes. These target nodes coalesce small requests
into large disk accesses. Valid values for this key are true and false. Collective buffering
parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and
cb_nodes.

cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective
buffering file access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (cyclic) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used
for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for
collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the
most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size
of each array entry, in bytes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.3. FILE VIEWS 501

chunked_size (comma separated list of integers) [SAME]: This hint specifies the di-
mensions of the subarrays. This is a comma separated list of array dimensions, starting
from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the
implementation is capable of returning the file name of an open file, it will be returned
using this key by MPI_FILE_GET_INFO. This key is ignored when passed to
MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation.
Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that
includes MPI_MODE_CREATE. The set of valid values for this key is implementation
dependent.

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of
I/O devices that should be used to store the file. This hint is most relevant when the
file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will
typically be assigned to run programs that access this file. This hint is most relevant
when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the
system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the
file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used
for this file. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the file is created.

13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN filetype filetype (handle)

IN datarep data representation (string)

IN info info object (handle)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, const char *datarep, MPI_Info info)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

502 CHAPTER 13. I/O

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: disp

TYPE(MPI_Datatype), INTENT(IN) :: etype, filetype

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

The MPI_FILE_SET_VIEW routine changes the process’s view of the data in the file.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to filetype; and the representation of data in the file is set to datarep.
In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file
pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents
of etype in the file data representation must be identical on all processes in the group; values
for disp, filetype, and info may vary. The datatypes passed in etype and filetype must be
committed.

The etype always specifies the data layout in the file. If etype is a portable datatype (see
Section 2.4), the extent of etype is computed by scaling any displacements in the datatype
to match the file data representation. If etype is not a portable datatype, no scaling is done
when computing the extent of etype. The user must be careful when using nonportable
etypes in heterogeneous environments; see Section 13.7.1 for further details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special
displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is
invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files.
(End of rationale.)

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will
immediately follow MPI_FILE_OPEN in numerous instances. A high-quality imple-
mentation will ensure that this behavior is efficient. (End of advice to implementors.)

The disp displacement argument specifies the position (absolute offset in bytes from
the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence
of data segments that are to be accessed in different patterns (see Figure 13.3). Sep-
arate views, each using a different displacement and filetype, can be used to access
each segment.

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.3. FILE VIEWS 503

second view

first view

header ...
���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

file structure:

first displacement second displacement

Figure 13.3: Displacements

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
non-negative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. Offsets are expressed as a count of
etypes; file pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the
etype (see Section 13.6). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the filetype must be
a multiple of the etype’s extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to
contain overlapping regions. This restriction is equivalent to the “datatype used in a receive
cannot specify overlapping regions” restriction for communication. Note that filetypes from
different processes may still overlap each other.

If a filetype has holes in it, then the data in the holes is inaccessible to the calling
process. However, the disp, etype, and filetype arguments can be changed via future calls to
MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.
The info argument is used to provide information regarding file access patterns and file

system specifics to direct optimization (see Section 13.2.8). The constant MPI_INFO_NULL

refers to the null info and can be used when no info needs to be specified.
The datarep argument is a string that specifies the representation of data in the file.

See the file interoperability section (Section 13.6) for details and a discussion of valid values.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SET_VIEW — otherwise,
the call to MPI_FILE_SET_VIEW is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

504 CHAPTER 13. I/O

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN fh file handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT filetype filetype (handle)

OUT datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

MPI_File_get_view(fh, disp, etype, filetype, datarep, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

TYPE(MPI_Datatype), INTENT(OUT) :: etype, filetype

CHARACTER(LEN=*), INTENT(OUT) :: datarep

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current
value of the displacement is returned in disp. The etype and filetype are new datatypes with
typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring
that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype
or filetype are derived datatypes, the user is responsible for freeing them. The etype and
filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are
three orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two
types of file pointers (individual and shared) are provided in Table 13.1.

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations
and use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 505

positioning synchronism coordination
noncollective collective

explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL

nonblocking & MPI_FILE_IREAD_AT MPI_FILE_READ_AT_ALL_BEGIN
split collective MPI_FILE_READ_AT_ALL_END

MPI_FILE_IWRITE_AT MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

individual blocking MPI_FILE_READ MPI_FILE_READ_ALL
file pointers MPI_FILE_WRITE MPI_FILE_WRITE_ALL

nonblocking & MPI_FILE_IREAD MPI_FILE_READ_ALL_BEGIN
split collective MPI_FILE_READ_ALL_END

MPI_FILE_IWRITE MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared blocking MPI_FILE_READ_SHARED MPI_FILE_READ_ORDERED
file pointer MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_ORDERED

nonblocking & MPI_FILE_IREAD_SHARED MPI_FILE_READ_ORDERED_BEGIN
split collective MPI_FILE_READ_ORDERED_END

MPI_FILE_IWRITE_SHARED MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual
file pointers, and shared file pointers. The different positioning methods may be mixed
within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument — no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 13.5.1.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.5.2.
The data access routines that use shared file pointers contain _SHARED or _ORDERED
in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file pointers are
described in

13.5

13.5.3.
The main semantic issues with MPI-maintained file pointers are how and when they are

updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_offset = old_file_offset+
elements(datatype)

elements(etype)
× count

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

506 CHAPTER 13. I/O

offset before the call. The file position, new_file_offset, is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out of and into the user’s buffer
to proceed concurrently with computation. A separate request complete call (MPI_WAIT,
MPI_TEST, or any of their variants) is needed to complete the I/O request, i.e., to confirm
that the data has been read or written and that it is safe for the user to reuse the buffer.
The nonblocking versions of the routines are named MPI_FILE_IXXX, where the I stands
for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of “nonblocking” operations for
collective data access (see Section 13.5.4).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For
most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN
and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are
MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 13.8.4 for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines
move data from a file into memory. Write routines move data from memory into a file. The
file is designated by a file handle, fh. The location of the file data is specified by an offset
into the current view. The data in memory is specified by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in
etype units relative to the current view. Explicit offset routines pass offset as an argument
(negative values are erroneous). The file pointer routines use implicit offsets maintained by
MPI.

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user’s buffer buf and the file. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2
and Section 4.1.11. The data is accessed from those parts of the file specified by the current

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 507

view (Section 13.3). The type signature of datatype must match the type signature of some
number of contiguous copies of the etype of the current view. As in a receive, it is erroneous
to specify a datatype for reading that contains overlapping regions (areas of memory which
would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–
17.1.20. (End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS (or
MPI_GET_ELEMENTS_X), respectively. The interpretation of the MPI_ERROR field is the
same as for other operations — normally undefined, but meaningful if an MPI routine
returns MPI_ERR_IN_STATUS. The user can pass (in C and Fortran) MPI_STATUS_IGNORE

in the status argument if the return value of this argument is not needed. The status can be
passed to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other
fields of status are undefined.

When reading, a program can detect the end of file by noting that the amount of data
read is less than the amount requested. Writing past the end of file increases the file size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of file).

13.5.1 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to
call the routines in this section.

MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

508 CHAPTER 13. I/O

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
interface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 509

MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.

MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

510 CHAPTER 13. I/O

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 511

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.

13.5.2 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with
explicit offset routines described in Section 13.5.1, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file
pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated
to point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.

MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

MPI_File_read(fh, buf, count, datatype, status, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

512 CHAPTER 13. I/O

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ reads a file using the individual file pointer.

Example 13.2 The following Fortran code fragment is an example of reading a file until
the end of file is reached:

! Read a preexisting input file until all data has been read.

! Call routine "process_input" if all requested data is read.

! The Fortran 90 "exit" statement exits the loop.

integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)

parameter (bufsize=100)

real localbuffer(bufsize)

integer (kind=MPI_OFFSET_KIND) zero

zero = 0

call MPI_FILE_OPEN(MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)

call MPI_FILE_SET_VIEW(myfh, zero, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr)

totprocessed = 0

do

call MPI_FILE_READ(myfh, localbuffer, bufsize, MPI_REAL, &

status, ierr)

call MPI_GET_COUNT(status, MPI_REAL, numread, ierr)

call process_input(localbuffer, numread)

totprocessed = totprocessed + numread

if (numread < bufsize) exit

enddo

write(6,1001) numread, bufsize, totprocessed

1001 format("No more data: read", I3, "and expected", I3, &

"Processed total of", I6, "before terminating job.")

call MPI_FILE_CLOSE(myfh, ierr)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 513

MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.

MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

514 CHAPTER 13. I/O

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_all(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
face.

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 515

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
tics:

! Read the first twenty real words in a file into two local

! buffers. Note that when the first MPI_FILE_IREAD returns,

! the file pointer has been updated to point to the

! eleventh real word in the file.

integer bufsize, req1, req2

integer, dimension(MPI_STATUS_SIZE) :: status1, status2

parameter (bufsize=10)

real buf1(bufsize), buf2(bufsize)

integer (kind=MPI_OFFSET_KIND) zero

zero = 0

call MPI_FILE_OPEN(MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr)

call MPI_FILE_SET_VIEW(myfh, zero, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr)

call MPI_FILE_IREAD(myfh, buf1, bufsize, MPI_REAL, &

req1, ierr)

call MPI_FILE_IREAD(myfh, buf2, bufsize, MPI_REAL, &

req2, ierr)

call MPI_WAIT(req1, status1, ierr)

call MPI_WAIT(req2, status2, ierr)

call MPI_FILE_CLOSE(myfh, ierr)

MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

516 CHAPTER 13. I/O

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_File_seek(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)

IN fh file handle (handle)

OUT offset offset of individual pointer (integer)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_File_get_position(fh, offset, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 517

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file
pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using
whence = MPI_SEEK_SET to return to the current position. To set the displacement to
the current file pointer position, first convert offset into an absolute byte position using
MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting
displacement. (End of advice to users.)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)

IN offset offset (integer)

OUT disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)

MPI_File_get_byte_offset(fh, offset, disp, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte
position. The absolute byte position (from the beginning of the file) of offset relative to the
current view of fh is returned in disp.

13.5.3 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly specifies
the offset in the data access routines described in this section. These routines only use and
update the shared file pointer maintained by MPI. The individual file pointers are not used
nor updated.

The shared file pointer routines have the same semantics as the data access with explicit
offset routines described in Section 13.5.1, with the following modifications:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

518 CHAPTER 13. I/O

• the offset is defined to be the current value of the MPI-maintained shared file pointer,

• the effect of multiple calls to shared file pointer routines is defined to behave as if the
calls were serialized, and

• the use of shared file pointer routines is erroneous unless all processes use the same
file view.

For the noncollective shared file pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to
point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 519

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

520 CHAPTER 13. I/O

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each
process, the location in the file at which data is accessed is the position at which the shared
file pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared offset
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared file pointer points to the next etype accessible, according to the file
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group
need to access the file using the shared file pointer, but the program may not re-
quire that data be accessed in order of process rank. In such programs, using the
shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, im-
proving performance. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 521

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the file
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_ordered(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

522 CHAPTER 13. I/O

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
interface.

Seek

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILE_SEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

MPI_File_seek_shared(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 523

MPI_FILE_GET_POSITION_SHARED(fh, offset)

IN fh file handle (handle)

OUT offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_File_get_position_shared(fh, offset, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)

13.5.4 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as “split”
collective routines because a single collective operation is split in two: a begin routine and
an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must
not use the buffer passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic
rules given below.

• On any MPI process, each file handle may have at most one active split collective
operation at any time.

• Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

• End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an “end” call is made,
exactly one unmatched “begin” call for the same operation must precede it.

• An implementation is free to implement any split collective data access routine using
the corresponding blocking collective routine when either the begin call (e.g.,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

524 CHAPTER 13. I/O

MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is
issued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

• Split collective operations do not match the corresponding regular collective opera-
tion. For example, in a single collective read operation, an MPI_FILE_READ_ALL
on one process does not match an MPI_FILE_READ_ALL_BEGIN/
MPI_FILE_READ_ALL_END pair on another process.

• Split collective routines must specify a buffer in both the begin and end routines.
By specifying the buffer that receives data in the end routine, we can avoid the
problems described in “A Problem with Code Movements and Register Optimization,”
Section 17.1.17, but not all of the problems described in Section 17.1.16.

• No collective I/O operations are permitted on a file handle concurrently with a split
collective access on that file handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);

...

MPI_File_read_all(fh, ...);

...

MPI_File_read_all_end(fh, ...);

is erroneous.

• In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL).
The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation
that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,
MPI_FILE_READ_ALL).

For the purpose of consistency semantics (Section 13.8.1), a matched pair of split
collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 525

MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

IN fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

526 CHAPTER 13. I/O

MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, const

void *buf, int count, MPI_Datatype datatype)

MPI_File_write_at_all_begin(fh, offset, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 527

MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_File_read_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

528 CHAPTER 13. I/O

int MPI_File_write_all_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_File_read_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.5. 529

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_ordered_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

530 CHAPTER 13. I/O

MPI_FILE_WRITE_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_ordered_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

13.6 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously
written to a file — not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 13.7.2) as well as the data conversion functions (Section 13.7.3).

Interoperability within a single MPI environment (which could be considered “oper-
ability”) ensures that file data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 13.8.1), provided that it would
have been possible to start the two processes simultaneously and have them reside in a
single MPI_COMM_WORLD. Furthermore, both processes must see the same data values at
every absolute byte offset in the file for which data was written.

This single environment file interoperability implies that file data is accessible regardless
of the number of processes.

There are three aspects to file interoperability:

• transferring the bits,

• converting between different file structures, and

• converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard,
as both are highly machine dependent. However, transferring the bits of a file into and
out of the MPI environment (e.g., by writing a file to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte
offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.6. FILE INTEROPERABILITY 531

MPI environment are at byte offset 102 outside the MPI environment). As an example,
a simple off-line conversion utility that transfers and converts files between the native file
system and the MPI environment would suffice, provided it maintained the offset coherence
mentioned above. In a high-quality implementation of MPI, users will be able to manipulate
MPI files using the same or similar tools that the native file system offers for manipulating
its files.

The remaining aspect of file interoperability, converting between different machine
representations, is supported by the typing information specified in the etype and filetype.
This facility allows the information in files to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: “native,” “internal,” and “external32.”
An implementation may support additional data representations. MPI also supports user-
defined data representations (see Section 13.7.3). The “native” and “internal” data repre-
sentations are implementation dependent, while the “external32” representation is common
to all MPI implementations and facilitates file interoperability. The data representation is
specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a file is written. Therefore, to correctly retrieve file data, an MPI
application is responsible for specifying the same data representation as was used to
create the file. (End of advice to users.)

“native” Data in this representation is stored in a file exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)

Advice to implementors. When implementing read and write operations on
top of MPI message-passing, the message data should be typed as MPI_BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

“internal” This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-
defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
efficiently in a heterogeneous environment, though with implementation-defined
restrictions on how the file can be reused. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

532 CHAPTER 13. I/O

Advice to implementors. Since “external32” is a superset of the functionality
provided by “internal,” an implementation may choose to implement “internal”
as “external32.” (End of advice to implementors.)

“external32” This data representation states that read and write operations convert all
data from and to the “external32” representation defined in

13.7

13.7.2. The data conversion rules for communication also apply to these conversions
(see Section 3.3.2). The data on the storage medium is always in this canonical
representation, and the data in memory is always in the local process’s native repre-
sentation.

This data representation has several advantages. First, all processes reading the file
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the file can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message-passing, the message data should be converted to and from the
“external32” representation in the client, and sent as type MPI_BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

13.7.1 Datatypes for File Interoperability

If the file data representation is other than “native,” care must be taken in constructing
etypes and filetypes. Any of the datatype constructor functions may be used; however,
for those functions that accept displacements in bytes, the displacements must be specified
in terms of their values in the file for the file data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the
file. For etypes and filetypes that are portable datatypes (see Section 2.4), MPI will scale
any displacements in the datatypes to match the file data representation. Datatypes passed
as arguments to read/write routines specify the data layout in memory; therefore, they must
always be constructed using displacements corresponding to displacements in memory.

Advice to users. One can logically think of the file as if it were stored in the memory
of a file server. The etype and filetype are interpreted as if they were defined at this
file server, by the same sequence of calls used to define them at the calling process.
If the data representation is “native”, then this logical file server runs on the same
architecture as the calling process, so that these types define the same data layout
on the file as they would define in the memory of the calling process. If the etype
and filetype are portable datatypes, then the data layout defined in the file is the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.7. 533

same as would be defined in the calling process memory, up to a scaling factor. The
routine MPI_FILE_GET_TYPE_EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will define the same data layout in the file,
even in a heterogeneous environment with “internal”, “external32”, or user defined
data representations. Otherwise, the etype and filetype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved
if they have an explicit upper bound and lower bound (defined using
MPI_TYPE_CREATE_RESIZED). This condition must also be fulfilled by any datatype
that is used in the construction of the etype and filetype, if this datatype is replicated
contiguously, either explicitly, by a call to MPI_TYPE_CONTIGUOUS, or implicitly,
by a blocklength argument that is greater than one. If an etype or filetype is not
portable, and has a typemap or extent that is architecture dependent, then the data
layout specified by it on a file is implementation dependent.

File data representations other than “native” may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4) is
used in a data access operation, any holes in the datatype are scaled to match the data
representation. However, note that this technique only works when all the processes
that created the file view build their etypes from the same predefined datatypes. For
example, if one process uses an etype built from MPI_INT and another uses an etype
built from MPI_FLOAT, the resulting views may be nonportable because the relative
sizes of these types may differ from one data representation to another. (End of advice
to users.)

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

MPI_File_get_type_extent(fh, datatype, extent, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

Returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation
(see Section 13.7.3), MPI uses the dtype_file_extent_fn callback to calculate the extent.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

534 CHAPTER 13. I/O

Advice to implementors. In the case of user-defined data representations, the extent
of a derived datatype can be calculated by first determining the extents of the prede-
fined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.7.3).
(End of advice to implementors.)

13.7.2 External Data Representation: “external32”

All MPI implementations are required to support the data representation defined in this
section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [37] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
“Single,” “Double,” and “Double Extended” formats, requiring 4, 8, and 16 bytes of storage,
respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16
bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous
to the “Double” format. All integral values are in two’s complement big-endian format. Big-
endian means most significant byte at lowest address byte. For C _Bool, Fortran LOGICAL,
and C++ bool, 0 implies false and nonzero implies true. C float _Complex, double

_Complex, and long double _Complex, Fortran COMPLEX and DOUBLE COMPLEX, and other
complex types are represented by a pair of floating point format values for the real and
imaginary components. Characters are in ISO 8859-1 format [38]. Wide characters (of type
MPI_WCHAR) are in Unicode format [59].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant
bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary
parts at the most significant bit of each part.

According to IEEE specifications [37], the “NaN” (not a number) is system dependent.
It should not be interpreted within MPI as anything other than “NaN.”

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)

The sizes of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined
in Section 17.1.9, page 621.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the least significant bytes are moved. Care must be taken to preserve
the sign bit value. This allows no conversion errors if the data range is within the
range of the smaller size integer. (End of advice to implementors.)

Table 13.2 specifies the sizes of predefined datatypes in “external32” format.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.7. 535

Type Length Optional Type Length

------------------ ------ ------------------ ------

MPI_PACKED 1 MPI_INTEGER1 1

MPI_BYTE 1 MPI_INTEGER2 2

MPI_CHAR 1 MPI_INTEGER4 4

MPI_UNSIGNED_CHAR 1 MPI_INTEGER8 8

MPI_SIGNED_CHAR 1 MPI_INTEGER16 16

MPI_WCHAR 2

MPI_SHORT 2 MPI_REAL2 2

MPI_UNSIGNED_SHORT 2 MPI_REAL4 4

MPI_INT 4 MPI_REAL8 8

MPI_UNSIGNED 4 MPI_REAL16 16

MPI_LONG 4

MPI_UNSIGNED_LONG 4 MPI_COMPLEX4 2*2

MPI_LONG_LONG_INT 8 MPI_COMPLEX8 2*4

MPI_UNSIGNED_LONG_LONG 8 MPI_COMPLEX16 2*8

MPI_FLOAT 4 MPI_COMPLEX32 2*16

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_C_BOOL 1

MPI_INT8_T 1 C++ Types Length

MPI_INT16_T 2 ------------------ ------

MPI_INT32_T 4 MPI_CXX_BOOL 1

MPI_INT64_T 8 MPI_CXX_FLOAT_COMPLEX 2*4

MPI_UINT8_T 1 MPI_CXX_DOUBLE_COMPLEX 2*8

MPI_UINT16_T 2 MPI_CXX_LONG_DOUBLE_COMPLEX 2*16

MPI_UINT32_T 4

MPI_UINT64_T 8

MPI_AINT 8

MPI_COUNT 8

MPI_OFFSET 8

MPI_C_COMPLEX 2*4

MPI_C_FLOAT_COMPLEX 2*4

MPI_C_DOUBLE_COMPLEX 2*8

MPI_C_LONG_DOUBLE_COMPLEX 2*16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

Table 13.2: “external32” sizes of predefined datatypes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

536 CHAPTER 13. I/O

13.7.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

2. a user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.

MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state)

IN datarep data representation identifier (string)

IN read_conversion_fn function invoked to convert from file representation to

native representation (function)

IN write_conversion_fn function invoked to convert from native representation

to file representation (function)

IN dtype_file_extent_fn function invoked to get the extent of a datatype as

represented in the file (function)

IN extra_state extra state

int MPI_Register_datarep(const char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

MPI_Register_datarep(datarep, read_conversion_fn, write_conversion_fn,

dtype_file_extent_fn, extra_state, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

PROCEDURE(MPI_Datarep_conversion_function) :: read_conversion_fn

PROCEDURE(MPI_Datarep_conversion_function) :: write_conversion_fn

PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument
to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conver-
sion functions to convert all data items accessed between file data representation and na-
tive representation. MPI_REGISTER_DATAREP is a local operation and only registers the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.7. 537

data representation for the calling MPI process. If datarep is already defined, an error
in the error class MPI_ERR_DUP_DATAREP is raised using the default file error handler
(see Section 13.9). The length of a data representation string is limited to the value of
MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_extent_function(datatype, extent, extra_state,

ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND) :: extent, extra_state

INTEGER :: ierror

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

The function dtype_file_extent_fn must return, in file_extent, the number of bytes re-
quired to store datatype in the file representation. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call
this routine with predefined datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_conversion_function(userbuf, datatype, count,

filebuf, position, extra_state, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), VALUE :: userbuf, filebuf

TYPE(MPI_Datatype) :: datatype

INTEGER :: count, ierror

INTEGER(KIND=MPI_OFFSET_KIND) :: position

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

538 CHAPTER 13. I/O

The function read_conversion_fn must convert from file data representation to na-
tive representation. Before calling this routine, MPI allocates and fills filebuf with count
contiguous data items. The type of each data item matches the corresponding entry for the
predefined datatype in the type signature of datatype. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. The function must
copy all count data items from filebuf to userbuf in the distribution described by datatype,
converting each data item from file representation to native representation. datatype will be
equivalent to the datatype that the user passed to the read function. If the size of datatype
is less than the size of the count data items, the conversion function must treat datatype
as being contiguously tiled over the userbuf. The conversion function must begin storing
converted data at the location in userbuf specified by position into the (tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK
and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count
of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items

2. Allocate a filebuf large enough to hold all count data items

3. Read data from file into filebuf

4. Call read_conversion_fn to convert data and place it into userbuf

5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in filebuf. For the first
call (and in the case when all the data to be converted fits into filebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the first count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly find its place in the datatype and continue
storing converted data where it left off at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information specific to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.7. 539

The function write_conversion_fn must convert from native representation to file data
representation. Before calling this routine, MPI allocates filebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the predefined datatype in the type signature of datatype. The function must copy
count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file repre-
sentation. If the size of datatype is less than the size of count data items, the conversion
function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
write function. The function is passed, in extra_state, the argument that was passed to the
MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either
write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a filebuf large enough to hold all the requested data items or else by making repeated
calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section (
read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or
write routines in Section 13.4, or MPI_FILE_GET_TYPE_EXTENT is called by the user.
dtype_file_extent_fn will only be passed predefined datatypes employed by the user. The
conversion functions will only be passed datatypes equivalent to those that the user has
passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI_SUCCESS, the implementation will raise an error in the class
MPI_ERR_CONVERSION.

13.7.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from
a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file
does not guarantee that the representation is compatible. Similarly, using different repre-
sentation names on two different implementations may yield compatible representations.

Compatibility can be obtained when “external32” representation is used, although
precision may be lost and the performance may be less than when “native” representation is
used. Compatibility is guaranteed using “external32” provided at least one of the following
conditions is met.

• The data access routines directly use types enumerated in Section 13.7.2, that are
supported by all implementations participating in the I/O. The predefined type used
to write a data item must also be used to read a data item.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

540 CHAPTER 13. I/O

• In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 17.1.9).

• For any given data item, the programs participating in the data accesses use compat-
ible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compat-
ibility with another implementation’s “native” or “internal” representation.

Advice to users. Section 17.1.9 defines routines that support the use of matching
datatypes in heterogeneous environments and contains examples illustrating their use.
(End of advice to users.)

13.8 Consistency and Semantics

13.8.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file
accesses in MPI are relative to a specific file handle created from a collective open. MPI
provides three levels of consistency: sequential consistency among all accesses using a single
file handle, sequential consistency among all accesses using file handles created from a single
collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspecified. User-
imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH1 be the set of file handles created from one particular collective open of the
file FOO, and FH2 be the set of file handles created from a different collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be different, the groups of processes used for each open may or may not intersect,
the file handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single file handle (e.g., fh1 ∈ FH1), two file handles created
from a single collective open (e.g., fh1a ∈ FH1 and fh1b ∈ FH1), and two file handles from
different collective opens (e.g., fh1 ∈ FH1 and fh2 ∈ FH2).

For the purpose of consistency semantics, a matched pair (Section 13.5.4) of split col-
lective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-
blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the
request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below,
these data access operations are subject to the same constraints as blocking data access
operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins
when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice
to users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.8. CONSISTENCY AND SEMANTICS 541

overlap if D1 ∩D2 6= ∅. The two data accesses conflict if they overlap and at least one is a
write access.

Let SEQfh be a sequence of file operations on a single file handle, bracketed by
MPI_FILE_SYNCs on that file handle. (Both opening and closing a file implicitly perform
an MPI_FILE_SYNC.) SEQfh is a “write sequence” if any of the data access operations in
the sequence are writes or if any of the file manipulation operations in the sequence change
the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two
sequences, SEQ1 and SEQ2, we say they are not concurrent if one sequence is guaranteed
to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a par-
ticular file are divided into the three cases given below. If any of these requirements are
not met, then the value of all data in that file is implementation dependent.

Case 1: fh1 ∈ FH1 All operations on fh1 are sequentially consistent if atomic mode is
set. If nonatomic mode is set, then all operations on fh1 are sequentially consistent if they
are either nonconcurrent, nonconflicting, or both.

Case 2: fh1a ∈ FH1 and fh1b ∈ FH1 Assume A1 is a data access operation using fh1a,
and A2 is a data access operation using fh1b. If for any access A1, there is no access A2

that conflicts with A1, then MPI guarantees sequential consistency.
However, unlike POSIX semantics, the default MPI semantics for conflicting accesses

do not guarantee sequential consistency. If A1 and A2 conflict, sequential consistency can be
guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine,
or meeting the condition described in Case 3 below.

Case 3: fh1 ∈ FH1 and fh2 ∈ FH2 Consider access to a single file using file handles from
distinct collective opens. In order to guarantee sequential consistency, MPI_FILE_SYNC
must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).

Sequential consistency is guaranteed among accesses to a single file if for any write
sequence SEQ1 to the file, there is no sequence SEQ2 to the file which is concurrent with
SEQ1. To guarantee sequential consistency when there are write sequences,
MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency
of the sequences.

See the examples in Section 13.8.10 for further clarification of some of these consistency
semantics.

MPI_FILE_SET_ATOMICITY(fh, flag)

INOUT fh file handle (handle)

IN flag true to set atomic mode, false to set nonatomic mode

(logical)

int MPI_File_set_atomicity(MPI_File fh, int flag)

MPI_File_set_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(IN) :: flag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

542 CHAPTER 13. I/O

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

Let FH be the set of file handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all pro-
cesses in the group must pass identical values for fh and flag. If flag is true, atomic mode is
set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in effect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)

MPI_FILE_GET_ATOMICITY(fh, flag)

IN fh file handle (handle)

OUT flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_File_get_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
operations on the set of file handles created by one collective open. If flag is true, atomic
mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

INOUT fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_File_sync(fh, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.8. CONSISTENCY AND SEMANTICS 543

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
MPI_FILE_SYNC may be necessary to ensure sequential consistency in certain cases (see
above).

MPI_FILE_SYNC is a collective operation.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SYNC — otherwise, the call
to MPI_FILE_SYNC is erroneous.

13.8.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes
and tape files. Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL

flag set in the amode. For these files, the only permitted data access operations are shared
file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the
notion of file pointer is not meaningful; therefore, calls to MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update rules specified
for the data access routines do not apply. The amount of data accessed by a data access
operation will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end
of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or
streaming network connections, writes to the file may be destructive. In other words, a
write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position)
followed by the write.

13.8.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

544 CHAPTER 13. I/O

processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

13.8.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in Section 5.13.

Collective file operations are collective over a duplicate of the communicator used to
open the file — this duplicate communicator is implicitly specified via the file handle ar-
gument. Different processes can pass different values for other arguments of a collective
routine unless specified otherwise.

13.8.5 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the
file interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly specified. (End of advice to users.)

13.8.6 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype
and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file
manipulation or data access operations. For example, the etype and filetype must be com-
mitted before calling MPI_FILE_SET_VIEW, and the datatype must be committed before
calling MPI_FILE_READ or MPI_FILE_WRITE.

13.8.7 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest
file supported by MPI. Displacements and offsets are always specified as values of type
MPI_Offset.

In Fortran, the corresponding integer is an integer with kind parameter
MPI_OFFSET_KIND, which is defined in the mpi_f08 module, the mpi module and the mpif.h
include file.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset argu-
ments should be declared as an INTEGER of suitable size. The language interoperability
implications for MPI_Offset are similar to those for addresses (see Section 17.2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.8. CONSISTENCY AND SEMANTICS 545

13.8.8 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not
how that file structure is to be stored on one or more disks. Specification of the physical
file structure was avoided because it is expected that the mapping of files to disks will be
system specific, and any specific control over file layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize file layout. This information can be provided as hints specified via info when a file
is created (see Section 13.2.8).

13.8.9 File Size

The size of a file may be increased by writing to the file after the current end of file. The size
may also be changed by calling MPI size changing routines, such as MPI_FILE_SET_SIZE.
A call to a size changing routine does not necessarily change the file size. For example,
calling MPI_FILE_PREALLOCATE with a size less than the current size does not change the
size.

Consider a set of bytes that has been written to a file since the most recent call to a
size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the
high byte be the byte in that set with the largest displacement. The file size is the larger of

• One plus the displacement of the high byte.

• The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and
MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations
that access bytes at displacements between the old and new file sizes), and
MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the
file).

Advice to users. Any sequence of operations containing the collective routines
MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE is a write sequence. As such,
sequential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 13.8.1 are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed)
are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by
separate processes to a file containing 100 bytes: an MPI_FILE_READ of 10 bytes and
an MPI_FILE_SET_SIZE to 0 bytes. If the user does not enforce sequential consis-
tency between these two operations, the file pointer may be updated by the amount
requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to
users.)

13.8.10 Examples

The examples in this section illustrate the application of the MPI consistency and semantics
guarantees. These address

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

546 CHAPTER 13. I/O

• conflicting accesses on file handles obtained from a single collective open, and

• all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are undefined.

/* Process 0 */

int i, a[10] ;

int TRUE = 1;

for (i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_set_atomicity(fh0, TRUE) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

/* MPI_Barrier(MPI_COMM_WORLD) ; */

/* Process 1 */

int b[10] ;

int TRUE = 1;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_set_atomicity(fh1, TRUE) ;

/* MPI_Barrier(MPI_COMM_WORLD) ; */

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */

int i, a[10] ;

for (i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.8. CONSISTENCY AND SEMANTICS 547

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

MPI_File_sync(fh0) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh0) ;

/* Process 1 */

int b[10] ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_sync(fh1) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh1) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

The “sync-barrier-sync” construct is required because:

• The barrier ensures that the write on process 0 occurs before the read on process 1.

• The first sync guarantees that the data written by all processes is transferred to the
storage device.

• The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superfluous second “sync” call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

/* Process 0 */

int i, a[10] ;

for (i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0) ;

MPI_File_set_view(fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

MPI_File_sync(fh0) ;

MPI_Barrier(MPI_COMM_WORLD) ;

/* Process 1 */

int b[10] ;

MPI_File_open(MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1) ;

MPI_File_set_view(fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_Barrier(MPI_COMM_WORLD) ;

MPI_File_sync(fh1) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

548 CHAPTER 13. I/O

The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC
as a temporally synchronizing function. When using such an implementation, the
“sync-barrier-sync” construct above can be replaced by a single “sync.” The results of
using such code with an implementation for which MPI_FILE_SYNC is not temporally
synchronizing is undefined. (End of advice to users.)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file “myfile.” Word 10 in myfile initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

/* MPI_File_set_atomicity(fh, TRUE) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic
mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

/* MPI_File_set_atomicity(fh, TRUE) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.9. I/O ERROR HANDLING 549

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:

int a = 4, b;

MPI_File_open(MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh) ;

MPI_File_set_view(fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL) ;

MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status) ;

MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status) ;

Since

• nonconcurrent operations on a single file handle are sequentially consistent, and

• the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;

MPI_File_iread(fh,...) ;

MPI_Wait(fh,...) ;

MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:

MPI_File_write_all_begin(fh,...) ;

MPI_File_read_all_begin(fh,...) ;

MPI_File_read_all_end(fh,...) ;

MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 13.5.4).

13.9 I/O Error Handling

By default, communication errors are fatal — MPI_ERRORS_ARE_FATAL is the default error
handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g.,
“file not found”) than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

550 CHAPTER 13. I/O

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high-quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI
I/O error handling routines are defined in Section 8.3.

When MPI calls a user-defined error handler resulting from an error on a particular
file handle, the first two arguments passed to the file error handler are the file handle and
the error code. For I/O errors that are not associated with a valid file handle (e.g., in
MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is
MPI_FILE_NULL.

I/O error handling differs from communication error handling in another important
aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN.
The default file error handler has two purposes: when a new file handle is created (by
MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default
error handler, and I/O routines that have no valid file handle on which to raise an error
(e.g., MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The de-
fault file error handler can be changed by specifying MPI_FILE_NULL as the fh argument
to MPI_FILE_SET_ERRHANDLER. The current value of the default file error handler can
be determined by passing MPI_FILE_NULL as the fh argument to
MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI_COMM_WORLD. In I/O, there is no analogous “root” file handle from which de-
fault properties can be inherited. Rather than invent a new global file handle, the
default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End
of rationale.)

13.10 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the error classes defined in Table 13.3.

In addition, calls to routines in this chapter may raise errors in other MPI classes, such
as MPI_ERR_TYPE.

13.11 Examples

13.11.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute_buffer().

/*===

*

* Function: double_buffer

*

* Synopsis:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.11. EXAMPLES 551

MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error

Table 13.3: I/O Error Classes

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

552 CHAPTER 13. I/O

* void double_buffer(

* MPI_File fh, ** IN

* MPI_Datatype buftype, ** IN

* int bufcount ** IN

*)

*

* Description:

* Performs the steps to overlap computation with a collective write

* by using a double-buffering technique.

*

* Parameters:

* fh previously opened MPI file handle

* buftype MPI datatype for memory layout

* (Assumes a compatible view has been set on fh)

* bufcount # buftype elements to transfer

--/

/* this macro switches which buffer "x" is pointing to */

#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer(MPI_File fh, MPI_Datatype buftype, int bufcount)

{

MPI_Status status; /* status for MPI calls */

float *buffer1, *buffer2; /* buffers to hold results */

float *compute_buf_ptr; /* destination buffer */

/* for computing */

float *write_buf_ptr; /* source for writing */

int done; /* determines when to quit */

/* buffer initialization */

buffer1 = (float *)

malloc(bufcount*sizeof(float)) ;

buffer2 = (float *)

malloc(bufcount*sizeof(float)) ;

compute_buf_ptr = buffer1 ; /* initially point to buffer1 */

write_buf_ptr = buffer1 ; /* initially point to buffer1 */

/* DOUBLE-BUFFER prolog:

* compute buffer1; then initiate writing buffer1 to disk

*/

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER steady state:

* Overlap writing old results from buffer pointed to by write_buf_ptr

* with computing new results into buffer pointed to by compute_buf_ptr.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

13.11. EXAMPLES 553

*

* There is always one write-buffer and one compute-buffer in use

* during steady state.

*/

while (!done) {

TOGGLE_PTR(compute_buf_ptr);

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_end(fh, write_buf_ptr, &status);

TOGGLE_PTR(write_buf_ptr);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

}

/* DOUBLE-BUFFER epilog:

* wait for final write to complete.

*/

MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */

free(buffer1);

free(buffer2);

}

13.11.2 Subarray Filetype Constructor

Process 0 Process 2

Process 1 Process 3

Figure 13.4: Example array file layout

Assume we are writing out a 100x100 2D array of double precision floating point num-
bers that is distributed among 4 processes such that each process has a block of 25 columns
(e.g., process 0 has columns 0–24, process 1 has columns 25–49, etc.; see Figure 13.4). To
create the filetypes for each process one could use the following C program (see

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

554 CHAPTER 13. I/O

HolesMPI_DOUBLE

Figure 13.5: Example local array filetype for process 1

13.12

4.1.3):

double subarray[100][25];

MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;

subsizes[0]=100; subsizes[1]=25;

starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,

MPI_DOUBLE, &filetype);

Or, equivalently in Fortran:

double precision subarray(100,25)

integer filetype, rank, ierror

integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

sizes(1)=100

sizes(2)=100

subsizes(1)=100

subsizes(2)=25

starts(1)=0

starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &

MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &

filetype, ierror)

The generated filetype will then describe the portion of the file contained within the
process’s subarray with holes for the space taken by the other processes. Figure 13.5 shows
the filetype created for process 1.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 14

Tool Support

14.1 Introduction

This chapter discusses interfaces that allow debuggers, performance analyzers, and other
tools to extract information about the operation of MPI processes. Specifically, this chapter
defines both the MPI profiling interface (Section 14.2), which supports the transparent inter-
ception and inspection of MPI calls, and the MPI tool information interface (Section 14.3),
which supports the inspection and manipulation of MPI control and performance variables.
The interfaces described in this chapter are all defined in the context of an MPI process,
i.e., are callable from the same code that invokes other MPI functions.

14.2 Profiling Interface

14.2.1 Requirements

To meet the requirements for the MPI profiling interface, an implementation of the MPI
functions must

1. provide a mechanism through which all of the MPI defined functions, except those
allowed as macros (See Section 2.6.4), may be accessed with a name shift. This
requires, in C and Fortran, an alternate entry point name, with the prefix PMPI_ for
each MPI function in each provided language binding and language support method.
For routines implemented as macros, it is still required that the PMPI_ version be
supplied and work as expected, but it is not possible to replace at link time the MPI_
version with a user-defined version.

For Fortran, the different support methods cause several specific procedure names.
Therefore, several profiling routines (with these specific procedure names) are needed
for each Fortran MPI routine, as described in Section 17.1.5.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether
she must implement the profile interface for each binding, or can economize by imple-
menting it only for the lowest level routines.

555

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

556 CHAPTER 14. TOOL SUPPORT

4. where the implementation of different language bindings is done through a layered
approach (e.g., the Fortran binding is a set of “wrapper” functions that call the C
implementation), ensure that these wrapper functions are separable from the rest of
the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

14.2.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
different machines.

Since MPI is a machine independent standard with many different implementations,
it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this section is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

14.2.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for
the implementor of the profiling system to intercept the MPI calls that are made by the

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.2. PROFILING INTERFACE 557

user program. She can then collect whatever information she requires before calling the
underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

14.2.4 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This capability is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the calculation.

• Adding user events to a trace file.

These requirements are met by use of MPI_PCONTROL.

MPI_PCONTROL(level, . . .)

IN level Profiling level (integer)

int MPI_Pcontrol(const int level, ...)

MPI_Pcontrol(level)

INTEGER, INTENT(IN) :: level

MPI_PCONTROL(LEVEL)

INTEGER LEVEL

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are flushed, which may be a no-op in some profilers.

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e., as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and to obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library supports the
collection of more detailed profiling information with source code that can still link against
the standard MPI library.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

558 CHAPTER 14. TOOL SUPPORT

14.2.5 Profiler Implementation Example

A profiler can accumulate the total amount of data sent by the MPI_SEND function, along
with the total elapsed time spent in the function as the following example shows:

Example 14.1

static int totalBytes = 0;

static double totalTime = 0.0;

int MPI_Send(const void* buffer, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm)

{

double tstart = MPI_Wtime(); /* Pass on all arguments */

int extent;

int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

totalTime += MPI_Wtime() - tstart; /* and time */

MPI_Type_size(datatype, &extent); /* Compute size */

totalBytes += count*extent;

return result;

}

14.2.6 MPI Library Implementation Example

If the MPI library is implemented in C on a Unix system, then there are various options,
including the two presented here, for supporting the name-shift requirement. The choice
between these two options depends partly on whether the linker and compiler support weak
symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols (e.g., Solaris 2.x, other System
V.4 machines), then only a single library is required as the following example shows:

Example 14.2

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)

{

/* Useful content */

}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library); however if no other definition exists, then the
linker will use the weak definition.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.2. PROFILING INTERFACE 559

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
preprocessor as the following example shows:

Example 14.3

#ifdef PROFILELIB

ifdef __STDC__

define FUNCTION(name) P##name

else

define FUNCTION(name) P/**/name

endif

#else

define FUNCTION(name) name

#endif

Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example)(/* appropriate args */)

{

/* Useful content */

}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions, libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.2.7 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions (e.g., a portable implementation of the collective operations implemented using point
to point communications), there is potential for profiling functions to be called from within
an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances (e.g., it might allow one to answer the question “How much time
is spent in the point to point routines when they are called from collective functions?”), we
have decided not to enforce any restrictions on the author of the MPI library that would

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

560 CHAPTER 14. TOOL SUPPORT

overcome this. Therefore the author of the profiling library should be aware of this problem,
and guard against it. In a single-threaded world this is easily achieved through use of a
static variable in the profiling code that remembers if you are already inside a profiling
routine. It becomes more complex in a multi-threaded environment (as does the meaning
of the times recorded).

Linker Oddities

The Unix linker traditionally operates in one pass: the effect of this is that functions from
libraries are only included in the image if they are needed at the time the library is scanned.
When combined with weak symbols, or multiple definitions of the same function, this can
cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be copied out of
the base library and into the profiling one using a tool such as ar.

Fortran Support Methods

The different Fortran support methods and possible options for the support of subarrays
(depending on whether the compiler can support TYPE(*), DIMENSION(..) choice buffers)
imply different specific procedure names for the same Fortran MPI routine. The rules and
implications for the profiling interface are described in Section 17.1.5.

14.2.8 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language,

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.

Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 561

before calling the underlying MPI function. This capability has been demonstrated in the
PNMPI tool infrastructure [51].

14.3 The MPI Tool Information Interface

MPI implementations often use internal variables to control their operation and perfor-
mance. Understanding and manipulating these variables can provide a more efficient exe-
cution environment or improve performance for many applications. This section describes
the MPI tool information interface, which provides a mechanism for MPI implementors
to expose variables, each of which represents a particular property, setting, or performance
measurement from within the MPI implementation. The interface is split into two parts: the
first part provides information about and supports the setting of control variables through
which the MPI implementation tunes its configuration. The second part provides access to
performance variables that can provide insight into internal performance information of the
MPI implementation.

To avoid restrictions on the MPI implementation, the MPI tool information interface
allows the implementation to specify which control and performance variables exist. Ad-
ditionally, the user of the MPI tool information interface can obtain metadata about each
available variable, such as its datatype, and a textual description. The MPI tool information
interface provides the necessary routines to find all variables that exist in a particular MPI
implementation, to query their properties, to retrieve descriptions about their meaning, and
to access and, if appropriate, to alter their values.

Variables and categories across connected processes with equivalent names are required
to have the same meaning (see the definition of “equivalent” as related to strings in Section
14.3.3). Furthermore, enumerations with equivalent names across connected processes are
required to have the same meaning, but are allowed to comprise different enumeration items.
Enumeration items that have equivalent names across connected processes in enumerations
with the same meaning must also have the same meaning. In order for variables and
categories to have the same meaning, routines in the tools information interface that return
details for those variables and categories have requirements on what parameters must be
identical. These requirements are specified in their respective sections.

Rationale. The intent of requiring the same meaning for entities with equivalent
names is to enforce consistency across connected processes. For example, variables
describing the number of packets sent on different types of network devices should have
different names to reflect their potentially different meanings. (End of rationale.)

The MPI tool information interface can be used independently from the MPI com-
munication functionality. In particular, the routines of this interface can be called before
MPI_INIT (or equivalent) and after MPI_FINALIZE. In order to support this behavior cleanly,
the MPI tool information interface uses separate initialization and finalization routines. All
identifiers used in the MPI tool information interface have the prefix MPI_T_.

On success, all MPI tool information interface routines return MPI_SUCCESS, otherwise
they return an appropriate and unique return code indicating the reason why the call was
not successfully completed. Details on return codes can be found in Section 14.3.9. However,
unsuccessful calls to the MPI tool information interface are not fatal and do not impact the
execution of subsequent MPI routines.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

562 CHAPTER 14. TOOL SUPPORT

Since the MPI tool information interface primarily focuses on tools and support li-
braries, MPI implementations are only required to provide C bindings for functions and
constants introduced in this section. Except where otherwise noted, all conventions and
principles governing the C bindings of the MPI API also apply to the MPI tool information
interface, which is available by including the mpi.h header file. All routines in this interface
have local semantics.

Advice to users. The number and type of control variables and performance variables
can vary between MPI implementations, platforms and different builds of the same im-
plementation on the same platform as well as between runs. Hence, any application
relying on a particular variable will not be portable. Further, there is no guaran-
tee that the number of variables and variable indices are the same across connected
processes.

This interface is primarily intended for performance monitoring tools, support tools,
and libraries controlling the application’s environment. When maximum portability
is desired, application programmers should either avoid using the MPI tool informa-
tion interface or avoid being dependent on the existence of a particular control or
performance variable. (End of advice to users.)

14.3.1 Verbosity Levels

The MPI tool information interface provides access to internal configuration and perfor-
mance information through a set of control and performance variables defined by the MPI
implementation. Since some implementations may export a large number of variables,
variables are classified by a verbosity level that categorizes both their intended audience
(end users, performance tuners or MPI implementors) and a relative measure of level of
detail (basic, detailed or all). These verbosity levels are described by a single integer.
Table 14.1 lists the constants for all possible verbosity levels. The values of the con-
stants are monotonic in the order listed in the table; i.e., MPI_T_VERBOSITY_USER_BASIC

< MPI_T_VERBOSITY_USER_DETAIL < . . .< MPI_T_VERBOSITY_MPIDEV_ALL.

MPI_T_VERBOSITY_USER_BASIC Basic information of interest to users
MPI_T_VERBOSITY_USER_DETAIL Detailed information of interest to users
MPI_T_VERBOSITY_USER_ALL All remaining information of interest to users

MPI_T_VERBOSITY_TUNER_BASIC Basic information required for tuning
MPI_T_VERBOSITY_TUNER_DETAIL Detailed information required for tuning
MPI_T_VERBOSITY_TUNER_ALL All remaining information required for tuning

MPI_T_VERBOSITY_MPIDEV_BASIC Basic information for MPI implementors
MPI_T_VERBOSITY_MPIDEV_DETAIL Detailed information for MPI implementors
MPI_T_VERBOSITY_MPIDEV_ALL All remaining information for MPI implementors

Table 14.1: MPI tool information interface verbosity levels

14.3.2 Binding MPI Tool Information Interface Variables to MPI Objects

Each MPI tool information interface variable provides access to a particular control setting
or performance property of the MPI implementation. A variable may refer to a specific

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 563

MPI object such as a communicator, datatype, or one-sided communication window, or the
variable may refer more generally to the MPI environment of the process. Except for the
last case, the variable must be bound to exactly one MPI object before it can be used.
Table 14.2 lists all MPI object types to which an MPI tool information interface variable
can be bound, together with the matching constant that MPI tool information interface
routines return to identify the object type.

Constant MPI object

MPI_T_BIND_NO_OBJECT N/A; applies globally to entire MPI process
MPI_T_BIND_MPI_COMM MPI communicators
MPI_T_BIND_MPI_DATATYPE MPI datatypes
MPI_T_BIND_MPI_ERRHANDLER MPI error handlers
MPI_T_BIND_MPI_FILE MPI file handles
MPI_T_BIND_MPI_GROUP MPI groups
MPI_T_BIND_MPI_OP MPI reduction operators
MPI_T_BIND_MPI_REQUEST MPI requests
MPI_T_BIND_MPI_WIN MPI windows for one-sided communication
MPI_T_BIND_MPI_MESSAGE MPI message object
MPI_T_BIND_MPI_INFO MPI info object

Table 14.2: Constants to identify associations of variables

Rationale. Some variables have meanings tied to a specific MPI object. Examples
include the number of send or receive operations that use a particular datatype, the
number of times a particular error handler has been called, or the communication pro-
tocol and “eager limit” used for a particular communicator. Creating a new MPI tool
information interface variable for each MPI object would cause the number of vari-
ables to grow without bound, since they cannot be reused to avoid naming conflicts.
By associating MPI tool information interface variables with a specific MPI object,
the MPI implementation only must specify and maintain a single variable, which can
then be applied to as many MPI objects of the respective type as created during the
program’s execution. (End of rationale.)

14.3.3 Convention for Returning Strings

Several MPI tool information interface functions return one or more strings. These functions
have two arguments for each string to be returned: an OUTparameter that identifies a
pointer to the buffer in which the string will be returned, and an IN/OUTparameter to
pass the length of the buffer. The user is responsible for the memory allocation of the
buffer and must pass the size of the buffer (n) as the length argument. Let n be the length
value specified to the function. On return, the function writes at most n− 1 of the string’s
characters into the buffer, followed by a null terminator. If the returned string’s length is
greater than or equal to n, the string will be truncated to n−1 characters. In this case, the
length of the string plus one (for the terminating null character) is returned in the length
argument. If the user passes the null pointer as the buffer argument or passes 0 as the
length argument, the function does not return the string and only returns the length of the
string plus one in the length argument. If the user passes the null pointer as the length
argument, the buffer argument is ignored and nothing is returned.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

564 CHAPTER 14. TOOL SUPPORT

MPI implementations behave as if they have an internal character array that is copied
to the output character array supplied by the user. Such output strings are defined to
be equivalent if their notional source-internal character arrays are identical (up to and
including the null terminator), even if the output string is truncated due to a small input
length parameter n.

14.3.4 Initialization and Finalization

The MPI tool information interface requires a separate set of initialization and finalization
routines.

MPI_T_INIT_THREAD(required, provided)

IN required desired level of thread support (integer)

OUT provided provided level of thread support (integer)

int MPI_T_init_thread(int required, int *provided)

All programs or tools that use the MPI tool information interface must initialize the
MPI tool information interface in the processes that will use the interface before calling
any other of its routines. A user can initialize the MPI tool information interface by calling
MPI_T_INIT_THREAD, which can be called multiple times. In addition, this routine initial-
izes the thread environment for all routines in the MPI tool information interface. Calling
this routine when the MPI tool information interface is already initialized has no effect
beyond increasing the reference count of how often the interface has been initialized. The
argument required is used to specify the desired level of thread support. The possible values
and their semantics are identical to the ones that can be used with MPI_INIT_THREAD
listed in Section 12.4. The call returns in provided information about the actual level of
thread support that will be provided by the MPI implementation for calls to MPI tool
information interface routines. It can be one of the four values listed in Section 12.4.

The MPI specification does not require all MPI processes to exist before the call to
MPI_INIT. If the MPI tool information interface is used before MPI_INIT has been called,
the user is responsible for ensuring that the MPI tool information interface is initialized on
all processes it is used in. Processes created by the MPI implementation during MPI_INIT
inherit the status of the MPI tool information interface (whether it is initialized or not as
well as all active sessions and handles) from the process from which they are created.

Processes created at runtime as a result of calls to MPI’s dynamic process management
require their own initialization before they can use the MPI tool information interface.

Advice to users. If MPI_T_INIT_THREAD is called before MPI_INIT_THREAD,
the requested and granted thread level for MPI_T_INIT_THREAD may influence the
behavior and return value of MPI_INIT_THREAD. The same is true for the reverse
order. (End of advice to users.)

Advice to implementors. MPI implementations should strive to make as many control
or performance variables available before MPI_INIT (instead of adding them within
MPI_INIT) to allow tools the most flexibility. In particular, control variables should
be available before MPI_INIT if their value cannot be changed after MPI_INIT. (End
of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 565

MPI_T_FINALIZE()

int MPI_T_finalize(void)

This routine finalizes the use of the MPI tool information interface and may be called
as often as the corresponding MPI_T_INIT_THREAD routine up to the current point of
execution. Calling it more times returns a corresponding error code. As long as the number
of calls to MPI_T_FINALIZE is smaller than the number of calls to MPI_T_INIT_THREAD
up to the current point of execution, the MPI tool information interface remains initialized
and calls to its routines are permissible. Further, additional calls to MPI_T_INIT_THREAD
after one or more calls to MPI_T_FINALIZE are permissible.

Once MPI_T_FINALIZE is called the same number of times as the routine
MPI_T_INIT_THREAD up to the current point of execution, the MPI tool information in-
terface is no longer initialized. The interface can be reinitialized by subsequent calls to
MPI_T_INIT_THREAD.

At the end of the program execution, unless MPI_ABORT is called, an application must
have called MPI_T_INIT_THREAD and MPI_T_FINALIZE an equal number of times.

14.3.5 Datatype System

All variables managed through the MPI tool information interface represent their values
through typed buffers of a given length and type using an MPI datatype (similar to regular
send/receive buffers). Since the initialization of the MPI tool information interface is sep-
arate from the initialization of MPI, MPI tool information interface routines can be called
before MPI_INIT. Consequently, these routines can also use MPI datatypes before MPI_INIT.
Therefore, within the context of the MPI tool information interface, it is permissible to use
a subset of MPI datatypes as specified below before a call to MPI_INIT (or equivalent).

MPI_INT

MPI_UNSIGNED

MPI_UNSIGNED_LONG

MPI_UNSIGNED_LONG_LONG

MPI_COUNT

MPI_CHAR

MPI_DOUBLE

Table 14.3: MPI datatypes that can be used by the MPI tool information interface

Rationale. The MPI tool information interface relies mainly on unsigned datatypes
for integer values since most variables are expected to represent counters or resource
sizes. MPI_INT is provided for additional flexibility and is expected to be used mainly
for control variables and enumeration types (see below).

Providing all basic datatypes, in particular providing all signed and unsigned variants
of integer types, would lead to a larger number of types, which tools need to interpret.
This would cause unnecessary complexity in the implementation of tools based on the
MPI tool information interface. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

566 CHAPTER 14. TOOL SUPPORT

The MPI tool information interface only relies on a subset of the basic MPI datatypes
and does not use any derived MPI datatypes. Table 14.3 lists all MPI datatypes that can
be returned by the MPI tool information interface to represent its variables.

The use of the datatype MPI_CHAR in the MPI tool information interface implies a null-
terminated character array, i.e., a string in the C language. If a variable has type MPI_CHAR,
the value of the count parameter returned by MPI_T_CVAR_HANDLE_ALLOC and
MPI_T_PVAR_HANDLE_ALLOC must be large enough to include any valid value, including
its terminating null character. The contents of returned MPI_CHAR arrays are only defined
from index 0 through the location of the first null character.

Rationale. The MPI tool information interface requires a significantly simpler type
system than MPI itself. Therefore, only its required subset must be present before
MPI_INIT (or equivalent) and MPI implementations do not need to initialize the com-
plete MPI datatype system. (End of rationale.)

For variables of type MPI_INT, an MPI implementation can provide additional infor-
mation by associating names with a fixed number of values. We refer to this information
in the following as an enumeration. In this case, the respective calls that provide addi-
tional metadata for each control or performance variable, i.e., MPI_T_CVAR_GET_INFO
(Section 14.3.6) and MPI_T_PVAR_GET_INFO (Section 14.3.7), return a handle of type
MPI_T_enum that can be passed to the following functions to extract additional informa-
tion. Thus, the MPI implementation can describe variables with a fixed set of values that
each represents a particular state. Each enumeration type can have N different values, with
a fixed N that can be queried using MPI_T_ENUM_GET_INFO.

MPI_T_ENUM_GET_INFO(enumtype, num, name, name_len)

IN enumtype enumeration to be queried (handle)

OUT num number of discrete values represented by this enumer-

ation (integer)

OUT name buffer to return the string containing the name of the

enumeration (string)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_enum_get_info(MPI_T_enum enumtype, int *num, char *name, int

*name_len)

If enumtype is a valid enumeration, this routine returns the number of items represented
by this enumeration type as well as its name. N must be greater than 0, i.e., the enumeration
must represent at least one value.

The arguments name and name_len are used to return the name of the enumeration as
described in Section 14.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for enumerations that the MPI implementation uses.

Names associated with individual values in each enumeration enumtype can be queried
using MPI_T_ENUM_GET_ITEM.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 567

MPI_T_ENUM_GET_ITEM(enumtype, index, value, name, name_len)

IN enumtype enumeration to be queried (handle)

IN index number of the value to be queried in this enumeration

(integer)

OUT value variable value (integer)

OUT name buffer to return the string containing the name of the

enumeration item (string)

INOUT name_len length of the string and/or buffer for name (integer)

int MPI_T_enum_get_item(MPI_T_enum enumtype, int index, int *value, char

*name, int *name_len)

The arguments name and name_len are used to return the name of the enumeration
item as described in Section 14.3.3.

If completed successfully, the routine returns the name/value pair that describes the
enumeration at the specified index. The call is further required to return a name of at least
length one. This name must be unique with respect to all other names of items for the same
enumeration.

14.3.6 Control Variables

The routines described in this section of the MPI tool information interface specification
focus on the ability to list, query, and possibly set control variables exposed by the MPI
implementation. These variables can typically be used by the user to fine tune properties
and configuration settings of the MPI implementation. On many systems, such variables
can be set using environment variables, although other configuration mechanisms may be
available, such as configuration files or central configuration registries. A typical example
that is available in several existing MPI implementations is the ability to specify an “eager
limit,” i.e., an upper bound on the size of messages sent or received using an eager protocol.

Control Variable Query Functions

An MPI implementation exports a set of N control variables through the MPI tool infor-
mation interface. If N is zero, then the MPI implementation does not export any control
variables, otherwise the provided control variables are indexed from 0 to N − 1. This index
number is used in subsequent calls to identify the individual variables.

An MPI implementation is allowed to increase the number of control variables during
the execution of an MPI application when new variables become available through dynamic
loading. However, MPI implementations are not allowed to change the index of a control
variable or to delete a variable once it has been added to the set. When a variable becomes
inactive, e.g., through dynamic unloading, accessing its value should return a corresponding
error code.

Advice to users. While the MPI tool information interface guarantees that indices or
variable properties do not change during a particular run of an MPI program, it does
not provide a similar guarantee between runs. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

568 CHAPTER 14. TOOL SUPPORT

The following function can be used to query the number of control variables, num_cvar:

MPI_T_CVAR_GET_NUM(num_cvar)

OUT num_cvar returns number of control variables (integer)

int MPI_T_cvar_get_num(int *num_cvar)

The function MPI_T_CVAR_GET_INFO provides access to additional information for
each variable.

MPI_T_CVAR_GET_INFO(cvar_index, name, name_len, verbosity, datatype, enumtype, desc,
desc_len, bind, scope)

IN cvar_index index of the control variable to be queried, value be-

tween 0 and num_cvar − 1 (integer)

OUT name buffer to return the string containing the name of the

control variable (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT verbosity verbosity level of this variable (integer)

OUT datatype MPI datatype of the information stored in the control

variable (handle)

OUT enumtype optional descriptor for enumeration information (han-

dle)

OUT desc buffer to return the string containing a description of

the control variable (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT bind type of MPI object to which this variable must be

bound (integer)

OUT scope scope of when changes to this variable are possible

(integer)

int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len, int

*verbosity, MPI_Datatype *datatype, MPI_T_enum *enumtype, char

*desc, int *desc_len, int *bind, int *scope)

After a successful call to MPI_T_CVAR_GET_INFO for a particular variable, subsequent
calls to this routine that query information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.

If any OUT parameter to MPI_T_CVAR_GET_INFO is a NULL pointer, the implemen-
tation will ignore the parameter and not return a value for the parameter.

The arguments name and name_len are used to return the name of the control variable
as described in Section 14.3.3.

If completed successfully, the routine is required to return a name of at least length
one. The name must be unique with respect to all other names for control variables used
by the MPI implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 569

The argument verbosity returns the verbosity level of the variable (see Section 14.3.1).
The argument datatype returns the MPI datatype that is used to represent the control

variable.
If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the

values represented by this variable and return it in enumtype. In this case, MPI returns an
enumeration identifier, which can then be used to gather more information as described in
Section 14.3.5. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the datatype is not
MPI_INT or the argument enumtype is the null pointer, no enumeration type is returned.

The arguments desc and desc_len are used to return a description of the control variable
as described in Section 14.3.3.

Returning a description is optional. If an MPI implementation does not return a de-
scription, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 14.3.2).

The scope of a variable determines whether changing a variable’s value is either local to
the process or must be done by the user across multiple processes. The latter is further split
into variables that require changes in a group of processes and those that require collective
changes among all connected processes. Both cases can require all processes either to be
set to consistent (but potentially different) values or to equal values on every participating
process. The description provided with the variable must contain an explanation about the
requirements and/or restrictions for setting the particular variable.

On successful return from MPI_T_CVAR_GET_INFO, the argument scope will be set to
one of the constants listed in Table 14.4.

If the name of a control variable is equivalent across connected processes, the following
OUT parameters must be identical: verbosity, datatype, enumtype, bind, and scope. The
returned description must be equivalent.

Scope Constant Description

MPI_T_SCOPE_CONSTANT read-only, value is constant
MPI_T_SCOPE_READONLY read-only, cannot be written, but can change
MPI_T_SCOPE_LOCAL may be writeable, writing is a local operation
MPI_T_SCOPE_GROUP may be writeable, must be done to a group of processes,

all processes in a group must be set to consistent values
MPI_T_SCOPE_GROUP_EQ may be writeable, must be done to a group of processes,

all processes in a group must be set to the same value
MPI_T_SCOPE_ALL may be writeable, must be done to all processes,

all connected processes must be set to consistent values
MPI_T_SCOPE_ALL_EQ may be writeable, must be done to all processes,

all connected processes must be set to the same value

Table 14.4: Scopes for control variables

Advice to users. The scope of a variable only indicates if a variable might be
changeable; it is not a guarantee that it can be changed at any time. (End of advice
to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

570 CHAPTER 14. TOOL SUPPORT

MPI_T_CVAR_GET_INDEX(name, cvar_index)

IN name name of the control variable (string)

OUT cvar_index index of the control variable (integer)

int MPI_T_cvar_get_index(const char *name, int *cvar_index)

MPI_T_CVAR_GET_INDEX is a function for retrieving the index of a control variable
given a known variable name. The name parameter is provided by the caller, and cvar_index
is returned by the MPI implementation. The name parameter is a string terminated with a
null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME

if name does not match the name of any control variable provided by the implementation
at the time of the call.

Rationale. This routine is provided to enable fast retrieval of control variables by
a tool, assuming it knows the name of the variable for which it is looking. The
number of variables exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of variables once at initialization.
Although using MPI implementation specific variable names is not portable across MPI
implementations, tool developers may choose to take this route for lower overhead at
runtime because the tool will not have to iterate over the entire set of variables to
find a specific one. (End of rationale.)

Example: Printing All Control Variables

Example 14.4
The following example shows how the MPI tool information interface can be used to

query and to print the names of all available control variables.

#include <stdio.h>

#include <stdlib.h>

#include <mpi.h>

int main(int argc, char *argv[]) {

int i, err, num, namelen, bind, verbose, scope;

int threadsupport;

char name[100];

MPI_Datatype datatype;

err=MPI_T_init_thread(MPI_THREAD_SINGLE,&threadsupport);

if (err!=MPI_SUCCESS)

return err;

err=MPI_T_cvar_get_num(&num);

if (err!=MPI_SUCCESS)

return err;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 571

for (i=0; i<num; i++) {

namelen=100;

err=MPI_T_cvar_get_info(i, name, &namelen,

&verbose, &datatype, NULL,

NULL, NULL, /*no description */

&bind, &scope);

if (err!=MPI_SUCCESS || err!=MPI_T_ERR_INVALID_INDEX) return err;

printf("Var %i: %s\n", i, name);

}

err=MPI_T_finalize();

if (err!=MPI_SUCCESS)

return 1;

else

return 0;

}

Handle Allocation and Deallocation

Before reading or writing the value of a variable, a user must first allocate a handle of type
MPI_T_cvar_handle for the variable by binding it to an MPI object (see also Section 14.3.2).

Rationale. Handles used in the MPI tool information interface are distinct from
handles used in the remaining parts of the MPI standard because they must be usable
before MPI_INIT and after MPI_FINALIZE. Further, accessing handles, in particular
for performance variables, can be time critical and having a separate handle space
enables optimizations. (End of rationale.)

MPI_T_CVAR_HANDLE_ALLOC(cvar_index, obj_handle, handle, count)

IN cvar_index index of control variable for which handle is to be al-

located (index)

IN obj_handle reference to a handle of the MPI object to which this

variable is supposed to be bound (pointer)

OUT handle allocated handle (handle)

OUT count number of elements used to represent this variable (in-

teger)

int MPI_T_cvar_handle_alloc(int cvar_index, void *obj_handle,

MPI_T_cvar_handle *handle, int *count)

This routine binds the control variable specified by the argument index to an MPI object.
The object is passed in the argument obj_handle as an address to a local variable that stores
the object’s handle. The argument obj_handle is ignored if the MPI_T_CVAR_GET_INFO
call for this control variable returned MPI_T_BIND_NO_OBJECT in the argument bind. The
handle allocated to reference the variable is returned in the argument

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

572 CHAPTER 14. TOOL SUPPORT

handle. Upon successful return, count contains the number of elements (of the datatype
returned by a previous MPI_T_CVAR_GET_INFO call) used to represent this variable.

Advice to users. The count can be different based on the MPI object to which the
control variable was bound. For example, variables bound to communicators could
have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as
MPI_COMM_WORLD to this routine, since their implementation depends on the MPI
library. Instead, such object handles should be stored in a local variable and the
address of this local variable should be passed into MPI_T_CVAR_HANDLE_ALLOC.
(End of advice to users.)

The value of cvar_index should be in the range 0 to num_cvar − 1, where num_cvar
is the number of available control variables as determined from a prior call to
MPI_T_CVAR_GET_NUM. The type of the MPI object it references must be consistent
with the type returned in the bind argument in a prior call to MPI_T_CVAR_GET_INFO.

MPI_T_CVAR_HANDLE_FREE(handle)

INOUT handle handle to be freed (handle)

int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)

When a handle is no longer needed, a user of the MPI tool information interface should
call MPI_T_CVAR_HANDLE_FREE to free the handle and the associated resources in the
MPI implementation. On a successful return, MPI sets the handle to
MPI_T_CVAR_HANDLE_NULL.

Control Variable Access Functions

MPI_T_CVAR_READ(handle, buf)

IN handle handle to the control variable to be read (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_cvar_read(MPI_T_cvar_handle handle, void* buf)

This routine queries the value of a control variable identified by the argument handle and
stores the result in the buffer identified by the parameter buf. The user must ensure that the
buffer is of the appropriate size to hold the entire value of the control variable (based on the
returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO
and MPI_T_CVAR_HANDLE_ALLOC, respectively).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 573

MPI_T_CVAR_WRITE(handle, buf)

IN handle handle to the control variable to be written (handle)

IN buf initial address of storage location for variable value

(choice)

int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void* buf)

This routine sets the value of the control variable identified by the argument handle to
the data stored in the buffer identified by the parameter buf. The user must ensure that the
buffer is of the appropriate size to hold the entire value of the control variable (based on the
returned datatype and count from prior corresponding calls to MPI_T_CVAR_GET_INFO
and MPI_T_CVAR_HANDLE_ALLOC, respectively).

If the variable has a global scope (as returned by a prior corresponding
MPI_T_CVAR_GET_INFO call), any write call to this variable must be issued by the user
in all connected (as defined in Section 10.5.4) MPI processes. If the variable has group
scope, any write call to this variable must be issued by the user in all MPI processes in
the group, which must be described by the MPI implementation in the description by the
MPI_T_CVAR_GET_INFO.

In both cases, the user must ensure that the writes in all processes are consistent. If
the scope is either MPI_T_SCOPE_ALL_EQ or MPI_T_SCOPE_GROUP_EQ this means that the
variable in all processes must be set to the same value.

If it is not possible to change the variable at the time the call is made, the function
returns either MPI_T_ERR_CVAR_SET_NOT_NOW, if there may be a later time at which the
variable could be set, or MPI_T_ERR_CVAR_SET_NEVER, if the variable cannot be set for the
remainder of the application’s execution.

Example: Reading the Value of a Control Variable

Example 14.5
The following example shows a routine that can be used to query the value with a

control variable with a given index. The example assumes that the variable is intended to
be bound to an MPI communicator.

int getValue_int_comm(int index, MPI_Comm comm, int *val) {

int err,count;

MPI_T_cvar_handle handle;

/* This example assumes that the variable index */

/* can be bound to a communicator */

err=MPI_T_cvar_handle_alloc(index,&comm,&handle,&count);

if (err!=MPI_SUCCESS) return err;

/* The following assumes that the variable is */

/* represented by a single integer */

err=MPI_T_cvar_read(handle,val);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

574 CHAPTER 14. TOOL SUPPORT

if (err!=MPI_SUCCESS) return err;

err=MPI_T_cvar_handle_free(&handle);

return err;

}

14.3.7 Performance Variables

The following section focuses on the ability to list and to query performance variables
provided by the MPI implementation. Performance variables provide insight into MPI im-
plementation specific internals and can represent information such as the state of the MPI
implementation (e.g., waiting blocked, receiving, not active), aggregated timing data for
submodules, or queue sizes and lengths.

Rationale. The interface for performance variables is separate from the interface for
control variables, since performance variables have different requirements and param-
eters. By keeping them separate, the interface provides cleaner semantics and allows
for more performance optimization opportunities. (End of rationale.)

Performance Variable Classes

Each performance variable is associated with a class that describes its basic semantics,
possible datatypes, basic behavior, its starting value, whether it can overflow, and when
and how an MPI implementation can change the variable’s value. The starting value is the
value that is assigned to the variable the first time that it is used or whenever it is reset.

Advice to users. If a performance variable belongs to a class that can overflow,
it is up to the user to protect against this overflow, e.g., by frequently reading and
resetting the variable value. (End of advice to users.)

Advice to implementors. MPI implementations should use large enough datatypes
for each performance variable to avoid overflows under normal circumstances. (End
of advice to implementors.)

The classes are defined by the following constants:

• MPI_T_PVAR_CLASS_STATE

A performance variable in this class represents a set of discrete states. Variables of
this class are represented by MPI_INT and can be set by the MPI implementation at
any time. Variables of this type should be described further using an enumeration, as
discussed in Section 14.3.5. The starting value is the current state of the implemen-
tation at the time that the starting value is set. MPI implementations must ensure
that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_LEVEL

A performance variable in this class represents a value that describes the utilization
level of a resource. The value of a variable of this class can change at any time to match
the current utilization level of the resource. Values returned from variables in this class
are non-negative and represented by one of the following datatypes: MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 575

is the current utilization level of the resource at the time that the starting value is
set. MPI implementations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_SIZE

A performance variable in this class represents a value that is the size of a resource.
Values returned from variables in this class are non-negative and represented by one
of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current size of
the resource at the time that the starting value is set. MPI implementations must
ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_PERCENTAGE

The value of a performance variable in this class represents the percentage utiliza-
tion of a finite resource. The value of a variable of this class can change at any
time to match the current utilization level of the resource. It will be returned as an
MPI_DOUBLE datatype. The value must always be between 0.0 (resource not used at
all) and 1.0 (resource completely used). The starting value is the current percent-
age utilization level of the resource at the time that the starting value is set. MPI
implementations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_HIGHWATERMARK

A performance variable in this class represents a value that describes the high water-
mark utilization of a resource. The value of a variable of this class is non-negative
and grows monotonically from the initialization or reset of the variable. It can be rep-
resented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utiliza-
tion level of the resource at the time that the variable is started or reset. MPI imple-
mentations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_LOWWATERMARK

A performance variable in this class represents a value that describes the low water-
mark utilization of a resource. The value of a variable of this class is non-negative
and decreases monotonically from the initialization or reset of the variable. It can be
represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value is the current utiliza-
tion level of the resource at the time that the variable is started or reset. MPI imple-
mentations must ensure that variables of this class cannot overflow.

• MPI_T_PVAR_CLASS_COUNTER

A performance variable in this class counts the number of occurrences of a specific
event (e.g., the number of memory allocations within an MPI library). The value of
a variable of this class increases monotonically from the initialization or reset of the
performance variable by one for each specific event that is observed. Values must
be non-negative and represented by one of the following datatypes: MPI_UNSIGNED,
MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG. The starting value for variables
of this class is 0. Variables of this class can overflow.

• MPI_T_PVAR_CLASS_AGGREGATE

The value of a performance variable in this class is an an aggregated value that
represents a sum of arguments processed during a specific event (e.g., the amount

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

576 CHAPTER 14. TOOL SUPPORT

of memory allocated by all memory allocations). This class is similar to the counter
class, but instead of counting individual events, the value can be incremented by
arbitrary amounts. The value of a variable of this class increases monotonically from
the initialization or reset of the performance variable. It must be non-negative and
represented by one of the following datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG,
MPI_UNSIGNED_LONG_LONG, MPI_DOUBLE. The starting value for variables of this
class is 0. Variables of this class can overflow.

• MPI_T_PVAR_CLASS_TIMER

The value of a performance variable in this class represents the aggregated time that
the MPI implementation spends executing a particular event, type of event, or section
of the MPI library. This class has the same basic semantics as
MPI_T_PVAR_CLASS_AGGREGATE, but explicitly records a timing value. The value of
a variable of this class increases monotonically from the initialization or reset of the
performance variable. It must be non-negative and represented by one of the following
datatypes: MPI_UNSIGNED, MPI_UNSIGNED_LONG, MPI_UNSIGNED_LONG_LONG,
MPI_DOUBLE. The starting value for variables of this class is 0. If the type
MPI_DOUBLE is used, the units that represent time in this datatype must match the
units used by MPI_WTIME. Otherwise, the time units should be documented, e.g.,
in the description returned by MPI_T_PVAR_GET_INFO. Variables of this class can
overflow.

• MPI_T_PVAR_CLASS_GENERIC

This class can be used to describe a variable that does not fit into any of the
other classes. For variables in this class, the starting value is variable-specific and
implementation-defined.

Performance Variable Query Functions

An MPI implementation exports a set of N performance variables through the MPI tool
information interface. If N is zero, then the MPI implementation does not export any
performance variables; otherwise the provided performance variables are indexed from 0 to
N − 1. This index number is used in subsequent calls to identify the individual variables.

An MPI implementation is allowed to increase the number of performance variables
during the execution of an MPI application when new variables become available through
dynamic loading. However, MPI implementations are not allowed to change the index of
a performance variable or to delete a variable once it has been added to the set. When
a variable becomes inactive, e.g., through dynamic unloading, accessing its value should
return a corresponding error code.

The following function can be used to query the number of performance variables, N :

MPI_T_PVAR_GET_NUM(num_pvar)

OUT num_pvar returns number of performance variables (integer)

int MPI_T_pvar_get_num(int *num_pvar)

The function MPI_T_PVAR_GET_INFO provides access to additional information for
each variable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 577

MPI_T_PVAR_GET_INFO(pvar_index, name, name_len, verbosity, varclass, datatype,
enumtype, desc, desc_len, bind, readonly, continuous, atomic)

IN pvar_index index of the performance variable to be queried be-

tween 0 and num_pvar − 1 (integer)

OUT name buffer to return the string containing the name of the

performance variable (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT verbosity verbosity level of this variable (integer)

OUT var_class class of performance variable (integer)

OUT datatype MPI datatype of the information stored in the perfor-

mance variable (handle)

OUT enumtype optional descriptor for enumeration information (han-

dle)

OUT desc buffer to return the string containing a description of

the performance variable (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT bind type of MPI object to which this variable must be

bound (integer)

OUT readonly flag indicating whether the variable can be

written/reset (integer)

OUT continuous flag indicating whether the variable can be started and

stopped or is continuously active (integer)

OUT atomic flag indicating whether the variable can be atomically

read and reset (integer)

int MPI_T_pvar_get_info(int pvar_index, char *name, int *name_len,

int *verbosity, int *var_class, MPI_Datatype *datatype,

MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,

int *readonly, int *continuous, int *atomic)

After a successful call to MPI_T_PVAR_GET_INFO for a particular variable, subsequent
calls to this routine that query information about the same variable must return the same
information. An MPI implementation is not allowed to alter any of the returned values.

If any OUT parameter to MPI_T_PVAR_GET_INFO is a NULL pointer, the implemen-
tation will ignore the parameter and not return a value for the parameter.

The arguments name and name_len are used to return the name of the performance
variable as described in Section 14.3.3. If completed successfully, the routine is required
to return a name of at least length one.

The argument verbosity returns the verbosity level of the variable (see Section 14.3.1).
The class of the performance variable is returned in the parameter var_class. The class

must be one of the constants defined in Section 14.3.7.
The combination of the name and the class of the performance variable must be unique

with respect to all other names for performance variables used by the MPI implementation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

578 CHAPTER 14. TOOL SUPPORT

Advice to implementors. Groups of variables that belong closely together, but have
different classes, can have the same name. This choice is useful, e.g., to refer to
multiple variables that describe a single resource (like the level, the total size, as well
as high and low watermarks). (End of advice to implementors.)

The argument datatype returns the MPI datatype that is used to represent the perfor-
mance variable.

If the variable is of type MPI_INT, MPI can optionally specify an enumeration for the
values represented by this variable and return it in enumtype. In this case, MPI returns an
enumeration identifier, which can then be used to gather more information as described in
Section 14.3.5. Otherwise, enumtype is set to MPI_T_ENUM_NULL. If the datatype is not
MPI_INT or the argument enumtype is the null pointer, no enumeration type is returned.

Returning a description is optional. If an MPI implementation does not return a de-
scription, the first character for desc must be set to the null character and desc_len must
be set to one at the return from this function.

The parameter bind returns the type of the MPI object to which the variable must be
bound or the value MPI_T_BIND_NO_OBJECT (see Section 14.3.2).

Upon return, the argument readonly is set to zero if the variable can be written or reset
by the user. It is set to one if the variable can only be read.

Upon return, the argument continuous is set to zero if the variable can be started and
stopped by the user, i.e., it is possible for the user to control if and when the value of a
variable is updated. It is set to one if the variable is always active and cannot be controlled
by the user.

Upon return, the argument atomic is set to zero if the variable cannot be read and
reset atomically. Only variables for which the call sets atomic to one can be used in a call
to MPI_T_PVAR_READRESET.

If a performance variable has an equivalent name and has the same class across con-
nected processes, the following OUT parameters must be identical: verbosity, varclass,
datatype, enumtype, bind, readonly, continuous, and atomic. The returned description must
be equivalent.

MPI_T_PVAR_GET_INDEX(name, var_class, pvar_index)

IN name the name of the performance variable (string)

IN var_class the class of the performance variable (integer)

OUT pvar_index the index of the performance variable (integer)

int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)

MPI_T_PVAR_GET_INDEX is a function for retrieving the index of a performance
variable given a known variable name and class. The name and var_class parameters are
provided by the caller, and pvar_index is returned by the MPI implementation. The name
parameter is string terminated with a null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME if
name does not match the name of any performance variable provided by the implementation
at the time of the call.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 579

Rationale. This routine is provided to enable fast retrieval of performance variables
by a tool, assuming it knows the name of the variable for which it is looking. The
number of variables exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of variables once at initialization.
Although using MPI implementation specific variable names is not portable across MPI
implementations, tool developers may choose to take this route for lower overhead at
runtime because the tool will not have to iterate over the entire set of variables to
find a specific one. (End of rationale.)

Performance Experiment Sessions

Within a single program, multiple components can use the MPI tool information interface.
To avoid collisions with respect to accesses to performance variables, users of the MPI tool
information interface must first create a session. Subsequent calls that access performance
variables can then be made within the context of this session. Any call executed in a session
must not influence the results in any other session.

MPI_T_PVAR_SESSION_CREATE(session)

OUT session identifier of performance session (handle)

int MPI_T_pvar_session_create(MPI_T_pvar_session *session)

This call creates a new session for accessing performance variables and returns a handle
for this session in the argument session of type MPI_T_pvar_session.

MPI_T_PVAR_SESSION_FREE(session)

INOUT session identifier of performance experiment session (handle)

int MPI_T_pvar_session_free(MPI_T_pvar_session *session)

This call frees an existing session. Calls to the MPI tool information interface can no
longer be made within the context of a session after it is freed. On a successful return, MPI
sets the session identifier to MPI_T_PVAR_SESSION_NULL.

Handle Allocation and Deallocation

Before using a performance variable, a user must first allocate a handle of type
MPI_T_pvar_handle for the variable by binding it to an MPI object (see also Section 14.3.2).

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

580 CHAPTER 14. TOOL SUPPORT

MPI_T_PVAR_HANDLE_ALLOC(session, pvar_index, obj_handle, handle, count)

IN session identifier of performance experiment session (handle)

IN pvar_index index of performance variable for which handle is to

be allocated (integer)

IN obj_handle reference to a handle of the MPI object to which this

variable is supposed to be bound (pointer)

OUT handle allocated handle (handle)

OUT count number of elements used to represent this variable (in-

teger)

int MPI_T_pvar_handle_alloc(MPI_T_pvar_session session, int pvar_index,

void *obj_handle, MPI_T_pvar_handle *handle, int *count)

This routine binds the performance variable specified by the argument index to an
MPI object in the session identified by the parameter session. The object is passed in the
argument obj_handle as an address to a local variable that stores the object’s handle. The
argument obj_handle is ignored if the MPI_T_PVAR_GET_INFO call for this performance
variable returned MPI_T_BIND_NO_OBJECT in the argument bind. The handle allocated to
reference the variable is returned in the argument handle. Upon successful return, count
contains the number of elements (of the datatype returned by a previous
MPI_T_PVAR_GET_INFO call) used to represent this variable.

Advice to users. The count can be different based on the MPI object to which the
performance variable was bound. For example, variables bound to communicators
could have a count that matches the size of the communicator.

It is not portable to pass references to predefined MPI object handles, such as
MPI_COMM_WORLD, to this routine, since their implementation depends on the MPI
library. Instead, such an object handle should be stored in a local variable and the
address of this local variable should be passed into MPI_T_PVAR_HANDLE_ALLOC.
(End of advice to users.)

The value of index should be in the range 0 to num_pvar − 1, where num_pvar is the
number of available performance variables as determined from a prior call to
MPI_T_PVAR_GET_NUM. The type of the MPI object it references must be consistent
with the type returned in the bind argument in a prior call to MPI_T_PVAR_GET_INFO.

For all routines in the rest of this section that take both handle and session as IN

arguments, if the handle argument passed in is not associated with the session argument,
MPI_T_ERR_INVALID_HANDLE is returned.

MPI_T_PVAR_HANDLE_FREE(session, handle)

IN session identifier of performance experiment session (handle)

INOUT handle handle to be freed (handle)

int MPI_T_pvar_handle_free(MPI_T_pvar_session session, MPI_T_pvar_handle

*handle)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 581

When a handle is no longer needed, a user of the MPI tool information interface should
call MPI_T_PVAR_HANDLE_FREE to free the handle in the session identified by the pa-
rameter session and the associated resources in the MPI implementation. On a successful
return, MPI sets the handle to MPI_T_PVAR_HANDLE_NULL.

Starting and Stopping of Performance Variables

Performance variables that have the continuous flag set during the query operation are
continuously operating once a handle has been allocated. Such variables may be queried at
any time, but they cannot be started or stopped by the user. All other variables are in a
stopped state after their handle has been allocated; their values are not updated until they
have been started by the user.

MPI_T_PVAR_START(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_start(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

This functions starts the performance variable with the handle identified by the pa-
rameter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementa-
tion attempts to start all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns MPI_SUCCESS if all vari-
ables are started successfully (even if there are no non-continuous variables to be started),
otherwise MPI_T_ERR_PVAR_NO_STARTSTOP is returned. Continuous variables and vari-
ables that are already started are ignored when MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_STOP(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_stop(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

This functions stops the performance variable with the handle identified by the param-
eter handle in the session identified by the parameter session.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to stop all variables within the session identified by the parameter
session for which handles have been allocated. In this case, the routine returns MPI_SUCCESS

if all variables are stopped successfully (even if there are no non-continuous variables to be
stopped), otherwise MPI_T_ERR_PVAR_NO_STARTSTOP is returned. Continuous variables
and variables that are already stopped are ignored when MPI_T_PVAR_ALL_HANDLES is
specified.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

582 CHAPTER 14. TOOL SUPPORT

Performance Variable Access Functions

MPI_T_PVAR_READ(session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_read(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

void* buf)

The MPI_T_PVAR_READ call queries the value of the performance variable with the
handle handle in the session identified by the parameter session and stores the result in the
buffer identified by the parameter buf. The user is responsible to ensure that the buffer
is of the appropriate size to hold the entire value of the performance variable (based on
the datatype and count returned by the corresponding previous calls to
MPI_T_PVAR_GET_INFO and MPI_T_PVAR_HANDLE_ALLOC, respectively).

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_READ.

MPI_T_PVAR_WRITE(session,handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

IN buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_write(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

const void* buf)

The MPI_T_PVAR_WRITE call attempts to write the value of the performance variable
with the handle identified by the parameter handle in the session identified by the parameter
session. The value to be written is passed in the buffer identified by the parameter buf. The
user must ensure that the buffer is of the appropriate size to hold the entire value of the per-
formance variable (based on the datatype and count returned by the corresponding previous
calls to MPI_T_PVAR_GET_INFO and MPI_T_PVAR_HANDLE_ALLOC, respectively).

If it is not possible to change the variable, the function returns
MPI_T_ERR_PVAR_NO_WRITE.

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_WRITE.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 583

MPI_T_PVAR_RESET(session, handle)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

int MPI_T_pvar_reset(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

The MPI_T_PVAR_RESET call sets the performance variable with the handle identified
by the parameter handle to its starting value specified in Section 14.3.7. If it is not possible
to change the variable, the function returns MPI_T_ERR_PVAR_NO_WRITE.

If the constant MPI_T_PVAR_ALL_HANDLES is passed in handle, the MPI implementation
attempts to reset all variables within the session identified by the parameter session for
which handles have been allocated. In this case, the routine returns MPI_SUCCESS if all
variables are reset successfully (even if there are no valid handles or all are read-only),
otherwise MPI_T_ERR_PVAR_NO_WRITE is returned. Read-only variables are ignored when
MPI_T_PVAR_ALL_HANDLES is specified.

MPI_T_PVAR_READRESET(session, handle, buf)

IN session identifier of performance experiment session (handle)

IN handle handle of a performance variable (handle)

OUT buf initial address of storage location for variable value

(choice)

int MPI_T_pvar_readreset(MPI_T_pvar_session session, MPI_T_pvar_handle

handle, void* buf)

This call atomically combines the functionality of MPI_T_PVAR_READ and
MPI_T_PVAR_RESET with the same semantics as if these two calls were called separately.
If atomic operations on this variable are not supported, this routine returns
MPI_T_ERR_PVAR_NO_ATOMIC.

The constant MPI_T_PVAR_ALL_HANDLES cannot be used as an argument for the func-
tion MPI_T_PVAR_READRESET.

Advice to implementors. Sampling-based tools rely on the ability to call the MPI
tool information interface, in particular routines to start, stop, read, write and reset
performance variables, from any program context, including asynchronous contexts
such as signal handlers. MPI implementations should strive, if possible in their par-
ticular environment, to enable these usage scenarios for all or a subset of the routines
mentioned above. If implementing only a subset, the read, write, and reset routines
are typically the most critical for sampling based tools. An MPI implementation
should clearly document any restrictions on the program contexts in which the MPI
tool information interface can be used. Restrictions might include guaranteeing usage
outside of all signals or outside a specific set of signals. Any restrictions could be docu-
mented, for example, through the description returned by MPI_T_PVAR_GET_INFO.
(End of advice to implementors.)

Rationale. All routines to read, to write or to reset performance variables require the
session argument. This requirement keeps the interface consistent and allows the use

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

584 CHAPTER 14. TOOL SUPPORT

of MPI_T_PVAR_ALL_HANDLES where appropriate. Further, this opens up additional
performance optimizations for the implementation of handles. (End of rationale.)

Example: Tool to Detect Receives with Long Unexpected Message Queues

Example 14.6
The following example shows a sample tool to identify receive operations that occur

during times with long message queues. This examples assumes that the MPI implementa-
tion exports a variable with the name “MPI_T_UMQ_LENGTH” to represent the current length
of the unexpected message queue. The tool is implemented as a PMPI tool using the MPI
profiling interface.

The tool consists of three parts: (1) the initialization (by intercepting the call to
MPI_INIT), (2) the test for long unexpected message queues (by intercepting calls to
MPI_RECV), and (3) the clean-up phase (by intercepting the call to MPI_FINALIZE). To
capture all receives, the example would have to be extended to have similar wrappers for
all receive operations.

Part 1— Initialization: During initialization, the tool searches for the variable and, once
the right index is found, allocates a session and a handle for the variable with the found
index, and starts the performance variable.

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <assert.h>

#include <mpi.h>

/* Global variables for the tool */

static MPI_T_pvar_session session;

static MPI_T_pvar_handle handle;

int MPI_Init(int *argc, char ***argv) {

int err, num, i, index, namelen, verbosity;

int var_class, bind, threadsup;

int readonly, continuous, atomic, count;

char name[18];

MPI_Comm comm;

MPI_Datatype datatype;

MPI_T_enum enumtype;

err=PMPI_Init(argc,argv);

if (err!=MPI_SUCCESS) return err;

err=PMPI_T_init_thread(MPI_THREAD_SINGLE,&threadsup);

if (err!=MPI_SUCCESS) return err;

err=PMPI_T_pvar_get_num(&num);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 585

if (err!=MPI_SUCCESS) return err;

index=-1;

i=0;

while ((i<num) && (index<0) && (err==MPI_SUCCESS)) {

/* Pass a buffer that is at least one character longer than */

/* the name of the variable being searched for to avoid */

/* finding variables that have a name that has a prefix */

/* equal to the name of the variable being searched. */

namelen=18;

err=PMPI_T_pvar_get_info(i, name, &namelen, &verbosity,

&var_class, &datatype, &enumtype, NULL, NULL, &bind,

&readonly, &continuous, &atomic);

if (strcmp(name,"MPI_T_UMQ_LENGTH")==0) index=i;

i++; }

if (err!=MPI_SUCCESS) return err;

/* this could be handled in a more flexible way for a generic tool */

assert(index>=0);

assert(var_class==MPI_T_PVAR_CLASS_LEVEL);

assert(datatype==MPI_INT);

assert(bind==MPI_T_BIND_MPI_COMM);

/* Create a session */

err=PMPI_T_pvar_session_create(&session);

if (err!=MPI_SUCCESS) return err;

/* Get a handle and bind to MPI_COMM_WORLD */

comm=MPI_COMM_WORLD;

err=PMPI_T_pvar_handle_alloc(session, index, &comm, &handle, &count);

if (err!=MPI_SUCCESS) return err;

/* this could be handled in a more flexible way for a generic tool */

assert(count==1);

/* Start variable */

err=PMPI_T_pvar_start(session, handle);

if (err!=MPI_SUCCESS) return err;

return MPI_SUCCESS;

}

Part 2 — Testing the Queue Lengths During Receives: During every receive operation, the
tool reads the unexpected queue length through the matching performance variable and
compares it against a predefined threshold.

#define THRESHOLD 5

int MPI_Recv(void *buf, int count, MPI_Datatype datatype, int source, int tag,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

586 CHAPTER 14. TOOL SUPPORT

MPI_Comm comm, MPI_Status *status)

{

int value, err;

if (comm==MPI_COMM_WORLD) {

err=PMPI_T_pvar_read(session, handle, &value);

if ((err==MPI_SUCCESS) && (value>THRESHOLD))

{

/* tool identified receive called with long UMQ */

/* execute tool functionality, */

/* e.g., gather and print call stack */

}

}

return PMPI_Recv(buf, count, datatype, source, tag, comm, status);

}

Part 3 — Termination: In the wrapper for MPI_FINALIZE, the MPI tool information inter-
face is finalized.

int MPI_Finalize()

{

int err;

err=PMPI_T_pvar_handle_free(session, &handle);

err=PMPI_T_pvar_session_free(&session);

err=PMPI_T_finalize();

return PMPI_Finalize();

}

14.3.8 Variable Categorization

MPI implementations can optionally group performance and control variables into categories
to express logical relationships between various variables. For example, an MPI implemen-
tation could group all control and performance variables that refer to message transfers in
the MPI implementation and thereby distinguish them from variables that refer to local
resources such as memory allocations or other interactions with the operating system.

Categories can also contain other categories to form a hierarchical grouping. Categories
can never include themselves, either directly or transitively within other included categories.
Expanding on the example above, this allows MPI to refine the grouping of variables referring
to message transfers into variables to control and to monitor message queues, message
matching activities and communication protocols. Each of these groups of variables would
be represented by a separate category and these categories would then be listed in a single
category representing variables for message transfers.

The category information may be queried in a fashion similar to the mechanism for
querying variable information. The MPI implementation exports a set of N categories via
the MPI tool information interface. If N = 0, then the MPI implementation does not export
any categories, otherwise the provided categories are indexed from 0 to N − 1. This index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 587

number is used in subsequent calls to functions of the MPI tool information interface to
identify the individual categories.

An MPI implementation is permitted to increase the number of categories during the
execution of an MPI program when new categories become available through dynamic load-
ing. However, MPI implementations are not allowed to change the index of a category or
delete it once it has been added to the set.

Similarly, MPI implementations are allowed to add variables to categories, but they
are not allowed to remove variables from categories or change the order in which they are
returned.

The following function can be used to query the number of categories, N .

MPI_T_CATEGORY_GET_NUM(num_cat)

OUT num_cat current number of categories (integer)

int MPI_T_category_get_num(int *num_cat)

Individual category information can then be queried by calling the following function:

MPI_T_CATEGORY_GET_INFO(cat_index, name, name_len, desc, desc_len, num_cvars,
num_pvars, num_categories)

IN cat_index index of the category to be queried (integer)

OUT name buffer to return the string containing the name of the

category (string)

INOUT name_len length of the string and/or buffer for name (integer)

OUT desc buffer to return the string containing the description

of the category (string)

INOUT desc_len length of the string and/or buffer for desc (integer)

OUT num_cvars number of control variables in the category (integer)

OUT num_pvars number of performance variables in the category (in-

teger)

OUT num_categories number of categories contained in the category (inte-

ger)

int MPI_T_category_get_info(int cat_index, char *name, int *name_len,

char *desc, int *desc_len, int *num_cvars, int *num_pvars,

int *num_categories)

The arguments name and name_len are used to return the name of the category as
described in Section 14.3.3.

The routine is required to return a name of at least length one. This name must be
unique with respect to all other names for categories used by the MPI implementation.

If any OUT parameter to MPI_T_CATEGORY_GET_INFO is a NULL pointer, the im-
plementation will ignore the parameter and not return a value for the parameter.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

588 CHAPTER 14. TOOL SUPPORT

The arguments desc and desc_len are used to return the description of the category as
described in Section 14.3.3.

Returning a description is optional. If an MPI implementation decides not to return a
description, the first character for desc must be set to the null character and desc_len must
be set to one at the return of this call.

The function returns the number of control variables, performance variables and other
categories contained in the queried category in the arguments num_cvars, num_pvars, and
num_categories, respectively.

If the name of a category is equivalent across connected processes, then the returned
description must be equivalent.

MPI_T_CATEGORY_GET_INDEX(name, cat_index)

IN name the name of the category (string)

OUT cat_index the index of the category (integer)

int MPI_T_category_get_index(const char *name, int *cat_index)

MPI_T_CATEGORY_GET_INDEX is a function for retrieving the index of a category
given a known category name. The name parameter is provided by the caller, and cat_index
is returned by the MPI implementation. The name parameter is a string terminated with a
null character.

This routine returns MPI_SUCCESS on success and returns MPI_T_ERR_INVALID_NAME

if name does not match the name of any category provided by the implementation at the
time of the call.

Rationale. This routine is provided to enable fast retrieval of a category index
by a tool, assuming it knows the name of the category for which it is looking. The
number of categories exposed by the implementation can change over time, so it is not
possible for the tool to simply iterate over the list of categories once at initialization.
Although using MPI implementation specific category names is not portable across
MPI implementations, tool developers may choose to take this route for lower overhead
at runtime because the tool will not have to iterate over the entire set of categories
to find a specific one. (End of rationale.)

MPI_T_CATEGORY_GET_CVARS(cat_index, len, indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating control variable

indices (array of integers)

int MPI_T_category_get_cvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CVARS can be used to query which control variables are
contained in a particular category. A category contains zero or more control variables.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 589

MPI_T_CATEGORY_GET_PVARS(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating performance

variable indices (array of integers)

int MPI_T_category_get_pvars(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_PVARS can be used to query which performance variables
are contained in a particular category. A category contains zero or more performance
variables.

MPI_T_CATEGORY_GET_CATEGORIES(cat_index,len,indices)

IN cat_index index of the category to be queried, in the range [0, N−
1] (integer)

IN len the length of the indices array (integer)

OUT indices an integer array of size len, indicating category indices

(array of integers)

int MPI_T_category_get_categories(int cat_index, int len, int indices[])

MPI_T_CATEGORY_GET_CATEGORIES can be used to query which other categories
are contained in a particular category. A category contains zero or more other categories.

As mentioned above, MPI implementations can grow the number of categories as well
as the number of variables or other categories within a category. In order to allow users
of the MPI tool information interface to check quickly whether new categories have been
added or new variables or categories have been added to a category, MPI maintains a
virtual timestamp. This timestamp is monotonically increasing during the execution and is
returned by the following function:

MPI_T_CATEGORY_CHANGED(stamp)

OUT stamp a virtual time stamp to indicate the last change to the

categories (integer)

int MPI_T_category_changed(int *stamp)

If two subsequent calls to this routine return the same timestamp, it is guaranteed that
the category information has not changed between the two calls. If the timestamp retrieved
from the second call is higher, then some categories have been added or expanded.

Advice to users. The timestamp value is purely virtual and only intended to check
for changes in the category information. It should not be used for any other purpose.
(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

590 CHAPTER 14. TOOL SUPPORT

The index values returned in indices by MPI_T_CATEGORY_GET_CVARS,
MPI_T_CATEGORY_GET_PVARS and MPI_T_CATEGORY_GET_CATEGORIES can be used
as input to MPI_T_CVAR_GET_INFO, MPI_T_PVAR_GET_INFO and
MPI_T_CATEGORY_GET_INFO, respectively.

The user is responsible for allocating the arrays passed into the functions
MPI_T_CATEGORY_GET_CVARS, MPI_T_CATEGORY_GET_PVARS and
MPI_T_CATEGORY_GET_CATEGORIES. Starting from array index 0, each function writes
up to len elements into the array. If the category contains more than len elements, the
function returns an arbitrary subset of size len. Otherwise, the entire set of elements is
returned in the beginning entries of the array, and any remaining array entries are not
modified.

14.3.9 Return Codes for the MPI Tool Information Interface

All functions defined as part of the MPI tool information interface return an integer error
code (see Table 14.5) to indicate whether the function was completed successfully or was
aborted. In the latter case the error code indicates the reason for not completing the routine.
Such errors neither impact the execution of the MPI process nor invoke MPI error handlers.
The MPI process continues executing regardless of the return code from the call. The MPI
implementation is not required to check all user-provided parameters; if a user passes invalid
parameter values to any routine the behavior of the implementation is undefined.

All error codes with the prefix MPI_T_ must be unique values and cannot overlap with
any other error codes or error classes returned by the MPI implementation. Further, they
shall be treated as MPI error classes as defined in Section 8.4 on page 347 and follow the
same rules and restrictions. In particular, they must satisfy:

0 = MPI_SUCCESS < MPI_T_ERR_... ≤ MPI_ERR_LASTCODE.

Rationale. All MPI tool information interface functions must return error classes,
because applications cannot portably call MPI_ERROR_CLASS before
MPI_INIT or MPI_INIT_THREAD to map an arbitrary error code to an error class.
(End of rationale.)

14.3.10 Profiling Interface

All requirements for the profiling interfaces, as described in Section 14.2, also apply to
the MPI tool information interface. All rules, guidelines, and recommendations from Sec-
tion 14.2 apply equally to calls defined as part of the MPI tool information interface.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14.3. THE MPI TOOL INFORMATION INTERFACE 591

Return Code Description

Return Codes for All Functions in the MPI Tool Information Interface

MPI_SUCCESS Call completed successfully
MPI_T_ERR_INVALID Invalid use of the interface or bad parameter value(s)
MPI_T_ERR_MEMORY Out of memory
MPI_T_ERR_NOT_INITIALIZED Interface not initialized
MPI_T_ERR_CANNOT_INIT Interface not in the state to be initialized

Return Codes for Datatype Functions: MPI_T_ENUM_*

MPI_T_ERR_INVALID_INDEX The enumeration index is invalid
MPI_T_ERR_INVALID_ITEM The item index queried is out of range

(for MPI_T_ENUM_GET_ITEM only)

Return Codes for Variable and Category Query Functions: MPI_T_*_GET_*

MPI_T_ERR_INVALID_INDEX The variable or category index is invalid
MPI_T_ERR_INVALID_NAME The variable or category name is invalid

Return Codes for Handle Functions: MPI_T_*_{ALLOC|FREE}
MPI_T_ERR_INVALID_INDEX The variable index is invalid
MPI_T_ERR_INVALID_HANDLE The handle is invalid
MPI_T_ERR_OUT_OF_HANDLES No more handles available

Return Codes for Session Functions: MPI_T_PVAR_SESSION_*

MPI_T_ERR_OUT_OF_SESSIONS No more sessions available
MPI_T_ERR_INVALID_SESSION Session argument is not a valid session

Return Codes for Control Variable Access Functions:
MPI_T_CVAR_READ, WRITE

MPI_T_ERR_CVAR_SET_NOT_NOW Variable cannot be set at this moment
MPI_T_ERR_CVAR_SET_NEVER Variable cannot be set until end of execution
MPI_T_ERR_INVALID_HANDLE The handle is invalid

Return Codes for Performance Variable Access and Control:
MPI_T_PVAR_{START|STOP|READ|WRITE|RESET|READREST}
MPI_T_ERR_INVALID_HANDLE The handle is invalid
MPI_T_ERR_INVALID_SESSION Session argument is not a valid session
MPI_T_ERR_PVAR_NO_STARTSTOP Variable cannot be started or stopped

(for MPI_T_PVAR_START and
MPI_T_PVAR_STOP)

MPI_T_ERR_PVAR_NO_WRITE Variable cannot be written or reset
(for MPI_T_PVAR_WRITE and
MPI_T_PVAR_RESET)

MPI_T_ERR_PVAR_NO_ATOMIC Variable cannot be read and written atomically
(for MPI_T_PVAR_READRESET)

Return Codes for Category Functions: MPI_T_CATEGORY_*

MPI_T_ERR_INVALID_INDEX The category index is invalid

Table 14.5: Return codes used in functions of the MPI tool information interface

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

592 CHAPTER 14. TOOL SUPPORT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 15

Deprecated Functions

15.1 Deprecated since MPI-2.0

The following function is deprecated and is superseded by MPI_COMM_CREATE_KEYVAL
in MPI-2.0. The language independent definition of the deprecated function is the same
as that of the new function, except for the function name and a different behavior in the
C/Fortran language interoperability, see Section 17.2.7. The language bindings are modified.

MPI_KEYVAL_CREATE(copy_fn, delete_fn, keyval, extra_state)

IN copy_fn Copy callback function for keyval

IN delete_fn Delete callback function for keyval

OUT keyval key value for future access (integer)

IN extra_state Extra state for callback functions

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

For this routine, an interface within the mpi_f08 module was never defined.

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

The copy_fn function is invoked when a communicator is duplicated by
MPI_COMM_DUP. copy_fn should be of type MPI_Copy_function, which is defined as follows:

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

A Fortran declaration for such a function is as follows:
For this routine, an interface within the mpi_f08 module was never defined.

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

593

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

594 CHAPTER 15. DEPRECATED FUNCTIONS

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

copy_fn may be specified as MPI_NULL_COPY_FN or MPI_DUP_FN from either C or
FORTRAN; MPI_NULL_COPY_FN is a function that does nothing other than returning
flag = 0 and MPI_SUCCESS. MPI_DUP_FN is a simple-minded copy function that sets flag =

1, returns the value of attribute_val_in in attribute_val_out, and returns MPI_SUCCESS. Note
that MPI_NULL_COPY_FN and MPI_DUP_FN are also deprecated.

Analogous to copy_fn is a callback deletion function, defined as follows. The delete_fn
function is invoked when a communicator is deleted by MPI_COMM_FREE or when a call
is made explicitly to MPI_ATTR_DELETE. delete_fn should be of type MPI_Delete_function,
which is defined as follows:

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,

void *attribute_val, void *extra_state);

A Fortran declaration for such a function is as follows:
For this routine, an interface within the mpi_f08 module was never defined.

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

delete_fn may be specified as MPI_NULL_DELETE_FN from either C or FORTRAN;
MPI_NULL_DELETE_FN is a function that does nothing, other than returning
MPI_SUCCESS. Note that MPI_NULL_DELETE_FN is also deprecated.

The following function is deprecated and is superseded by MPI_COMM_FREE_KEYVAL
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_KEYVAL_FREE(keyval)

INOUT keyval Frees the integer key value (integer)

int MPI_Keyval_free(int *keyval)

For this routine, an interface within the mpi_f08 module was never defined.

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_SET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

15.1. DEPRECATED SINCE MPI-2.0 595

MPI_ATTR_PUT(comm, keyval, attribute_val)

INOUT comm communicator to which attribute will be attached (han-

dle)

IN keyval key value, as returned by

MPI_KEYVAL_CREATE (integer)

IN attribute_val attribute value

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

For this routine, an interface within the mpi_f08 module was never defined.

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

The following function is deprecated and is superseded by MPI_COMM_GET_ATTR in
MPI-2.0. The language independent definition of the deprecated function is the same as of
the new function, except of the function name. The language bindings are modified.

MPI_ATTR_GET(comm, keyval, attribute_val, flag)

IN comm communicator to which attribute is attached (handle)

IN keyval key value (integer)

OUT attribute_val attribute value, unless flag = false

OUT flag true if an attribute value was extracted; false if no

attribute is associated with the key

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

For this routine, an interface within the mpi_f08 module was never defined.

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

The following function is deprecated and is superseded by MPI_COMM_DELETE_ATTR
in MPI-2.0. The language independent definition of the deprecated function is the same as
of the new function, except of the function name. The language bindings are modified.

MPI_ATTR_DELETE(comm, keyval)

INOUT comm communicator to which attribute is attached (handle)

IN keyval The key value of the deleted attribute (integer)

int MPI_Attr_delete(MPI_Comm comm, int keyval)

For this routine, an interface within the mpi_f08 module was never defined.

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

596 CHAPTER 15. DEPRECATED FUNCTIONS

INTEGER COMM, KEYVAL, IERROR

15.2 Deprecated since MPI-2.2

The entire set of C++ language bindings have been removed. See Chapter 16, Removed
Interfaces for more information.

The following function typedefs have been deprecated and are superseded by new
names. Other than the typedef names, the function signatures are exactly the same; the
names were updated to match conventions of other function typedef names.

Deprecated Name New Name

MPI_Comm_errhandler_fn MPI_Comm_errhandler_function

MPI_File_errhandler_fn MPI_File_errhandler_function

MPI_Win_errhandler_fn MPI_Win_errhandler_function

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 16

Removed Interfaces

16.1 Removed MPI-1 Bindings

16.1.1 Overview

The following MPI-1 bindings were deprecated as of MPI-2 and are removed in MPI-3.
They may be provided by an implementation for backwards compatibility, but are not
required. Removal of these bindings affects all language-specific definitions thereof. Only
the language-neutral bindings are listed when possible.

16.1.2 Removed MPI-1 Functions

Table 16.1 shows the removed MPI-1 functions and their replacements.

Removed MPI-2 Replacement

MPI_ADDRESS MPI_GET_ADDRESS
MPI_ERRHANDLER_CREATE MPI_COMM_CREATE_ERRHANDLER
MPI_ERRHANDLER_GET MPI_COMM_GET_ERRHANDLER
MPI_ERRHANDLER_SET MPI_COMM_SET_ERRHANDLER
MPI_TYPE_EXTENT MPI_TYPE_GET_EXTENT
MPI_TYPE_HINDEXED MPI_TYPE_CREATE_HINDEXED
MPI_TYPE_HVECTOR MPI_TYPE_CREATE_HVECTOR
MPI_TYPE_LB MPI_TYPE_GET_EXTENT
MPI_TYPE_STRUCT MPI_TYPE_CREATE_STRUCT
MPI_TYPE_UB MPI_TYPE_GET_EXTENT

Table 16.1: Removed MPI-1 functions and their replacements

16.1.3 Removed MPI-1 Datatypes

Table 16.2 shows the removed MPI-1 datatypes and their replacements.

16.1.4 Removed MPI-1 Constants

Table 16.3 shows the removed MPI-1 constants. There are no MPI-2 replacements.

597

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

598 CHAPTER 16. REMOVED INTERFACES

Removed MPI-2 Replacement

MPI_LB MPI_TYPE_CREATE_RESIZED
MPI_UB MPI_TYPE_CREATE_RESIZED

Table 16.2: Removed MPI-1 datatypes and their replacements

Removed MPI-1 Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_COMBINER_HINDEXED_INTEGER

MPI_COMBINER_HVECTOR_INTEGER

MPI_COMBINER_STRUCT_INTEGER

Table 16.3: Removed MPI-1 constants

16.1.5 Removed MPI-1 Callback Prototypes

Table 16.4 shows the removed MPI-1 callback prototypes and their MPI-2 replacements.

Removed MPI-2 Replacement

MPI_Handler_function MPI_Comm_errhandler_function

Table 16.4: Removed MPI-1 callback prototypes and their replacements

16.2 C++ Bindings

The C++ bindings were deprecated as of MPI-2.2. The C++ bindings are removed in
MPI-3.0. The namespace is still reserved, however, and bindings may only be provided by
an implementation as described in the MPI-2.2 standard.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Chapter 17

Language Bindings

17.1 Fortran Support

17.1.1 Overview

The Fortran MPI language bindings have been designed to be compatible with the Fortran
90 standard with additional features from Fortran 2003 and Fortran 2008 [40] + TS 29113
[41].

Rationale. Fortran 90 contains numerous features designed to make it a more “mod-
ern” language than Fortran 77. It seems natural that MPI should be able to take ad-
vantage of these new features with a set of bindings tailored to Fortran 90. In Fortran
2008 + TS 29113, the major new language features used are the ASYNCHRONOUS at-
tribute to protect nonblocking MPI operations, and assumed-type and assumed-rank
dummy arguments for choice buffer arguments. Further requirements for compiler
support are listed in Section 17.1.7. (End of rationale.)

MPI defines three methods of Fortran support:

1. USE mpi_f08: This method is described in Section 17.1.2. It requires compile-time
argument checking with unique MPI handle types and provides techniques to fully
solve the optimization problems with nonblocking calls. This is the only Fortran
support method that is consistent with the Fortran standard (Fortran 2008 + TS
29113 and later). This method is highly recommended for all MPI applications.

2. USE mpi: This method is described in Section 17.1.3 and requires compile-time
argument checking. Handles are defined as INTEGER. This Fortran support method is
inconsistent with the Fortran standard, and its use is therefore not recommended. It
exists only for backwards compatibility.

3. INCLUDE ’mpif.h’: This method is described in Section 17.1.4. The use of the
include file mpif.h is strongly discouraged starting with MPI-3.0, because this method
neither guarantees compile-time argument checking nor provides sufficient techniques
to solve the optimization problems with nonblocking calls, and is therefore inconsistent
with the Fortran standard. It exists only for backwards compatibility with legacy MPI
applications.

599

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

600 CHAPTER 17. LANGUAGE BINDINGS

Compliant MPI-3 implementations providing a Fortran interface must provide one or
both of the following:

• The USE mpi_f08 Fortran support method.

• The USE mpi and INCLUDE ’mpif.h’ Fortran support methods.

Section 17.1.6 describes restrictions if the compiler does not support all the needed features.
Application subroutines and functions may use either one of the modules or the mpif.h

include file. An implementation may require the use of one of the modules to prevent type
mismatch errors.

Advice to users. Users are advised to utilize one of the MPI modules even if mpif.h
enforces type checking on a particular system. Using a module provides several poten-
tial advantages over using an include file; the mpi_f08 module offers the most robust
and complete Fortran support. (End of advice to users.)

In a single application, it must be possible to link together routines which USE mpi_f08,
USE mpi, and INCLUDE ’mpif.h’.

The LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED is set to
.TRUE. if all buffer choice arguments are defined in explicit interfaces with assumed-type
and assumed-rank [41]; otherwise it is set to .FALSE.. The LOGICAL compile-time constant
MPI_ASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if the ASYNCHRONOUS attribute was
added to the choice buffer arguments of all nonblocking interfaces and the underlying
Fortran compiler supports the ASYNCHRONOUS attribute for MPI communication (as part of
TS 29113), otherwise it is set to .FALSE.. These constants exist for each Fortran support
method, but not in the C header file. The values may be different for each Fortran support
method. All other constants and the integer values of handles must be the same for each
Fortran support method.

Section 17.1.2 through 17.1.4 define the Fortran support methods. The Fortran in-
terfaces of each MPI routine are shorthands. Section 17.1.5 defines the corresponding
full interface specification together with the specific procedure names and implications for
the profiling interface. Section 17.1.6 the implementation of the MPI routines for differ-
ent versions of the Fortran standard. Section 17.1.7 summarizes major requirements for
valid MPI-3.0 implementations with Fortran support. Section 17.1.8 and Section 17.1.9 de-
scribe additional functionality that is part of the Fortran support. MPI_F_SYNC_REG is
needed for one of the methods to prevent register optimization problems. A set of func-
tions provides additional support for Fortran intrinsic numeric types, including parameter-
ized types: MPI_SIZEOF, MPI_TYPE_MATCH_SIZE, MPI_TYPE_CREATE_F90_INTEGER,
MPI_TYPE_CREATE_F90_REAL and MPI_TYPE_CREATE_F90_COMPLEX. In the context
of MPI, parameterized types are Fortran intrinsic types which are specified using KIND type
parameters. Sections 17.1.10 through 17.1.19 give an overview and details on known prob-
lems when using Fortran together with MPI; Section 17.1.20 compares the Fortran problems
with those in C.

17.1.2 Fortran Support Through the mpi_f08 Module

An MPI implementation providing a Fortran interface must provide a module named mpi_f08

that can be used in a Fortran program. Section 17.1.6 describes restrictions if the compiler
does not support all the needed features. Within all MPI function specifications, the first

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 601

of the set of two Fortran routine interface specifications is provided by this module. This
module must:

• Define all named MPI constants.

• Declare MPI functions that return a value.

• Provide explicit interfaces according to the Fortran routine interface specifications.
This module therefore guarantees compile-time argument checking for all arguments
which are not TYPE(*), with the following exception:

Only one Fortran interface is defined for functions that are deprecated as of
MPI-3.0. This interface must be provided as an explicit interface according to
the rules defined for the mpi module, see Section 17.1.3.

Advice to users. It is strongly recommended that developers substitute calls
to deprecated routines when upgrading from mpif.h or the mpi module to
the mpi_f08 module. (End of advice to users.)

• Define the derived type MPI_Status, and define all MPI handles with uniquely named
handle types (instead of INTEGER handles, as in the mpi module). This is reflected in
the first Fortran binding in each MPI function definition throughout this document
(except for the deprecated routines).

• Overload the operators .EQ. and .NE. to allow the comparison of these MPI handles
with .EQ., .NE., == and /=.

• Use the ASYNCHRONOUS attribute to protect the buffers of nonblocking operations,
and set the LOGICAL compile-time constant MPI_ASYNC_PROTECTS_NONBLOCKING

to .TRUE. if the underlying Fortran compiler supports the ASYNCHRONOUS attribute
for MPI communication (as part of TS 29113). See Section 17.1.6 for older compiler
versions.

• Set the LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED to .TRUE. and
declare choice buffers using the Fortran 2008 TS 29113 features assumed-type and
assumed-rank, i.e., TYPE(*), DIMENSION(..) in all nonblocking, split collective and
persistent communication routines, if the underlying Fortran compiler supports it.
With this, non-contiguous sub-arrays can be used as buffers in nonblocking routines.

Rationale. In all blocking routines, i.e., if the choice-buffer is not declared
as ASYNCHRONOUS, the TS 29113 feature is not needed for the support of non-
contiguous buffers because the compiler can pass the buffer by in-and-out-copy
through a contiguous scratch array. (End of rationale.)

• Set the MPI_SUBARRAYS_SUPPORTED compile-time constant to .FALSE. and declare
choice buffers with a compiler-dependent mechanism that overrides type checking if
the underlying Fortran compiler does not support the Fortran 2008 TS 29113 assumed-
type and assumed-rank notation. In this case, the use of non-contiguous sub-arrays
as buffers in nonblocking calls may be invalid. See Section 17.1.6 for details.

• Declare each argument with an INTENT of IN, OUT, or INOUT as defined in this standard.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

602 CHAPTER 17. LANGUAGE BINDINGS

Rationale. For these definitions in the mpi_f08 bindings, in most cases, INTENT(IN)
is used if the C interface uses call-by-value. For all buffer arguments and for OUT and
INOUT dummy arguments that allow one of the non-ordinary Fortran constants (see
MPI_BOTTOM, etc. in Section 2.5.4) as input, an INTENT is not specified. (End of
rationale.)

Advice to users. If a dummy argument is declared with INTENT(OUT), then the
Fortran standard stipulates that the actual argument becomes undefined upon invo-
cation of the MPI routine, i.e., it may be overwritten by some other values, e.g. zeros;
according to [40], 12.5.2.4 Ordinary dummy variables, Paragraph 17: “If a dummy
argument has INTENT(OUT), the actual argument becomes undefined at the time
the association is established, except [. . .]”. For example, if the dummy argument is
an assumed-size array and the actual argument is a strided array, the call may be im-
plemented with copy-in and copy-out of the argument. In the case of INTENT(OUT) the
copy-in may be suppressed by the optimization and the routine is starts execution us-
ing an array of undefined values. If the routine stores fewer elements into the dummy
argument than is provided in the actual argument, then the remaining locations are
overwritten with these undefined values. See also both advices to implementors in
Section 17.1.3. (End of advice to users.)

• Declare all ierror output arguments as OPTIONAL, except for user-defined callback
functions (e.g., COMM_COPY_ATTR_FUNCTION) and predefined callbacks (e.g.,
MPI_COMM_NULL_COPY_FN).

Rationale. For user-defined callback functions (e.g., COMM_COPY_ATTR_FUNCTION) and
their predefined callbacks (e.g., MPI_COMM_NULL_COPY_FN), the ierror argument
is not optional. The MPI library must always call these routines with an actual ierror
argument. Therefore, these user-defined functions need not check whether the MPI
library calls these routines with or without an actual ierror output argument. (End of
rationale.)

The MPI Fortran bindings in the mpi_f08 module are designed based on the Fortran
2008 standard [40] together with the Technical Specification “TS 29113 Further Interoper-
ability with C” [41] of the ISO/IEC JTC1/SC22/WG5 (Fortran) working group.

Rationale. The features in TS 29113 on further interoperability with C were decided
on by ISO/IEC JTC1/SC22/WG5 and designed by PL22.3 (formerly J3) to support a
higher level of integration between Fortran-specific features and C than was provided
in the Fortran 2008 standard; part of this design is based on requirements from the
MPI Forum to support MPI-3.0. According to [41], “an ISO/IEC TS is reviewed after
three years in order to decide whether it will be confirmed for a further three years,
revised to become an International Standard, or withdrawn. If the ISO/IEC TS is
confirmed, it is reviewed again after a further three years, at which time it must either
be transformed into an International Standard or be withdrawn.”

The TS 29113 contains the following language features that are needed for the MPI
bindings in the mpi_f08 module: assumed-type and assumed-rank. It is important
that any possible actual argument can be used for such dummy arguments, e.g.,
scalars, arrays, assumed-shape arrays, assumed-size arrays, allocatable arrays, and

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 603

with any element type, e.g., REAL, CHARACTER*5, CHARACTER*(*), sequence derived
types, or BIND(C) derived types. Especially for backward compatibility reasons, it is
important that any possible actual argument in an implicit interface implementation
of a choice buffer dummy argument (e.g., with mpif.h without argument-checking)
can be used in an implementation with assumed-type and assumed-rank argument in
an explicit interface (e.g., with the mpi_f08 module).

A further feature useful for MPI is the extension of the semantics of the
ASYNCHRONOUS attribute: In F2003 and F2008, this attribute could be used only to
protect buffers of Fortran asynchronous I/O. With TS 29113, this attribute now also
covers asynchronous communication occurring within library routines written in C.

The MPI Forum hereby wishes to acknowledge this important effort by the Fortran
PL22.3 and WG5 committee. (End of rationale.)

17.1.3 Fortran Support Through the mpi Module

An MPI implementation providing a Fortran interface must provide a module named mpi

that can be used in a Fortran program. Within all MPI function specifications, the second
of the set of two Fortran routine interface specifications is provided by this module. This
module must:

• Define all named MPI constants

• Declare MPI functions that return a value.

• Provide explicit interfaces according to the Fortran routine interface specifications.
This module therefore guarantees compile-time argument checking and allows po-
sitional and keyword-based argument lists. If an implementation is paired with a
compiler that either does not support TYPE(*), DIMENSION(..) from TS 29113, or
is otherwise unable to ignore the types of choice buffers, then the implementation must
provide explicit interfaces only for MPI routines with no choice buffer arguments. See
Section Section 17.1.6 on page 611 for more details.

• Define all MPI handles as type INTEGER.

• Define the derived type MPI_Status and all named handle types that are used in the
mpi_f08 module. For these named handle types, overload the operators .EQ. and
.NE. to allow handle comparison via the .EQ., .NE., == and /= operators.

Rationale. They are needed only when the application converts old-style INTEGER

handles into new-style handles with a named type. (End of rationale.)

• A high quality MPI implementation may enhance the interface by using the
ASYNCHRONOUS attribute in the same way as in the mpi_f08 module if it is supported
by the underlying compiler.

• Set the LOGICAL compile-time constant MPI_ASYNC_PROTECTS_NONBLOCKING to
.TRUE. if the ASYNCHRONOUS attribute is used in all nonblocking interfaces and the
underlying Fortran compiler supports the ASYNCHRONOUS attribute for MPI communi-
cation (as part of TS 29113), otherwise to .FALSE..

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

604 CHAPTER 17. LANGUAGE BINDINGS

Advice to users. For an MPI implementation that fully supports nonblocking calls
with the ASYNCHRONOUS attribute for choice buffers, an existing MPI-2.2 application
may fail to compile even if it compiled and executed with expected results with an
MPI-2.2 implementation. One reason may be that the application uses “contiguous”
but not “simply contiguous” ASYNCHRONOUS arrays as actual arguments for choice
buffers of nonblocking routines, e.g., by using subscript triplets with stride one or
specifying (1:n) for a whole dimension instead of using (:). This should be fixed
to fulfill the Fortran constraints for ASYNCHRONOUS dummy arguments. This is not
considered a violation of backward compatibility because existing applications can
not use the ASYNCHRONOUS attribute to protect nonblocking calls. Another reason
may be that the application does not conform either to MPI-2.2, or to MPI-3.0, or to
the Fortran standard, typically because the program forces the compiler to perform
copy-in/out for a choice buffer argument in a nonblocking MPI call. This is also not a
violation of backward compatibility because the application itself is non-conforming.
See Section 17.1.12 for more details. (End of advice to users.)

• A high quality MPI implementation may enhance the interface by using TYPE(*),

DIMENSION(..) choice buffer dummy arguments instead of using non-standardized
extensions such as !$PRAGMA IGNORE_TKR or a set of overloaded functions as described
by M. Hennecke in [28], if the compiler supports this TS 29113 language feature. See
Section 17.1.6 for further details.

• Set the LOGICAL compile-time constant MPI_SUBARRAYS_SUPPORTED to
.TRUE. if all choice buffer arguments in all nonblocking, split collective and persistent
communication routines are declared with TYPE(*), DIMENSION(..), otherwise set
it to .FALSE.. When MPI_SUBARRAYS_SUPPORTED is defined as
.TRUE., non-contiguous sub-arrays can be used as buffers in nonblocking routines.

• Set the MPI_SUBARRAYS_SUPPORTED compile-time constant to .FALSE. and declare
choice buffers with a compiler-dependent mechanism that overrides type checking if
the underlying Fortran compiler does not support the TS 29113 assumed-type and
assumed-rank features. In this case, the use of non-contiguous sub-arrays in non-
blocking calls may be disallowed. See Section 17.1.6 for details.

An MPI implementation may provide other features in the mpi module that enhance
the usability of MPI while maintaining adherence to the standard. For example, it may
provide INTENT information in these interface blocks.

Advice to implementors. The appropriate INTENT may be different from what is given
in the MPI language-neutral bindings. Implementations must choose INTENT so that
the function adheres to the MPI standard, e.g., by defining the INTENT as provided in
the mpi_f08 bindings. (End of advice to implementors.)

Rationale. The intent given by the MPI generic interface is not precisely defined
and does not in all cases correspond to the correct Fortran INTENT. For instance,
receiving into a buffer specified by a datatype with absolute addresses may require
associating MPI_BOTTOM with a dummy OUT argument. Moreover, “constants” such
as MPI_BOTTOM and MPI_STATUS_IGNORE are not constants as defined by Fortran,
but “special addresses” used in a nonstandard way. Finally, the MPI-1 generic intent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 605

was changed in several places in MPI-2. For instance, MPI_IN_PLACE changes the
intent of an OUT argument to be INOUT. (End of rationale.)

Advice to implementors. The Fortran 2008 standard illustrates in its Note 5.17
that “INTENT(OUT) means that the value of the argument after invoking the proce-
dure is entirely the result of executing that procedure. If an argument should retain
its value rather than being redefined, INTENT(INOUT) should be used rather than
INTENT(OUT), even if there is no explicit reference to the value of the dummy
argument. Furthermore, INTENT(INOUT) is not equivalent to omitting the IN-
TENT attribute, because INTENT(INOUT) always requires that the associated ac-
tual argument is definable.” Applications that include mpif.h may not expect that
INTENT(OUT) is used. In particular, output array arguments are expected to keep their
content as long as the MPI routine does not modify them. To keep this behavior, it is
recommended that implementations not use INTENT(OUT) in the mpi module and the
mpif.h include file, even though INTENT(OUT) is specified in an interface description
of the mpi_f08 module. (End of advice to implementors.)

17.1.4 Fortran Support Through the mpif.h Include File

The use of the mpif.h include file is strongly discouraged and may be deprecated in a future
version of MPI.

An MPI implementation providing a Fortran interface must provide an include file
named mpif.h that can be used in a Fortran program. Within all MPI function specifica-
tions, the second of the set of two Fortran routine interface specifications is supported by
this include file. This include file must:

• Define all named MPI constants.

• Declare MPI functions that return a value.

• Define all handles as INTEGER.

• Be valid and equivalent for both fixed and free source form.

For each MPI routine, an implementation can choose to use an implicit or explicit interface
for the second Fortran binding (in deprecated routines, the first one may be omitted).

• Set the LOGICAL compile-time constants MPI_SUBARRAYS_SUPPORTED and
MPI_ASYNC_PROTECTS_NONBLOCKING according to the same rules as for the mpi

module. In the case of implicit interfaces for choice buffer or nonblocking routines,
the constants must be set to .FALSE..

Advice to users. Instead of using mpif.h, the use of the mpi_f08 or mpi module is
strongly encouraged for the following reasons:

• Most mpif.h implementations do not include compile-time argument checking.

• Therefore, many bugs in MPI applications remain undetected at compile-time,
such as:

– Missing ierror as last argument in most Fortran bindings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

606 CHAPTER 17. LANGUAGE BINDINGS

– Declaration of a status as an INTEGER variable instead of an INTEGER array
with size MPI_STATUS_SIZE.

– Incorrect argument positions; e.g., interchanging the count and
datatype arguments.

– Passing incorrect MPI handles; e.g., passing a datatype instead of a commu-
nicator.

• The migration from mpif.h to the mpi module should be relatively straightfor-
ward (i.e., substituting include ’mpif.h’ after an implicit statement by use

mpi before that implicit statement) as long as the application syntax is correct.

• Migrating portable and correctly written applications to the mpi module is not
expected to be difficult. No compile or runtime problems should occur because
an mpif.h include file was always allowed to provide explicit Fortran interfaces.

(End of advice to users.)

Rationale. With MPI-3.0, the mpif.h include file was not deprecated in order to
retain strong backward compatibility. Internally, mpif.h and the mpi module may be
implemented so that essentialy the same library implementation of the MPI routines
can be used. (End of rationale.)

17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface

The Fortran interface specification of each MPI routine specifies the routine name that must
be called by the application program, and the names and types of the dummy arguments
together with additional attributes. The Fortran standard allows a given Fortran interface
to be implemented with several methods, e.g., within or outside of a module, with or without
BIND(C), or the buffers with or without TS 29113. Such implementation decisions imply
different binary interfaces and different specific procedure names. The requirements for
several implementation schemes together with the rules for the specific procedure names
and its implications for the profiling interface are specified within this section, but not the
implementation details.

Rationale. This section was introduced in MPI-3.0 on Sep. 21, 2012. The major goals
for implementing the three Fortran support methods have been:

• Portable implementation of the wrappers from the MPI Fortran interfaces to the
MPI routines in C.

• Binary backward compatible implementation path when switching
MPI_SUBARRAYS_SUPPORTED from .FALSE. to .TRUE..

• The Fortran PMPI interface need not be backward compatible, but a method
must be included that a tools layer can use to examine the MPI library about
the specific procedure names and interfaces used.

• No performance drawbacks.

• Consistency between all three Fortran support methods.

• Consistent with Fortran 2008 + TS 29113.

The design expected that all dummy arguments in the MPI Fortran interfaces are
interoperable with C according to Fortran 2008 + TS 29113. This expectation was

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 607

not fulfilled. The LOGICAL arguments are not interoperable with C, mainly because
the internal representations for .FALSE. and .TRUE. are compiler dependent. The
provided interface was mainly based on BIND(C) interfaces and therefore inconsistent
with Fortran. To be consistent with Fortran, the BIND(C) had to be removed from
the callback procedure interfaces and the predefined callbacks, e.g.,
MPI_COMM_DUP_FN. Non-BIND(C) procedures are also not interoperable with C,
and therefore the BIND(C) had to be removed from all routines with
PROCEDURE arguments, e.g., from MPI_OP_CREATE.

Therefore, this section was rewritten as an erratum to MPI-3.0. (End of rationale.)

A Fortran call to an MPI routine shall result in a call to a procedure with one of the
specific procedure names and calling conventions, as described in Table 17.1 on page 607.
Case is not significant in the names.

No. Specific pro- Calling convention
cedure name

1A MPI_Isend_f08 Fortran interface and arguments, as in Annex A.3, except
that in routines with a choice buffer dummy argument, this
dummy argument is implemented with non-standard ex-
tensions like !$PRAGMA IGNORE_TKR, which provides a call-
by-reference argument without type, kind, and dimension
checking.

1B MPI_Isend_f08ts Fortran interface and arguments, as in Annex A.3, but
only for routines with one or more choice buffer dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

2A MPI_ISEND Fortran interface and arguments, as in Annex A.4, except
that in routines with a choice buffer dummy argument, this
dummy argument is implemented with non-standard ex-
tensions like !$PRAGMA IGNORE_TKR, which provides a call-
by-reference argument without type, kind, and dimension
checking.

2B MPI_ISEND_FTS Fortran interface and arguments, as in Annex A.4, but
only for routines with one or more choice buffer dummy
arguments; these dummy arguments are implemented with
TYPE(*), DIMENSION(..).

Table 17.1: Specific Fortran procedure names and related calling conventions. MPI_ISEND
is used as an example. For routines without choice buffers, only 1A and 2A apply.

Note that for the deprecated routines in Section 15.1 on page 593, which are reported
only in Annex A.4, scheme 2A is utilized in the mpi module and mpif.h, and also in the
mpi_f08 module.

To set MPI_SUBARRAYS_SUPPORTED to .TRUE. within a Fortran support method, it
is required that all non-blocking and split-collective routines with buffer arguments are
implemented according to 1B and 2B, i.e., with MPI_Xxxx_f08ts in the mpi_f08 module,
and with MPI_XXXX_FTS in the mpi module and the mpif.h include file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

608 CHAPTER 17. LANGUAGE BINDINGS

The mpi and mpi_f08 modules and the mpif.h include file will each correspond to
exactly one implementation scheme from Table 17.1 on page 607. However, the MPI library
may contain multiple implementation schemes from Table 17.1.

Advice to implementors. This may be desirable for backwards binary compatibility
in the scope of a single MPI implementation, for example. (End of advice to imple-
mentors.)

Rationale. After a compiler provides the facilities from TS 29113, i.e., TYPE(*),
DIMENSION(..), it is possible to change the bindings within a Fortran support method
to support subarrays without recompiling the complete application provided that the
previous interfaces with their specific procedure names are still included in the li-
brary. Of course, only recompiled routines can benefit from the added facilities.
There is no binary compatibility conflict because each interface uses its own spe-
cific procedure names and all interfaces use the same constants (except the value of
MPI_SUBARRAYS_SUPPORTED and MPI_ASYNC_PROTECTS_NONBLOCKING) and type
definitions. After a compiler also ensures that buffer arguments of nonblocking MPI
operations can be protected through the ASYNCHRONOUS attribute, and the proce-
dure declarations in the mpi_f08 and mpi module and the mpif.h include file declare
choice buffers with the ASYNCHRONOUS attribute, then the value of
MPI_ASYNC_PROTECTS_NONBLOCKING can be switched to .TRUE. in the module def-
inition and include file. (End of rationale.)

Advice to users. Partial recompilation of user applications when upgrading MPI
implementations is a highly complex and subtle topic. Users are strongly advised to
consult their MPI implementation’s documentation to see exactly what is — and what
is not — supported. (End of advice to users.)

Within the mpi_f08 and mpi modules and mpif.h, for all MPI procedures, a second
procedure with the same calling conventions shall be supplied, except that the name is
modified by prefixing with the letter “P”, e.g., PMPI_Isend. The specific procedure names
for these PMPI_Xxxx procedures must be different from the specific procedure names for
the MPI_Xxxx procedures and are not specified by this standard.

A user-written or middleware profiling routine should provide the same specific For-
tran procedure names and calling conventions, and therefore can interpose itself as the
MPI library routine. The profiling routine can internally call the matching PMPI routine
with any of its existing bindings, except for routines that have callback routine dummy
arguments, choice buffer arguments, or that are attribute caching routines (
MPI_{COMM|WIN|TYPE}_{SET|GET}_ATTR). In this case, the profiling software should
invoke the corresponding PMPI routine using the same Fortran support method as used in
the calling application program, because the C, mpi_f08 and mpi callback prototypes are
different or the meaning of the choice buffer or attribute_val arguments are different.

Advice to users. Although for each support method and MPI routine (e.g.,
MPI_ISEND in mpi_f08), multiple routines may need to be provided to intercept
the specific procedures in the MPI library (e.g., MPI_Isend_f08 and MPI_Isend_f08ts),
each profiling routine itself uses only one support method (e.g., mpi_f08) and calls
the real MPI routine through the one PMPI routine defined in this support method
(i.e., PMPI_Isend in this example). (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 609

Advice to implementors. If all of the following conditions are fulfilled:

• the handles in the mpi_f08 module occupy one Fortran numerical storage unit
(same as an INTEGER handle),

• the internal argument passing mechanism used to pass an actual ierror argument
to a non-optional ierror dummy argument is binary compatible to passing an
actual ierror argument to an ierror dummy argument that is declared as OPTIONAL,

• the internal argument passing mechanism for ASYNCHRONOUS and non-
ASYNCHRONOUS arguments is the same,

• the internal routine call mechanism is the same for the Fortran and the C com-
pilers for which the MPI library is compiled,

• the compiler does not provide TS 29113,

then the implementor may use the same internal routine implementations for all For-
tran support methods but with several different specific procedure names. If the
accompanying Fortran compiler supports TS 29113, then the new routines are needed
only for routines with choice buffer arguments. (End of advice to implementors.)

Advice to implementors. In the Fortran support method mpif.h, compile-time
argument checking can be also implemented for all routines. For mpif.h, the argument
names are not specified through the MPI standard, i.e., only positional argument lists
are defined, and not key-word based lists. Due to the rule that mpif.h must be
valid for fixed and free source form, the subroutine declaration is restricted to one
line with 72 characters. To keep the argument lists short, each argument name can
be shortened to a minimum of one character. With this, the two longest subroutine
declaration statements are

SUBROUTINE PMPI_Dist_graph_create_adjacent(a,b,c,d,e,f,g,h,i,j,k)

SUBROUTINE PMPI_Rget_accumulate(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 71 and 66 characters. With buffers implemented with TS 29113, the specific
procedure names have an additional postfix. The longest of such interface definitions
is

INTERFACE PMPI_Rget_accumulate

SUBROUTINE PMPI_Rget_accumulate_fts(a,b,c,d,e,f,g,h,i,j,k,l,m,n)

with 70 characters. In principle, continuation lines would be possible in mpif.h (spaces
in columns 73–131, & in column 132, and in column 6 of the continuation line) but
this would not be valid if the source line length is extended with a compiler flag to 132
characters. Column 133 is also not available for the continuation character because
lines longer than 132 characters are invalid with some compilers by default.

The longest specific procedure names are PMPI_Dist_graph_create_adjacent_f08 and
PMPI_File_write_ordered_begin_f08ts both with 35 characters in the mpi_f08 module.

For example, the interface specifications together with the specific procedure names
can be implemented with

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

610 CHAPTER 17. LANGUAGE BINDINGS

MODULE mpi_f08

TYPE, BIND(C) :: MPI_Comm

INTEGER :: MPI_VAL

END TYPE MPI_Comm

...

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank_f08(comm, rank, ierror)

IMPORT :: MPI_Comm

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

END SUBROUTINE

END INTERFACE

END MODULE mpi_f08

MODULE mpi

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank(comm, rank, ierror)

INTEGER, INTENT(IN) :: comm ! The INTENT may be added although

INTEGER, INTENT(OUT) :: rank ! it is not defined in the

INTEGER, INTENT(OUT) :: ierror ! official routine definition.

END SUBROUTINE

END INTERFACE

END MODULE mpi

And if interfaces are provided in mpif.h, they might look like this (outside of any
module and in fixed source format):

!23456789012345678901234567890123456789012345678901234567890123456789012

INTERFACE MPI_Comm_rank ! (as defined in Chapter 6)

SUBROUTINE MPI_Comm_rank(comm, rank, ierror)

INTEGER, INTENT(IN) :: comm ! The argument names may be

INTEGER, INTENT(OUT) :: rank ! shortened so that the

INTEGER, INTENT(OUT) :: ierror ! subroutine line fits to the

END SUBROUTINE ! maximum of 72 characters.

END INTERFACE

(End of advice to implementors.)

Advice to users. The following is an example of how a user-written or middleware
profiling routine can be implemented:

SUBROUTINE MPI_Isend_f08ts(buf,count,datatype,dest,tag,comm,request,ierror)

USE :: mpi_f08, my_noname => MPI_Isend_f08ts

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

! ... some code for the begin of profiling

call PMPI_Isend (buf, count, datatype, dest, tag, comm, request, ierror)

! ... some code for the end of profiling

END SUBROUTINE MPI_Isend_f08ts

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 611

Note that this routine is used to intercept the existing specific procedure name
MPI_Isend_f08ts in the MPI library. This routine must not be part of a module.
This routine itself calls PMPI_Isend. The USE of the mpi_f08 module is needed for
definitions of handle types and the interface for PMPI_Isend. However, this module
also contains an interface definition for the specific procedure name MPI_Isend_f08ts
that conflicts with the definition of this profiling routine (i.e., the name is doubly
defined). Therefore, the USE here specifically excludes the interface from the module
by renaming the unused routine name in the mpi_f08 module into “my_noname” in
the scope of this routine. (End of advice to users.)

Advice to users. The PMPI interface allows intercepting MPI routines. For exam-
ple, an additional MPI_ISEND profiling wrapper can be provided that is called by the
application and internally calls PMPI_ISEND. There are two typical use cases: a pro-
filing layer that is developed independently from the application and the MPI library,
and profiling routines that are part of the application and have access to the appli-
cation data. With MPI-3.0, new Fortran interfaces and implementation schemes were
introduced that have several implications on how Fortran MPI routines are internally
implemented and optimized. For profiling layers, these schemes imply that several in-
ternal interfaces with different specific procedure names may need to be intercepted,
as shown in the example code above. Therefore, for wrapper routines that are part
of a Fortran application, it may be more convenient to make the name shift within
the application, i.e., to substitute the call to the MPI routine (e.g., MPI_ISEND) by a
call to a user-written profiling wrapper with a new name (e.g., X_MPI_ISEND) and to
call the Fortran MPI_ISEND from this wrapper, instead of using the PMPI interface.
(End of advice to users.)

Advice to implementors. An implementation that provides a Fortran interface must
provide a combination of MPI library and module or include file that uses the specific
procedure names as described in Table 17.1 on page 607 so that the MPI Fortran
routines are interceptable as described above. (End of advice to implementors.)

17.1.6 MPI for Different Fortran Standard Versions

This section describes which Fortran interface functionality can be provided for different
versions of the Fortran standard.

• For Fortran 77 with some extensions:

– MPI identifiers may be up to 30 characters (31 with the profiling interface).

– MPI identifiers may contain underscores after the first character.

– An MPI subroutine with a choice argument may be called with different argument
types.

– Although not required by the MPI standard, the INCLUDE statement should be
available for including mpif.h into the user application source code.

Only MPI-1.1, MPI-1.2, and MPI-1.3 can be implemented. The use of absolute ad-
dresses from MPI_ADDRESS and MPI_BOTTOM may cause problems if an address
does not fit into the memory space provided by an INTEGER. (In MPI-2.0 this problem
is solved with MPI_GET_ADDRESS, but not for Fortran 77.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

612 CHAPTER 17. LANGUAGE BINDINGS

• For Fortran 90:
The major additional features that are needed from Fortran 90 are:

– The MODULE and INTERFACE concept.

– The KIND= and SELECTED_..._KIND concept.

– Fortran derived TYPEs and the SEQUENCE attribute.

– The OPTIONAL attribute for dummy arguments.

– Cray pointers, which are a non-standard compiler extension, are needed for the
use of MPI_ALLOC_MEM.

With these features, MPI-1.1 – MPI-2.2 can be implemented without restrictions.
MPI-3.0 can be implemented with some restrictions. The Fortran support methods
are abbreviated with S1 = the mpi_f08 module, S2 = the mpi module, and S3 = the
mpif.f include file. If not stated otherwise, restrictions exist for each method which
prevent implementing the complete semantics of MPI-3.0.

– MPI_SUBARRAYS_SUPPORTED equals .FALSE., i.e., subscript triplets and non-
contiguous subarrays cannot be used as buffers in nonblocking routines, RMA,
or split-collective I/O.

– S1, S2, and S3 can be implemented, but for S1, only a preliminary implementa-
tion is possible.

– In this preliminary interface of S1, the following changes are necessary:

∗ TYPE(*), DIMENSION(..) is substituted by non-standardized extensions
like !$PRAGMA IGNORE_TKR.

∗ The ASYNCHRONOUS attribute is omitted.

∗ PROCEDURE(...) callback declarations are substituted by EXTERNAL.

– The specific procedure names are specified in Section 17.1.5.

– Due to the rules specified in Section 17.1.5, choice buffer declarations should be
implemented only with non-standardized extensions like !$PRAGMA IGNORE_TKR

(as long as F2008+TS 29113 is not available).

In S2 and S3: Without such extensions, routines with choice buffers should be
provided with an implicit interface, instead of overloading with a different MPI
function for each possible buffer type (as mentioned in Section 17.1.11). Such
overloading would also imply restrictions for passing Fortran derived types as
choice buffer, see also Section 17.1.15.

Only in S1: The implicit interfaces for routines with choice buffer arguments
imply that the ierror argument cannot be defined as OPTIONAL. For this reason,
it is recommended not to provide the mpi_f08 module if such an extension is not
available.

– The ASYNCHRONOUS attribute can not be used in applications to protect buffers
in nonblocking MPI calls (S1–S3).

– The TYPE(C_PTR) binding of the MPI_ALLOC_MEM and MPI_WIN_ALLOCATE
routines is not available.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 613

– In S1 and S2, the definition of the handle types (e.g., TYPE(MPI_Comm) and
the status type TYPE(MPI_Status) must be modified: The SEQUENCE attribute
must be used instead of BIND(C) (which is not available in Fortran 90/95). This
restriction implies that the application must be fully recompiled if one switches to
an MPI library for Fortran 2003 and later because the internal memory size of the
handles may have changed. For this reason, an implementor may choose not to
provide the mpi_f08 module for Fortran 90 compilers. In this case, the mpi_f08

handle types and all routines, constants and types related to TYPE(MPI_Status)

(see Section 17.2.5) are also not available in the mpi module and mpif.h.

• For Fortran 95:
The quality of the MPI interface and the restrictions are the same as with Fortran 90.

• For Fortran 2003:
The major features that are needed from Fortran 2003 are:

– Interoperability with C, i.e.,

∗ BIND(C) derived types.

∗ The ISO_C_BINDING intrinsic type C_PTR and routine C_F_POINTER.

– The ability to define an ABSTRACT INTERFACE and to use it for PROCEDURE dummy
arguments.

– The ability to overload the operators .EQ. and .NE. to allow the comparison of
derived types (used in MPI-3.0 for MPI handles).

– The ASYNCHRONOUS attribute is available to protect Fortran asynchronous I/O.
This feature is not yet used by MPI, but it is the basis for the enhancement for
MPI communication in the TS 29113.

With these features (but still without the features of TS 29113), MPI-1.1 – MPI-2.2
can be implemented without restrictions, but with one enhancement:

– The user application can use TYPE(C_PTR) together with MPI_ALLOC_MEM as
long as MPI_ALLOC_MEM is defined with an implicit interface because a C_PTR

and an INTEGER(KIND=MPI_ADDRESS_KIND) argument must both map to a
void * argument.

MPI-3.0 can be implemented with the following restrictions:

– MPI_SUBARRAYS_SUPPORTED equals .FALSE..

– For S1, only a preliminary implementation is possible. The following changes are
necessary:

∗ TYPE(*), DIMENSION(..) is substituted by non-standardized extensions
like !$PRAGMA IGNORE_TKR.

– The specific procedure names are specified in Section 17.1.5.

– With S1, the ASYNCHRONOUS is required as specified in the second Fortran inter-
faces. With S2 and S3 the implementation can also add this attribute if explicit
interfaces are used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

614 CHAPTER 17. LANGUAGE BINDINGS

– The ASYNCHRONOUS Fortran attribute can be used in applications to try to protect
buffers in nonblocking MPI calls, but the protection can work only if the compiler
is able to protect asynchronous Fortran I/O and makes no difference between such
asynchronous Fortran I/O and MPI communication.

– The TYPE(C_PTR) binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can
be used only for Fortran types that are C compatible.

– The same restriction as for Fortran 90 applies if non-standardized extensions like
!$PRAGMA IGNORE_TKR are not available.

• For Fortran 2008 + TS 29113 and later and
For Fortran 2003 + TS 29113:
The major feature that are needed from TS 29113 are:

– TYPE(*), DIMENSION(..) is available.

– The ASYNCHRONOUS attribute is extended to protect also nonblocking MPI com-
munication.

– The array dummy argument of the ISO_C_BINDING intrinsic C_F_POINTER is not
restricted to Fortran types for which a corresponding type in C exists.

Using these features, MPI-3.0 can be implemented without any restrictions.

– With S1, MPI_SUBARRAYS_SUPPORTED equals .TRUE.. The ASYNCHRONOUS at-
tribute can be used to protect buffers in nonblocking MPI calls. The TYPE(C_PTR)
binding of the MPI_ALLOC_MEM, MPI_WIN_ALLOCATE,
MPI_WIN_ALLOCATE_SHARED, and MPI_WIN_SHARED_QUERY routines can
be used for any Fortran type.

– With S2 and S3, the value of MPI_SUBARRAYS_SUPPORTED is implementation
dependent. A high quality implementation will also provide
MPI_SUBARRAYS_SUPPORTED==.TRUE. and will use the
ASYNCHRONOUS attribute in the same way as in S1.

– If non-standardized extensions like !$PRAGMA IGNORE_TKR are not available then
S2 must be implemented with TYPE(*), DIMENSION(..).

Advice to implementors. If MPI_SUBARRAYS_SUPPORTED==.FALSE., the choice
argument may be implemented with an explicit interface using compiler directives,
for example:

INTERFACE

SUBROUTINE MPI_...(buf, ...)

!DEC$ ATTRIBUTES NO_ARG_CHECK :: buf

!$PRAGMA IGNORE_TKR buf

!DIR$ IGNORE_TKR buf

!IBM* IGNORE_TKR buf

REAL, DIMENSION(*) :: buf

... ! declarations of the other arguments

END SUBROUTINE

END INTERFACE

(End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 615

17.1.7 Requirements on Fortran Compilers

MPI-3.0 (and later) compliant Fortran bindings are not only a property of the MPI library
itself, but rather a property of an MPI library together with the Fortran compiler suite for
which it is compiled.

Advice to users. Users must take appropriate steps to ensure that proper options
are specified to compilers. MPI libraries must document these options. Some MPI
libraries are shipped together with special compilation scripts (e.g., mpif90, mpicc)
that set these options automatically. (End of advice to users.)

An MPI library together with the Fortran compiler suite is only compliant with MPI-3.0 (and
later), as referred by MPI_GET_VERSION, if all the solutions described in Sections 17.1.11
through 17.1.19 work correctly. Based on this rule, major requirements for all three Fortran
support methods (i.e., the mpi_f08 and mpi modules, and mpif.h) are:

• The language features assumed-type and assumed-rank from Fortran 2008 TS 29113
[41] are available. This is required only for mpi_f08. As long as this requirement is
not supported by the compiler, it is valid to build an MPI library that implements the
mpi_f08 module with MPI_SUBARRAYS_SUPPORTED set to .FALSE..

• “Simply contiguous” arrays and scalars must be passed to choice buffer dummy ar-
guments of nonblocking routines with call by reference. This is needed only if one of
the support methods does not use the ASYNCHRONOUS attribute. See Section 17.1.12
for more details.

• SEQUENCE and BIND(C) derived types are valid as actual arguments passed to choice
buffer dummy arguments, and, in the case of MPI_SUBARRAYS_SUPPORTED==
.FALSE., they are passed with call by reference, and passed by descriptor in the case
of .TRUE..

• All actual arguments that are allowed for a dummy argument in an implicitly defined
and separately compiled Fortran routine with the given compiler (e.g.,
CHARACTER(LEN=*) strings and array of strings) must also be valid for choice buffer
dummy arguments with all Fortran support methods.

• The array dummy argument of the ISO_C_BINDING intrinsic module procedure
C_F_POINTER is not restricted to Fortran types for which a corresponding type in C
exists.

• The Fortran compiler shall not provide TYPE(*) unless the ASYNCHRONOUS attribute
protects MPI communication as described in TS 29113. Specifically, the TS 29113
must be implemented as a whole.

The following rules are required at least as long as the compiler does not provide the ex-
tension of the ASYNCHRONOUS attribute as part of TS 29113 and there still exists a Fortran
support method with MPI_ASYNC_PROTECTS_NONBLOCKING==.FALSE.. Observation of
these rules by the MPI application developer is especially recomended for backward com-
patibility of existing applications that use the mpi module or the mpif.h include file. The
rules are as follows:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

616 CHAPTER 17. LANGUAGE BINDINGS

• Separately compiled empty Fortran routines with implicit interfaces and separately
compiled empty C routines with BIND(C) Fortran interfaces (e.g., MPI_F_SYNC_REG
on page 637 and Section 17.1.8, and DD on page 639) solve the problems described in
Section 17.1.17.

• The problems with temporary data movement (described in detail in Section 17.1.18)
are solved as long as the application uses different sets of variables for the nonblocking
communication (or nonblocking or split collective I/O) and the computation when
overlapping communication and computation.

• Problems caused by automatic and permanent data movement (e.g., within a garbage
collection, see Section 17.1.19) are resolved without any further requirements on the
application program, neither on the usage of the buffers, nor on the declaration of
application routines that are involved in invoking MPI procedures.

All of these rules are valid for the mpi_f08 and mpi modules and independently of whether
mpif.h uses explicit interfaces.

Advice to implementors. Some of these rules are already part of the Fortran 2003
standard, some of these requirements require the Fortran TS 29113 [41], and some of
these requirements for MPI-3.0 are beyond the scope of TS 29113. (End of advice to
implementors.)

17.1.8 Additional Support for Fortran Register-Memory-Synchronization

As described in Section 17.1.17, a dummy call may be necessary to tell the compiler that
registers are to be flushed for a given buffer or that accesses to a buffer may not be moved
across a given point in the execution sequence. Only a Fortran binding exists for this call.

MPI_F_SYNC_REG(buf)

INOUT buf initial address of buffer (choice)

MPI_F_sync_reg(buf)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

MPI_F_SYNC_REG(buf)

<type> buf(*)

This routine has no executable statements. It must be compiled in the MPI library in
such a manner that a Fortran compiler cannot detect in the module that the routine has
an empty body. It is used only to force the compiler to flush a cached register value of a
variable or buffer back to memory (when necessary), or to invalidate the register value.

Rationale. This function is not available in other languages because it would not be
useful. This routine has no ierror return argument because there is no operation that
can fail. (End of rationale.)

Advice to implementors. This routine can be bound to a C routine to minimize
the risk that the Fortran compiler can learn that this routine is empty (and that
the call to this routine can be removed as part of an optimization). However, it is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 617

explicitly allowed to implement this routine within the mpi_f08 module according to
the definition for the mpi module or mpif.h to circumvent the overhead of building
the internal dope vector to handle the assumed-type, assumed-rank argument. (End
of advice to implementors.)

Rationale. This routine is not defined with TYPE(*), DIMENSION(*), i.e., assumed
size instead of assumed rank, because this would restrict the usability to “simply
contiguous” arrays and would require overloading with another interface for scalar
arguments. (End of rationale.)

Advice to users. If only a part of an array (e.g., defined by a subscript triplet) is
used in a nonblocking routine, it is recommended to pass the whole array to
MPI_F_SYNC_REG anyway to minimize the overhead of this no-operation call. Note
that this routine need not be called if MPI_ASYNC_PROTECTS_NONBLOCKING is
.TRUE. and the application fully uses the facilities of ASYNCHRONOUS arrays. (End of
advice to users.)

17.1.9 Additional Support for Fortran Numeric Intrinsic Types

MPI provides a small number of named datatypes that correspond to named intrinsic types
supported by C and Fortran. These include MPI_INTEGER, MPI_REAL, MPI_INT,
MPI_DOUBLE, etc., as well as the optional types MPI_REAL4, MPI_REAL8, etc. There is a
one-to-one correspondence between language declarations and MPI types.

Fortran (starting with Fortran 90) provides so-called KIND-parameterized types. These
types are declared using an intrinsic type (one of INTEGER, REAL, COMPLEX, LOGICAL, and
CHARACTER) with an optional integer KIND parameter that selects from among one or more
variants. The specific meaning of different KIND values themselves are implementation
dependent and not specified by the language. Fortran provides the KIND selection functions
selected_real_kind for REAL and COMPLEX types, and selected_int_kind for INTEGER

types that allow users to declare variables with a minimum precision or number of digits.
These functions provide a portable way to declare KIND-parameterized REAL, COMPLEX, and
INTEGER variables in Fortran. This scheme is backward compatible with Fortran 77. REAL

and INTEGER Fortran variables have a default KIND if none is specified. Fortran DOUBLE

PRECISION variables are of intrinsic type REAL with a non-default KIND. The following two
declarations are equivalent:

double precision x

real(KIND(0.0d0)) x

MPI provides two orthogonal methods for handling communication buffers of numeric
intrinsic types. The first method (see the following section) can be used when variables have
been declared in a portable way — using default KIND or using KIND parameters obtained
with the selected_int_kind or selected_real_kind functions. With this method, MPI
automatically selects the correct data size (e.g., 4 or 8 bytes) and provides representation
conversion in heterogeneous environments. The second method (see “Support for size-
specific MPI Datatypes” on page 621) gives the user complete control over communication
by exposing machine representations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

618 CHAPTER 17. LANGUAGE BINDINGS

Parameterized Datatypes with Specified Precision and Exponent Range

MPI provides named datatypes corresponding to standard Fortran 77 numeric types:
MPI_INTEGER, MPI_COMPLEX, MPI_REAL, MPI_DOUBLE_PRECISION and
MPI_DOUBLE_COMPLEX. MPI automatically selects the correct data size and provides rep-
resentation conversion in heterogeneous environments. The mechanism described in this
section extends this model to support portable parameterized numeric types.

The model for supporting portable parameterized types is as follows. Real variables
are declared (perhaps indirectly) using selected_real_kind(p, r) to determine the KIND

parameter, where p is decimal digits of precision and r is an exponent range. Implicitly
MPI maintains a two-dimensional array of predefined MPI datatypes D(p, r). D(p, r) is
defined for each value of (p, r) supported by the compiler, including pairs for which one
value is unspecified. Attempting to access an element of the array with an index (p, r) not
supported by the compiler is erroneous. MPI implicitly maintains a similar array of COMPLEX
datatypes. For integers, there is a similar implicit array related to selected_int_kind and
indexed by the requested number of digits r. Note that the predefined datatypes contained
in these implicit arrays are not the same as the named MPI datatypes MPI_REAL, etc., but
a new set.

Advice to implementors. The above description is for explanatory purposes only. It
is not expected that implementations will have such internal arrays. (End of advice
to implementors.)

Advice to users. selected_real_kind() maps a large number of (p,r) pairs to a
much smaller number of KIND parameters supported by the compiler. KIND parameters
are not specified by the language and are not portable. From the language point of
view intrinsic types of the same base type and KIND parameter are of the same type. In
order to allow interoperability in a heterogeneous environment, MPI is more stringent.
The corresponding MPI datatypes match if and only if they have the same (p,r) value
(REAL and COMPLEX) or r value (INTEGER). Thus MPI has many more datatypes than
there are fundamental language types. (End of advice to users.)

MPI_TYPE_CREATE_F90_REAL(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

MPI_Type_create_f90_real(p, r, newtype, ierror)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 619

This function returns a predefined MPI datatype that matches a REAL variable of KIND
selected_real_kind(p, r). In the model described above it returns a handle for the el-
ement D(p, r). Either p or r may be omitted from calls to selected_real_kind(p, r)

(but not both). Analogously, either p or r may be set to MPI_UNDEFINED. In communica-
tion, an MPI datatype A returned by MPI_TYPE_CREATE_F90_REAL matches a datatype
B if and only if B was returned by MPI_TYPE_CREATE_F90_REAL called with the same
values for p and r or B is a duplicate of such a datatype. Restrictions on using the returned
datatype with the “external32” data representation are given on page 621.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_COMPLEX(p, r, newtype)

IN p precision, in decimal digits (integer)

IN r decimal exponent range (integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

MPI_Type_create_f90_complex(p, r, newtype, ierror)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

This function returns a predefined MPI datatype that matches a
COMPLEX variable of KIND selected_real_kind(p, r). Either p or r may be omitted from
calls to selected_real_kind(p, r) (but not both). Analogously, either p or r may be set
to MPI_UNDEFINED. Matching rules for datatypes created by this function are analogous to
the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL. Restrictions
on using the returned datatype with the “external32” data representation are given on
page 621.

It is erroneous to supply values for p and r not supported by the compiler.

MPI_TYPE_CREATE_F90_INTEGER(r, newtype)

IN r decimal exponent range, i.e., number of decimal digits

(integer)

OUT newtype the requested MPI datatype (handle)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

MPI_Type_create_f90_integer(r, newtype, ierror)

INTEGER, INTENT(IN) :: r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

620 CHAPTER 17. LANGUAGE BINDINGS

INTEGER R, NEWTYPE, IERROR

This function returns a predefined MPI datatype that matches a INTEGER variable of
KIND selected_int_kind(r). Matching rules for datatypes created by this function are
analogous to the matching rules for datatypes created by MPI_TYPE_CREATE_F90_REAL.
Restrictions on using the returned datatype with the “external32” data representation are
given on page 621.

It is erroneous to supply a value for r that is not supported by the compiler.
Example:

integer longtype, quadtype

integer, parameter :: long = selected_int_kind(15)

integer(long) ii(10)

real(selected_real_kind(30)) x(10)

call MPI_TYPE_CREATE_F90_INTEGER(15, longtype, ierror)

call MPI_TYPE_CREATE_F90_REAL(30, MPI_UNDEFINED, quadtype, ierror)

...

call MPI_SEND(ii, 10, longtype, ...)

call MPI_SEND(x, 10, quadtype, ...)

Advice to users. The datatypes returned by the above functions are predefined
datatypes. They cannot be freed; they do not need to be committed; they can be
used with predefined reduction operations. There are two situations in which they
behave differently syntactically, but not semantically, from the MPI named predefined
datatypes.

1. MPI_TYPE_GET_ENVELOPE returns special combiners that allow a program to
retrieve the values of p and r.

2. Because the datatypes are not named, they cannot be used as compile-time
initializers or otherwise accessed before a call to one of the
MPI_TYPE_CREATE_F90_XXX routines.

If a variable was declared specifying a non-default KIND value that was not obtained
with selected_real_kind() or selected_int_kind(), the only way to obtain a
matching MPI datatype is to use the size-based mechanism described in the next
section.

(End of advice to users.)

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_XXX with the same combination of (XXX,p,r). The appli-
cation is not allowed to free the returned predefined, unnamed datatype handles. To
prevent the creation of a potentially huge amount of handles, a high quality MPI imple-
mentation should return the same datatype handle for the same (REAL/COMPLEX/
INTEGER,p,r) combination. Checking for the combination (p,r) in the preceding call
to MPI_TYPE_CREATE_F90_XXX and using a hash table to find formerly generated
handles should limit the overhead of finding a previously generated datatype with
same combination of (XXX,p,r). (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 621

Rationale. The MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER interface
needs as input the original range and precision values to be able to define useful
and compiler-independent external (Section 13.7.2) or user-defined (Section 13.7.3)
data representations, and in order to be able to perform automatic and efficient data
conversions in a heterogeneous environment. (End of rationale.)

We now specify how the datatypes described in this section behave when used with the
“external32” external data representation described in Section 13.7.2.

The external32 representation specifies data formats for integer and floating point val-
ues. Integer values are represented in two’s complement big-endian format. Floating point
values are represented by one of three IEEE formats. These are the IEEE “Single,” “Dou-
ble,” and “Double Extended” formats, requiring 4, 8, and 16 bytes of storage, respectively.
For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16 bytes, with
15 exponent bits, bias = +10383, 112 fraction bits, and an encoding analogous to the
“Double” format.

The external32 representations of the datatypes returned by
MPI_TYPE_CREATE_F90_REAL/COMPLEX/INTEGER are given by the following rules.
For MPI_TYPE_CREATE_F90_REAL:

if (p > 33) or (r > 4931) then external32 representation

is undefined

else if (p > 15) or (r > 307) then external32_size = 16

else if (p > 6) or (r > 37) then external32_size = 8

else external32_size = 4

For MPI_TYPE_CREATE_F90_COMPLEX: twice the size as for
MPI_TYPE_CREATE_F90_REAL.
For MPI_TYPE_CREATE_F90_INTEGER:

if (r > 38) then external32 representation is undefined

else if (r > 18) then external32_size = 16

else if (r > 9) then external32_size = 8

else if (r > 4) then external32_size = 4

else if (r > 2) then external32_size = 2

else external32_size = 1

If the external32 representation of a datatype is undefined, the result of using the datatype
directly or indirectly (i.e., as part of another datatype or through a duplicated datatype)
in operations that require the external32 representation is undefined. These operations in-
clude MPI_PACK_EXTERNAL, MPI_UNPACK_EXTERNAL, and many MPI_FILE functions,
when the “external32” data representation is used. The ranges for which the external32
representation is undefined are reserved for future standardization.

Support for Size-specific MPI Datatypes

MPI provides named datatypes corresponding to optional Fortran 77 numeric types that
contain explicit byte lengths — MPI_REAL4, MPI_INTEGER8, etc. This section describes a
mechanism that generalizes this model to support all Fortran numeric intrinsic types.

We assume that for each typeclass (integer, real, complex) and each word size there is
a unique machine representation. For every pair (typeclass, n) supported by a compiler,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

622 CHAPTER 17. LANGUAGE BINDINGS

MPI must provide a named size-specific datatype. The name of this datatype is of the form
MPI_<TYPE>n in C and Fortran where <TYPE> is one of REAL, INTEGER and COMPLEX,
and n is the length in bytes of the machine representation. This datatype locally matches
all variables of type (typeclass, n). The list of names for such types includes:

MPI_REAL4

MPI_REAL8

MPI_REAL16

MPI_COMPLEX8

MPI_COMPLEX16

MPI_COMPLEX32

MPI_INTEGER1

MPI_INTEGER2

MPI_INTEGER4

MPI_INTEGER8

MPI_INTEGER16

One datatype is required for each representation supported by the compiler. To be backward
compatible with the interpretation of these types in MPI-1, we assume that the nonstandard
declarations REAL*n, INTEGER*n, always create a variable whose representation is of size n.
These datatypes may also be used for variables declared with KIND=INT8/16/32/64 or
KIND=REAL32/64/128, which are defined in the ISO_FORTRAN_ENV intrinsic module. Note
that the MPI datatypes and the REAL*n, INTEGER*n declarations count bytes whereas the
Fortran KIND values count bits. All these datatypes are predefined.

The following functions allow a user to obtain a size-specific MPI datatype for any
intrinsic Fortran type.

MPI_SIZEOF(x, size)

IN x a Fortran variable of numeric intrinsic type (choice)

OUT size size of machine representation of that type (integer)

MPI_Sizeof(x, size, ierror)

TYPE(*), DIMENSION(..) :: x

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

This function returns the size in bytes of the machine representation of the given
variable. It is a generic Fortran routine and has a Fortran binding only.

Advice to users. This function is similar to the C sizeof operator but behaves slightly
differently. If given an array argument, it returns the size of the base element, not
the size of the whole array. (End of advice to users.)

Rationale. This function is not available in other languages because it would not be
useful. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 623

MPI_TYPE_MATCH_SIZE(typeclass, size, datatype)

IN typeclass generic type specifier (integer)

IN size size, in bytes, of representation (integer)

OUT datatype datatype with correct type, size (handle)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *datatype)

MPI_Type_match_size(typeclass, size, datatype, ierror)

INTEGER, INTENT(IN) :: typeclass, size

TYPE(MPI_Datatype), INTENT(OUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, DATATYPE, IERROR)

INTEGER TYPECLASS, SIZE, DATATYPE, IERROR

typeclass is one of MPI_TYPECLASS_REAL, MPI_TYPECLASS_INTEGER and
MPI_TYPECLASS_COMPLEX, corresponding to the desired typeclass. The function returns
an MPI datatype matching a local variable of type (typeclass, size).

This function returns a reference (handle) to one of the predefined named datatypes, not
a duplicate. This type cannot be freed. MPI_TYPE_MATCH_SIZE can be used to obtain a
size-specific type that matches a Fortran numeric intrinsic type by first calling MPI_SIZEOF
in order to compute the variable size, and then calling MPI_TYPE_MATCH_SIZE to find
a suitable datatype. In C, one can use the C function sizeof(), instead of MPI_SIZEOF.
In addition, for variables of default kind the variable’s size can be computed by a call to
MPI_TYPE_GET_EXTENT, if the typeclass is known. It is erroneous to specify a size not
supported by the compiler.

Rationale. This is a convenience function. Without it, it can be tedious to find the
correct named type. See note to implementors below. (End of rationale.)

Advice to implementors. This function could be implemented as a series of tests.

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *rtype)

{

switch(typeclass) {

case MPI_TYPECLASS_REAL: switch(size) {

case 4: *rtype = MPI_REAL4; return MPI_SUCCESS;

case 8: *rtype = MPI_REAL8; return MPI_SUCCESS;

default: error(...);

}

case MPI_TYPECLASS_INTEGER: switch(size) {

case 4: *rtype = MPI_INTEGER4; return MPI_SUCCESS;

case 8: *rtype = MPI_INTEGER8; return MPI_SUCCESS;

default: error(...);

}

... etc. ...

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

624 CHAPTER 17. LANGUAGE BINDINGS

return MPI_SUCCESS;

}

(End of advice to implementors.)

Communication With Size-specific Types

The usual type matching rules apply to size-specific datatypes: a value sent with datatype
MPI_<TYPE>n can be received with this same datatype on another process. Most modern
computers use 2’s complement for integers and IEEE format for floating point. Thus, com-
munication using these size-specific datatypes will not entail loss of precision or truncation
errors.

Advice to users. Care is required when communicating in a heterogeneous environ-
ment. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

... initialize x ...

call MPI_SEND(x, xtype, 100, 1, ...)

else if (myrank .eq. 1) then

call MPI_RECV(x, xtype, 100, 0, ...)

endif

This may not work in a heterogeneous environment if the value of size is not the
same on process 1 and process 0. There should be no problem in a homogeneous
environment. To communicate in a heterogeneous environment, there are at least four
options. The first is to declare variables of default type and use the MPI datatypes
for these types, e.g., declare a variable of type REAL and use MPI_REAL. The second
is to use selected_real_kind or selected_int_kind and with the functions of the
previous section. The third is to declare a variable that is known to be the same
size on all architectures (e.g., selected_real_kind(12) on almost all compilers will
result in an 8-byte representation). The fourth is to carefully check representation
size before communication. This may require explicit conversion to a variable of size
that can be communicated and handshaking between sender and receiver to agree on
a size.

Note finally that using the “external32” representation for I/O requires explicit at-
tention to the representation sizes. Consider the following code:

real(selected_real_kind(5)) x(100)

call MPI_SIZEOF(x, size, ierror)

call MPI_TYPE_MATCH_SIZE(MPI_TYPECLASS_REAL, size, xtype, ierror)

if (myrank .eq. 0) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, &

MPI_MODE_CREATE+MPI_MODE_WRONLY, &

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 625

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

call MPI_BARRIER(MPI_COMM_WORLD, ierror)

if (myrank .eq. 1) then

call MPI_FILE_OPEN(MPI_COMM_SELF, ’foo’, MPI_MODE_RDONLY, &

MPI_INFO_NULL, fh, ierror)

call MPI_FILE_SET_VIEW(fh, zero, xtype, xtype, ’external32’, &

MPI_INFO_NULL, ierror)

call MPI_FILE_WRITE(fh, x, 100, xtype, status, ierror)

call MPI_FILE_CLOSE(fh, ierror)

endif

If processes 0 and 1 are on different machines, this code may not work as expected if
the size is different on the two machines. (End of advice to users.)

17.1.10 Problems With Fortran Bindings for MPI

This section discusses a number of problems that may arise when using MPI in a Fortran
program. It is intended as advice to users, and clarifies how MPI interacts with Fortran. It
is intended to clarify, not add to, this standard.

As noted in the original MPI specification, the interface violates the Fortran standard
in several ways. While these may cause few problems for Fortran 77 programs, they become
more significant for Fortran 90 programs, so that users must exercise care when using new
Fortran 90 features. With Fortran 2008 and the new semantics defined in TS 29113, most
violations are resolved, and this is hinted at in an addendum to each item. The violations
were originally adopted and have been retained because they are important for the usability
of MPI. The rest of this section describes the potential problems in detail.

The following MPI features are inconsistent with Fortran 90 and Fortran 77.

1. An MPI subroutine with a choice argument may be called with different argument
types. When using the mpi_f08 module together with a compiler that supports For-
tran 2008 + TS 29113, this problem is resolved.

2. An MPI subroutine with an assumed-size dummy argument may be passed an actual
scalar argument. This is only solved for choice buffers through the use of
DIMENSION(..).

3. Nonblocking and split-collective MPI routines assume that actual arguments are passed
by address or descriptor and that arguments and the associated data are not copied
on entrance to or exit from the subroutine. This problem is solved with the use of the
ASYNCHRONOUS attribute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

626 CHAPTER 17. LANGUAGE BINDINGS

4. An MPI implementation may read or modify user data (e.g., communication buffers
used by nonblocking communications) concurrently with a user program that is ex-
ecuting outside of MPI calls. This problem is resolved by relying on the extended
semantics of the ASYNCHRONOUS attribute as specified in TS 29113.

5. Several named “constants,” such as MPI_BOTTOM, MPI_IN_PLACE,
MPI_STATUS_IGNORE, MPI_STATUSES_IGNORE, MPI_ERRCODES_IGNORE,
MPI_UNWEIGHTED, MPI_WEIGHTS_EMPTY, MPI_ARGV_NULL, and MPI_ARGVS_NULL

are not ordinary Fortran constants and require a special implementation. See Sec-
tion 2.5.4 for more information.

6. The memory allocation routine MPI_ALLOC_MEM cannot be used from
Fortran 77/90/95 without a language extension (for example, Cray pointers) that
allows the allocated memory to be associated with a Fortran variable. Therefore,
address sized integers were used in MPI-2.0 – MPI-2.2. In Fortran 2003,
TYPE(C_PTR) entities were added, which allow a standard-conforming implementation
of the semantics of MPI_ALLOC_MEM. In MPI-3.0 and later, MPI_ALLOC_MEM has
an additional, overloaded interface to support this language feature. The use of Cray
pointers is deprecated. The mpi_f08 module only supports TYPE(C_PTR) pointers.

Additionally, MPI is inconsistent with Fortran 77 in a number of ways, as noted below.

• MPI identifiers exceed 6 characters.

• MPI identifiers may contain underscores after the first character.

• MPI requires an include file, mpif.h. On systems that do not support include files,
the implementation should specify the values of named constants.

• Many routines in MPI have KIND-parameterized integers (e.g., MPI_ADDRESS_KIND

and MPI_OFFSET_KIND) that hold address information. On systems that do not sup-
port Fortran 90-style parameterized types, INTEGER*8 or INTEGER should be used
instead.

MPI-1 contained several routines that take address-sized information as input or return
address-sized information as output. In C such arguments were of type MPI_Aint and in
Fortran of type INTEGER. On machines where integers are smaller than addresses, these
routines can lose information. In MPI-2 the use of these functions has been deprecated and
they have been replaced by routines taking INTEGER arguments of KIND=MPI_ADDRESS_KIND.
A number of new MPI-2 functions also take INTEGER arguments of non-default KIND. See
Section 2.6 and Section 4.1.1 for more information.

Sections 17.1.11 through 17.1.19 describe several problems in detail which concern
the interaction of MPI and Fortran as well as their solutions. Some of these solutions
require special capabilities from the compilers. Major requirements are summarized in
Section 17.1.7.

17.1.11 Problems Due to Strong Typing

All MPI functions with choice arguments associate actual arguments of different Fortran
datatypes with the same dummy argument. This is not allowed by Fortran 77, and in
Fortran 90, it is technically only allowed if the function is overloaded with a different

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 627

function for each type (see also Section 17.1.6). In C, the use of void* formal arguments
avoids these problems. Similar to C, with Fortran 2008 + TS 29113 (and later) together with
the mpi_f08 module, the problem is avoided by declaring choice arguments with TYPE(*),

DIMENSION(..), i.e., as assumed-type and assumed-rank dummy arguments.
Using INCLUDE ’mpif.h’, the following code fragment is technically invalid and may

generate a compile-time error.

integer i(5)

real x(5)

...

call mpi_send(x, 5, MPI_REAL, ...)

call mpi_send(i, 5, MPI_INTEGER, ...)

In practice, it is rare for compilers to do more than issue a warning. When using either
the mpi_f08 or mpi module, the problem is usually resolved through the assumed-type
and assumed-rank declarations of the dummy arguments, or with a compiler-dependent
mechanism that overrides type checking for choice arguments.

It is also technically invalid in Fortran to pass a scalar actual argument to an array
dummy argument that is not a choice buffer argument. Thus, when using the mpi_f08

or mpi module, the following code fragment usually generates an error since the dims and
periods arguments to MPI_CART_CREATE are declared as assumed size arrays INTEGER ::
DIMS(*) and LOGICAL :: PERIODS(*).

USE mpi_f08 ! or USE mpi

INTEGER size

CALL MPI_Cart_create(comm_old,1,size,.TRUE.,.TRUE.,comm_cart,ierror)

Although this is a non-conforming MPI call, compiler warnings are not expected (but may
occur) when using INCLUDE ’mpif.h’ and this include file does not use Fortran explicit
interfaces.

17.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets

Arrays with subscript triplets describe Fortran subarrays with or without strides, e.g.,

REAL a(100,100,100)

CALL MPI_Send(a(11:17, 12:99:3, 1:100), 7*30*100, MPI_REAL, ...)

The handling of subscript triplets depends on the value of the constant
MPI_SUBARRAYS_SUPPORTED:

• If MPI_SUBARRAYS_SUPPORTED equals .TRUE.:

Choice buffer arguments are declared as TYPE(*), DIMENSION(..). For example,
consider the following code fragment:

REAL s(100), r(100)

CALL MPI_Isend(s(1:100:5), 3, MPI_REAL, ..., rq, ierror)

CALL MPI_Wait(rq, status, ierror)

CALL MPI_Irecv(r(1:100:5), 3, MPI_REAL, ..., rq, ierror)

CALL MPI_Wait(rq, status, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

628 CHAPTER 17. LANGUAGE BINDINGS

In this case, the individual elements s(1), s(6), and s(11) are sent between the start
of MPI_ISEND and the end of MPI_WAIT even though the compiled code will not copy
s(1:100:5) to a real contiguous temporary scratch buffer. Instead, the compiled code
will pass a descriptor to MPI_ISEND that allows MPI to operate directly on s(1), s(6),
s(11), . . ., s(96). The called MPI_ISEND routine will take only the first three of these
elements due to the type signature “3, MPI_REAL”.

All nonblocking MPI functions (e.g., MPI_ISEND, MPI_PUT,
MPI_FILE_WRITE_ALL_BEGIN) behave as if the user-specified elements of choice
buffers are copied to a contiguous scratch buffer in the MPI runtime environment.
All datatype descriptions (in the example above, “3, MPI_REAL”) read and store
data from and to this virtual contiguous scratch buffer. Displacements in MPI de-
rived datatypes are relative to the beginning of this virtual contiguous scratch buffer.
Upon completion of a nonblocking receive operation (e.g., when MPI_WAIT on a cor-
responding MPI_Request returns), it is as if the received data has been copied from
the virtual contiguous scratch buffer back to the non-contiguous application buffer.
In the example above, r(1), r(6), and r(11) are guaranteed to be defined with the
received data when MPI_WAIT returns.

Note that the above definition does not supercede restrictions about buffers used with
non-blocking operations (e.g., those specified in Section 3.7.2).

Advice to implementors. The Fortran descriptor for TYPE(*), DIMENSION(..)

arguments contains enough information that, if desired, the MPI library can make
a real contiguous copy of non-contiguous user buffers when the nonblocking op-
eration is started, and release this buffer not before the nonblocking communi-
cation has completed (e.g., the MPI_WAIT routine). Efficient implementations
may avoid such additional memory-to-memory data copying. (End of advice to
implementors.)

Rationale. If MPI_SUBARRAYS_SUPPORTED equals .TRUE., non-contiguous
buffers are handled inside the MPI library instead of by the compiler through
argument association conventions. Therefore, the scope of MPI library scratch
buffers can be from the beginning of a nonblocking operation until the completion
of the operation although beginning and completion are implemented in different
routines. (End of rationale.)

• If MPI_SUBARRAYS_SUPPORTED equals .FALSE.:

In this case, the use of Fortran arrays with subscript triplets as actual choice buffer
arguments in any nonblocking MPI operation (which also includes persistent request,
and split collectives) may cause undefined behavior. They may, however, be used in
blocking MPI operations.

Implicit in MPI is the idea of a contiguous chunk of memory accessible through a
linear address space. MPI copies data to and from this memory. An MPI program
specifies the location of data by providing memory addresses and offsets. In the C
language, sequence association rules plus pointers provide all the necessary low-level
structure.

In Fortran, array data is not necessarily stored contiguously. For example, the array
section A(1:N:2) involves only the elements of A with indices 1, 3, 5, The same is

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 629

true for a pointer array whose target is such a section. Most compilers ensure that an
array that is a dummy argument is held in contiguous memory if it is declared with
an explicit shape (e.g., B(N)) or is of assumed size (e.g., B(*)). If necessary, they do
this by making a copy of the array into contiguous memory.1

Because MPI dummy buffer arguments are assumed-size arrays if
MPI_SUBARRAYS_SUPPORTED equals .FALSE., this leads to a serious problem for a
nonblocking call: the compiler copies the temporary array back on return but MPI
continues to copy data to the memory that held it. For example, consider the following
code fragment:

real a(100)

call MPI_IRECV(a(1:100:2), MPI_REAL, 50, ...)

Since the first dummy argument to MPI_IRECV is an assumed-size array (<type>
buf(*)), the array section a(1:100:2) is copied to a temporary before being passed
to MPI_IRECV, so that it is contiguous in memory. MPI_IRECV returns immediately,
and data is copied from the temporary back into the array a. Sometime later, MPI
may write to the address of the deallocated temporary. Copying is also a problem
for MPI_ISEND since the temporary array may be deallocated before the data has all
been sent from it.

Most Fortran 90 compilers do not make a copy if the actual argument is the whole
of an explicit-shape or assumed-size array or is a “simply contiguous” section such
as A(1:N) of such an array. (“Simply contiguous” is defined in the next paragraph.)
Also, many compilers treat allocatable arrays the same as they treat explicit-shape
arrays in this regard (though we know of one that does not). However, the same is not
true for assumed-shape and pointer arrays; since they may be discontiguous, copying
is often done. It is this copying that causes problems for MPI as described in the
previous paragraph.

According to the Fortran 2008 Standard, Section 6.5.4, a “simply contiguous” array
section is

name ([:,]... [<subscript>]:[<subscript>] [,<subscript>]...)

That is, there are zero or more dimensions that are selected in full, then one dimension
selected without a stride, then zero or more dimensions that are selected with a simple
subscript. The compiler can detect from analyzing the source code that the array is
contiguous. Examples are

A(1:N), A(:,N), A(:,1:N,1), A(1:6,N), A(:,:,1:N)

Because of Fortran’s column-major ordering, where the first index varies fastest, a
“simply contiguous” section of a contiguous array will also be contiguous.

The same problem can occur with a scalar argument. A compiler may make a copy of
scalar dummy arguments within a called procedure when passed as an actual argument
to a choice buffer routine. That this can cause a problem is illustrated by the example

1Technically, the Fortran standard is worded to allow non-contiguous storage of any array data, unless
the dummy argument has the CONTIGUOUS attribute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

630 CHAPTER 17. LANGUAGE BINDINGS

real :: a

call user1(a,rq)

call MPI_WAIT(rq,status,ierr)

write (*,*) a

subroutine user1(buf,request)

call MPI_IRECV(buf,...,request,...)

end

If a is copied, MPI_IRECV will alter the copy when it completes the communication
and will not alter a itself.

Note that copying will almost certainly occur for an argument that is a non-trivial
expression (one with at least one operator or function call), a section that does not
select a contiguous part of its parent (e.g., A(1:n:2)), a pointer whose target is such
a section, or an assumed-shape array that is (directly or indirectly) associated with
such a section.

If a compiler option exists that inhibits copying of arguments, in either the calling or
called procedure, this must be employed.

If a compiler makes copies in the calling procedure of arguments that are explicit-
shape or assumed-size arrays, “simply contiguous” array sections of such arrays, or
scalars, and if no compiler option exists to inhibit such copying, then the compiler
cannot be used for applications that use MPI_GET_ADDRESS, or any nonblocking
MPI routine. If a compiler copies scalar arguments in the called procedure and there
is no compiler option to inhibit this, then this compiler cannot be used for applications
that use memory references across subroutine calls as in the example above.

17.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts

Fortran arrays with vector subscripts describe subarrays containing a possibly irregular
set of elements

REAL a(100)

CALL MPI_Send(A((/7,9,23,81,82/)), 5, MPI_REAL, ...)

Fortran arrays with a vector subscript must not be used as actual choice buffer argu-
ments in any nonblocking or split collective MPI operations. They may, however, be used
in blocking MPI operations.

17.1.14 Special Constants

MPI requires a number of special “constants” that cannot be implemented as normal Fortran
constants, e.g., MPI_BOTTOM. The complete list can be found in Section 2.5.4. In C, these
are implemented as constant pointers, usually as NULL and are used where the function
prototype calls for a pointer to a variable, not the variable itself.

In Fortran, using special values for the constants (e.g., by defining them through
parameter statements) is not possible because an implementation cannot distinguish these
values from valid data. Typically these constants are implemented as predefined static vari-
ables (e.g., a variable in an MPI-declared COMMON block), relying on the fact that the target

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 631

compiler passes data by address. Inside the subroutine, the address of the actual choice
buffer argument can be compared with the address of such a predefined static variable.

These special constants also cause an exception with the usage of Fortran INTENT: with
USE mpi_f08, the attributes INTENT(IN), INTENT(OUT), and INTENT(INOUT) are used in the
Fortran interface. In most cases, INTENT(IN) is used if the C interface uses call-by-value.
For all buffer arguments and for dummy arguments that may be modified and allow one of
these special constants as input, an INTENT is not specified.

17.1.15 Fortran Derived Types

MPI supports passing Fortran entities of BIND(C) and SEQUENCE derived types to choice
dummy arguments, provided no type component has the ALLOCATABLE or POINTER attribute.

The following code fragment shows some possible ways to send scalars or arrays of
interoperable derived type in Fortran. The example assumes that all data is passed by
address.

type, :: mytype

integer :: i

real :: x

double precision :: d

logical :: l

end type mytype

type(mytype) :: foo, fooarr(5)

integer :: blocklen(4), type(4)

integer(KIND=MPI_ADDRESS_KIND) :: disp(4), base, lb, extent

call MPI_GET_ADDRESS(foo%i, disp(1), ierr)

call MPI_GET_ADDRESS(foo%x, disp(2), ierr)

call MPI_GET_ADDRESS(foo%d, disp(3), ierr)

call MPI_GET_ADDRESS(foo%l, disp(4), ierr)

base = disp(1)

disp(1) = disp(1) - base

disp(2) = disp(2) - base

disp(3) = disp(3) - base

disp(4) = disp(4) - base

blocklen(1) = 1

blocklen(2) = 1

blocklen(3) = 1

blocklen(4) = 1

type(1) = MPI_INTEGER

type(2) = MPI_REAL

type(3) = MPI_DOUBLE_PRECISION

type(4) = MPI_LOGICAL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

632 CHAPTER 17. LANGUAGE BINDINGS

call MPI_TYPE_CREATE_STRUCT(4, blocklen, disp, type, newtype, ierr)

call MPI_TYPE_COMMIT(newtype, ierr)

call MPI_SEND(foo%i, 1, newtype, dest, tag, comm, ierr)

! or

call MPI_SEND(foo, 1, newtype, dest, tag, comm, ierr)

! expects that base == address(foo%i) == address(foo)

call MPI_GET_ADDRESS(fooarr(1), disp(1), ierr)

call MPI_GET_ADDRESS(fooarr(2), disp(2), ierr)

extent = disp(2) - disp(1)

lb = 0

call MPI_TYPE_CREATE_RESIZED(newtype, lb, extent, newarrtype, ierr)

call MPI_TYPE_COMMIT(newarrtype, ierr)

call MPI_SEND(fooarr, 5, newarrtype, dest, tag, comm, ierr)

Using the derived type variable foo instead of its first basic type element foo%i may
be impossible if the MPI library implements choice buffer arguments through overloading
instead of using TYPE(*), DIMENSION(..), or through a non-standardized extension such
as !$PRAGMA IGNORE_TKR; see Section 17.1.6.

To use a derived type in an array requires a correct extent of the datatype handle
to take care of the alignment rules applied by the compiler. These alignment rules may
imply that there are gaps between the components of a derived type, and also between the
subsuquent elements of an array of a derived type. The extent of an interoperable derived
type (i.e., defined with BIND(C)) and a SEQUENCE derived type with the same content may
be different because C and Fortran may apply different alignment rules. As recommended
in the advice to users in Section 4.1.6, one should add an additional fifth structure element
with one numerical storage unit at the end of this structure to force in most cases that
the array of structures is contiguous. Even with such an additional element, one should
keep this resizing due to the special alignment rules that can be used by the compiler for
structures, as also mentioned in this advice.

Using the extended semantics defined in TS 29113, it is also possible to use entities
or derived types without either the BIND(C) or the SEQUENCE attribute as choice buffer
arguments; some additional constraints must be observed, e.g., no ALLOCATABLE or POINTER
type components may exist. In this case, the base address in the example must be changed
to become the address of foo instead of foo%i, because the Fortran compiler may rearrange
type components or add padding. Sending the structure foo should then also be performed
by providing it (and not foo%i) as actual argument for MPI_Send.

17.1.16 Optimization Problems, an Overview

MPI provides operations that may be hidden from the user code and run concurrently
with it, accessing the same memory as user code. Examples include the data transfer
for an MPI_IRECV. The optimizer of a compiler will assume that it can recognize periods
when a copy of a variable can be kept in a register without reloading from or storing to
memory. When the user code is working with a register copy of some variable while the
hidden operation reads or writes the memory copy, problems occur. These problems are

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 633

independent of the Fortran support method; i.e., they occur with the mpi_f08 module, the
mpi module, and the mpif.h include file.

This section shows four problematic usage areas (the abbrevations in parentheses are
used in the table below):

• Use of nonblocking routines or persistent requests (Nonbl.).

• Use of one-sided routines (1-sided).

• Use of MPI parallel file I/O split collective operations (Split).

• Use of MPI_BOTTOM together with absolute displacements in MPI datatypes, or rel-
ative displacements between two variables in such datatypes (Bottom).

The following compiler optimization strategies (valid for serial code) may cause prob-
lems in MPI applications:

• Code movement and register optimization problems; see Section 17.1.17.

• Temporary data movement and temporary memory modifications; see Section 17.1.18.

• Permanent data movement (e.g., through garbage collection); see Section 17.1.19.

Table 17.2 shows the only usage areas where these optimization problems may occur.

Optimization may cause a problem in
following usage areas

Nonbl. 1-sided Split Bottom

Code movement yes yes no yes
and register optimization

Temporary data movement yes yes yes no

Permanent data movement yes yes yes yes

Table 17.2: Occurrence of Fortran optimization problems in several usage areas

The solutions in the following sections are based on compromises:

• to minimize the burden for the application programmer, e.g., as shown in Sections
“Solutions” through “The (Poorly Performing) Fortran VOLATILE Attribute” on
pages 635–640,

• to minimize the drawbacks on compiler based optimization, and

• to minimize the requirements defined in Section 17.1.7.

17.1.17 Problems with Code Movement and Register Optimization

Nonblocking Operations

If a variable is local to a Fortran subroutine (i.e., not in a module or a COMMON block), the
compiler will assume that it cannot be modified by a called subroutine unless it is an actual
argument of the call. In the most common linkage convention, the subroutine is expected

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

634 CHAPTER 17. LANGUAGE BINDINGS

Example 17.1 Fortran 90 register optimization — extreme.

Source compiled as or compiled as

REAL :: buf, b1 REAL :: buf, b1 REAL :: buf, b1

call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req) call MPI_IRECV(buf,..req)

register = buf b1 = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call MPI_WAIT(req,..)

b1 = buf b1 = register

to save and restore certain registers. Thus, the optimizer will assume that a register which
held a valid copy of such a variable before the call will still hold a valid copy on return.

Example 17.1 shows extreme, but allowed, possibilities. MPI_WAIT on a concurrent
thread modifies buf between the invocation of MPI_IRECV and the completion of MPI_WAIT.
But the compiler cannot see any possibility that buf can be changed after MPI_IRECV has
returned, and may schedule the load of buf earlier than typed in the source. The compiler
has no reason to avoid using a register to hold buf across the call to MPI_WAIT. It also may
reorder the instructions as illustrated in the rightmost column.

Example 17.2 Similar example with MPI_ISEND

Source compiled as with a possible MPI-internal
execution sequence

REAL :: buf, copy REAL :: buf, copy REAL :: buf, copy

buf = val buf = val buf = val

call MPI_ISEND(buf,..req) call MPI_ISEND(buf,..req) addr = &buf

copy = buf copy= buf copy = buf

buf = val_overwrite buf = val_overwrite

call MPI_WAIT(req,..) call MPI_WAIT(req,..) call send(*addr) ! within

! MPI_WAIT

buf = val_overwrite

Due to valid compiler code movement optimizations in Example 17.2, the content of
buf may already have been overwritten by the compiler when the content of buf is sent.
The code movement is permitted because the compiler cannot detect a possible access to
buf in MPI_WAIT (or in a second thread between the start of MPI_ISEND and the end of
MPI_WAIT).

Such register optimization is based on moving code; here, the access to buf was moved
from after MPI_WAIT to before MPI_WAIT. Note that code movement may also occur across
subroutine boundaries when subroutines or functions are inlined.

This register optimization/code movement problem for nonblocking operations does
not occur with MPI parallel file I/O split collective operations, because in the ..._BEGIN
and ..._END calls, the same buffer has to be provided as an actual argument. The register
optimization / code movement problem for MPI_BOTTOM and derived MPI datatypes may
occur in each blocking and nonblocking communication call, as well as in each parallel file
I/O operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 635

One-sided Communication

An example with instruction reordering due to register optimization can be found in Sec-
tion 11.7.4.

MPI_BOTTOM and Combining Independent Variables in Datatypes

This section is only relevant if the MPI program uses a buffer argument to an
MPI_SEND, MPI_RECV, etc., that hides the actual variables involved in the communica-
tion. MPI_BOTTOM with an MPI_Datatype containing absolute addresses is one example.
Creating a datatype which uses one variable as an anchor and brings along others by using
MPI_GET_ADDRESS to determine their offsets from the anchor is another. The anchor
variable would be the only one referenced in the call. Also attention must be paid if MPI
operations are used that run in parallel with the user’s application.

Example 17.3 shows what Fortran compilers are allowed to do.

Example 17.3 Fortran 90 register optimization.

This source . . . can be compiled as:

call MPI_GET_ADDRESS(buf,bufaddr, call MPI_GET_ADDRESS(buf,...)

ierror)

call MPI_TYPE_CREATE_STRUCT(1,1, call MPI_TYPE_CREATE_STRUCT(...)

bufaddr,

MPI_REAL,type,ierror)

call MPI_TYPE_COMMIT(type,ierror) call MPI_TYPE_COMMIT(...)

val_old = buf register = buf

val_old = register

call MPI_RECV(MPI_BOTTOM,1,type,...) call MPI_RECV(MPI_BOTTOM,...)

val_new = buf val_new = register

In Example 17.3, the compiler does not invalidate the register because it cannot see
that MPI_RECV changes the value of buf. The access to buf is hidden by the use of
MPI_GET_ADDRESS and MPI_BOTTOM.

In Example 17.4, several successive assignments to the same variable buf can be com-
bined in a way such that only the last assignment is executed. “Successive” means that
no interfering load access to this variable occurs between the assignments. The compiler
cannot detect that the call to MPI_SEND statement is interfering because the load access
to buf is hidden by the usage of MPI_BOTTOM.

Solutions

The following sections show in detail how the problems with code movement and register
optimization can be portably solved. Application writers can partially or fully avoid these
compiler optimization problems by using one or more of the special Fortran declarations
with the send and receive buffers used in nonblocking operations, or in operations in which
MPI_BOTTOM is used, or if datatype handles that combine several variables are used:

• Use of the Fortran ASYNCHRONOUS attribute.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

636 CHAPTER 17. LANGUAGE BINDINGS

Example 17.4 Similar example with MPI_SEND

This source . . . can be compiled as:

! buf contains val_old ! buf contains val_old

buf = val_new

call MPI_SEND(MPI_BOTTOM,1,type,...) call MPI_SEND(...)

! with buf as a displacement in type ! i.e. val_old is sent

!

! buf=val_new is moved to here

! and detected as dead code

! and therefore removed

!

buf = val_overwrite buf = val_overwrite

• Use of the helper routine MPI_F_SYNC_REG, or an equivalent user-written dummy
routine.

• Declare the buffer as a Fortran module variable or within a Fortran common block.

• Use of the Fortran VOLATILE attribute.

Each of these methods solves the problems of code movement and register optimization,
but may incur various degrees of performance impact, and may not be usable in every
application context. These methods may not be guaranteed by the Fortran standard, but
they must be guaranteed by a MPI-3.0 (and later) compliant MPI library and associated
compiler suite according to the requirements listed in Section 17.1.7. The performance
impact of using MPI_F_SYNC_REG is expected to be low, that of using module variables
or the ASYNCHRONOUS attribute is expected to be low to medium, and that of using the
VOLATILE attribute is expected to be high or very high. Note that there is one attribute
that cannot be used for this purpose: the Fortran TARGET attribute does not solve code
movement problems in MPI applications.

The Fortran ASYNCHRONOUS Attribute

Declaring an actual buffer argument with the ASYNCHRONOUS Fortran attribute in a scoping
unit (or BLOCK) informs the compiler that any statement in the scoping unit may be executed
while the buffer is affected by a pending asynchronous Fortran input/output operation (since
Fortran 2003) or by an asynchronous communication (TS 29113 extension). Without the
extensions specified in TS 29113, a Fortran compiler may totally ignore this attribute if the
Fortran compiler implements asynchronous Fortran input/output operations with blocking
I/O. The ASYNCHRONOUS attribute protects the buffer accesses from optimizations through
code movements across routine calls, and the buffer itself from temporary and permanent
data movements. If the choice buffer dummy argument of a nonblocking MPI routine is
declared with ASYNCHRONOUS (which is mandatory for the mpi_f08 module, with allowable
exceptions listed in Section 17.1.6), then the compiler has to guarantee call by reference
and should report a compile-time error if call by reference is impossible, e.g., if vector
subscripts are used. The MPI_ASYNC_PROTECTS_NONBLOCKING is set to .TRUE. if both
the protection of the actual buffer argument through ASYNCHRONOUS according to the TS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 637

29113 extension and the declaration of the dummy argument with ASYNCHRONOUS in the
Fortran support method is guaranteed for all nonblocking routines, otherwise it is set to
.FALSE..

The ASYNCHRONOUS attribute has some restrictions. Section 5.4.2 of the TS 29113
specifies:

“Asynchronous communication for a Fortran variable occurs through the action
of procedures defined by means other than Fortran. It is initiated by execution
of an asynchronous communication initiation procedure and completed by exe-
cution of an asynchronous communication completion procedure. Between the
execution of the initiation and completion procedures, any variable of which any
part is associated with any part of the asynchronous communication variable is
a pending communication affector. Whether a procedure is an asynchronous
communication initiation or completion procedure is processor dependent.

Asynchronous communication is either input communication or output com-
munication. For input communication, a pending communication affector shall
not be referenced, become defined, become undefined, become associated with a
dummy argument that has the VALUE attribute, or have its pointer association
status changed. For output communication, a pending communication affector
shall not be redefined, become undefined, or have its pointer association status
changed.”

In Example 17.5 Case (a) on page 643, the read accesses to b within function(b(i-1),

b(i), b(i+1)) cannot be moved by compiler optimizations to before the wait call because
b was declared as ASYNCHRONOUS. Note that only the elements 0, 1, 100, and 101 of b are in-
volved in asynchronous communication but by definition, the total variable b is the pending
communication affector and is usable for input and output asynchronous communication
between the MPI_I... routines and MPI_Waitall. Case (a) works fine because the read
accesses to b occur after the communication has completed.

In Case (b), the read accesses to b(1:100) in the loop i=2,99 are read accesses to
a pending communication affector while input communication (i.e., the two MPI_Irecv

calls) is pending. This is a contradiction to the rule that for input communication, a
pending communication affector shall not be referenced. The problem can be solved by using
separate variables for the halos and the inner array, or by splitting a common array into
disjoint subarrays which are passed through different dummy arguments into a subroutine,
as shown in Example 17.9.

If one does not overlap communication and computation on the same variable, then all
optimization problems can be solved through the ASYNCHRONOUS attribute.

The problems with MPI_BOTTOM, as shown in Example 17.3 and Example 17.4, can
also be solved by declaring the buffer buf with the ASYNCHRONOUS attribute.

In some MPI routines, a buffer dummy argument is defined as ASYNCHRONOUS to guaran-
tee passing by reference, provided that the actual argument is also defined as ASYNCHRONOUS.

Calling MPI_F_SYNC_REG

The compiler may be prevented from moving a reference to a buffer across a call to an
MPI subroutine by surrounding the call by calls to an external subroutine with the buffer
as an actual argument. The MPI library provides the MPI_F_SYNC_REG routine for this
purpose; see Section 17.1.8.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

638 CHAPTER 17. LANGUAGE BINDINGS

• The problems illustrated by the Examples 17.1 and 17.2 can be solved by calling
MPI_F_SYNC_REG(buf) once immediately after MPI_WAIT.

Example 17.1 Example 17.2
can be solved with can be solved with
call MPI_IRECV(buf,..req) buf = val

call MPI_ISEND(buf,..req)

copy = buf

call MPI_WAIT(req,..) call MPI_WAIT(req,..)

call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

b1 = buf buf = val_overwrite

The call to MPI_F_SYNC_REG(buf) prevents moving the last line before the
MPI_WAIT call. Further calls to MPI_F_SYNC_REG(buf) are not needed because it
is still correct if the additional read access copy=buf is moved below MPI_WAIT and
before buf=val_overwrite.

• The problems illustrated by the Examples 17.3 and 17.4 can be solved with two
additional MPI_F_SYNC_REG(buf) statements; one directly before MPI_RECV/
MPI_SEND, and one directly after this communication operation.

Example 17.3 Example 17.4
can be solved with can be solved with
call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

call MPI_RECV(MPI_BOTTOM,...) call MPI_SEND(MPI_BOTTOM,...)

call MPI_F_SYNC_REG(buf) call MPI_F_SYNC_REG(buf)

The first call to MPI_F_SYNC_REG(buf) is needed to finish all load and store refer-
ences to buf prior to MPI_RECV/MPI_SEND; the second call is needed to assure that
any subsequent access to buf is not moved before MPI_RECV/SEND.

• In the example in Section 11.7.4, two asynchronous accesses must be protected: in
Process 1, the access to bbbb must be protected similar to Example 17.1, i.e., a call to
MPI_F_SYNC_REG(bbbb) is needed after the second MPI_WIN_FENCE to guarantee
that further accesses to bbbb are not moved ahead of the call to MPI_WIN_FENCE. In
Process 2, both calls to MPI_WIN_FENCE together act as a communication call with
MPI_BOTTOM as the buffer. That is, before the first fence and after the second fence,
a call to MPI_F_SYNC_REG(buff) is needed to guarantee that accesses to buff are not
moved after or ahead of the calls to MPI_WIN_FENCE. Using MPI_GET instead of
MPI_PUT, the same calls to MPI_F_SYNC_REG are necessary.

Source of Process 1 Source of Process 2

bbbb = 777 buff = 999

call MPI_F_SYNC_REG(buff)

call MPI_WIN_FENCE call MPI_WIN_FENCE

call MPI_PUT(bbbb

into buff of process 2)

call MPI_WIN_FENCE call MPI_WIN_FENCE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 639

call MPI_F_SYNC_REG(bbbb) call MPI_F_SYNC_REG(buff)

ccc = buff

• The temporary memory modification problem, i.e., Example 17.6, can not be solved
with this method.

A User Defined Routine Instead of MPI_F_SYNC_REG

Instead of MPI_F_SYNC_REG, one can also use a user defined external subroutine, which
is separately compiled:

subroutine DD(buf)

integer buf

end

Note that if the intent is declared in an explicit interface for the external subroutine,
it must be OUT or INOUT. The subroutine itself may have an empty body, but the compiler
does not know this and has to assume that the buffer may be altered. For example, a call
to MPI_RECV with MPI_BOTTOM as buffer might be replaced by

call DD(buf)

call MPI_RECV(MPI_BOTTOM,...)

call DD(buf)

Such a user-defined routine was introduced in MPI-2.0 and is still included here to document
such usage in existing application programs although new applications should prefer
MPI_F_SYNC_REG or one of the other possibilities. In an existing application, calls to
such a user-written routine should be substituted by a call to MPI_F_SYNC_REG because
the user-written routine may not be implemented in accordance with the rules specified in
Section 17.1.7.

Module Variables and COMMON Blocks

An alternative to the previously mentioned methods is to put the buffer or variable into a
module or a common block and access it through a USE or COMMON statement in each scope
where it is referenced, defined or appears as an actual argument in a call to an MPI routine.
The compiler will then have to assume that the MPI procedure may alter the buffer or
variable, provided that the compiler cannot infer that the MPI procedure does not reference
the module or common block.

• This method solves problems of instruction reordering, code movement, and register
optimization related to nonblocking and one-sided communication, or related to the
usage of MPI_BOTTOM and derived datatype handles.

• Unfortunately, this method does not solve problems caused by asynchronous accesses
between the start and end of a nonblocking or one-sided communication. Specifically,
problems caused by temporary memory modifications are not solved.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

640 CHAPTER 17. LANGUAGE BINDINGS

The (Poorly Performing) Fortran VOLATILE Attribute

The VOLATILE attribute gives the buffer or variable the properties needed to avoid register
optimization or code movement problems, but it may inhibit optimization of any code
containing references or definitions of the buffer or variable. On many modern systems, the
performance impact will be large because not only register, but also cache optimizations
will not be applied. Therefore, use of the VOLATILE attribute to enforce correct execution
of MPI programs is discouraged.

The Fortran TARGET Attribute

The TARGET attribute does not solve the code movement problem because it is not specified
for the choice buffer dummy arguments of nonblocking routines. If the compiler detects that
the application program specifies the TARGET attribute for an actual buffer argument used
in the call to a nonblocking routine, the compiler may ignore this attribute if no pointer
reference to this buffer exists.

Rationale. The Fortran standardization body decided to extend the ASYNCHRONOUS

attribute within the TS 29113 to protect buffers in nonblocking calls from all kinds of
optimization, instead of extending the TARGET attribute. (End of rationale.)

17.1.18 Temporary Data Movement and Temporary Memory Modification

The compiler is allowed to temporarily modify data in memory. Normally, this problem
may occur only when overlapping communication and computation, as in Example 17.5,
Case (b) on page 643. Example 17.6 also shows a possibility that could be problematic.

In the compiler-generated, possible optimization in Example 17.7, buf(100,100) from
Example 17.6 is equivalenced with the 1-dimensional array buf_1dim(10000). The nonblock-
ing receive may asynchronously receive the data in the boundary buf(1,1:100) while the fused
loop is temporarily using this part of the buffer. When the tmp data is written back to buf,
the previous data of buf(1,1:100) is restored and the received data is lost. The principle
behind this optimization is that the receive buffer data buf(1,1:100) was temporarily moved
to tmp.

Example 17.8 shows a second possible optimization. The whole array is temporarily
moved to local_buf.

When storing local_buf back to the original location buf, then this implies overwriting
the section of buf that serves as a receive buffer in the nonblocking MPI call, i.e., this
storing back of local_buf is therefore likely to interfere with asynchronously received data
in buf(1,1:100).

Note that this problem may also occur:

• With the local buffer at the origin process, between an RMA communication call and
the ensuing synchronization call; see Chapter 11.

• With the window buffer at the target process between two ensuing RMA synchroniza-
tion calls.

• With the local buffer in MPI parallel file I/O split collective operations between the
..._BEGIN and ..._END calls; see Section 13.5.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 641

As already mentioned in subsection The Fortran ASYNCHRONOUS attribute on
page 636 of Section 17.1.17, the ASYNCHRONOUS attribute can prevent compiler optimization
with temporary data movement, but only if the receive buffer and the local references are
separated into different variables, as shown in Example 17.9 and in Example 17.10.

Note also that the methods

• calling MPI_F_SYNC_REG (or such a user-defined routine),

• using module variables and COMMON blocks, and

• the TARGET attribute

cannot be used to prevent such temporary data movement. These methods influence com-
piler optimization when library routines are called. They cannot prevent the optimizations
of the code fragments shown in Example 17.6 and 17.7.

Note also that compiler optimization with temporary data movement should not be
prevented by declaring buf as VOLATILE because the VOLATILE implies that all accesses to
any storage unit (word) of buf must be directly done in the main memory exactly in the
sequence defined by the application program. The VOLATILE attribute prevents all register
and cache optimizations. Therefore, VOLATILE may cause a huge performance degradation.

Instead of solving the problem, it is better to prevent the problem: when overlapping
communication and computation, the nonblocking communication (or nonblocking or split
collective I/O) and the computation should be executed on different variables, and the
communication should be protected with the ASYNCHRONOUS attribute. In this case, the
temporary memory modifications are done only on the variables used in the computation
and cannot have any side effect on the data used in the nonblocking MPI operations.

Rationale. This is a strong restriction for application programs. To weaken this
restriction, a new or modified asynchronous feature in the Fortran language would
be necessary: an asynchronous attribute that can be used on parts of an array and
together with asynchronous operations outside the scope of Fortran. If such a feature
becomes available in a future edition of the Fortran standard, then this restriction
also may be weakened in a later version of the MPI standard. (End of rationale.)

In Example 17.9 (which is a solution for the problem shown in Example 17.5 and
in Example 17.10 (which is a solution for the problem shown in Example 17.8), the ar-
ray is split into inner and halo part and both disjoint parts are passed to a subroutine
separated_sections. This routine overlaps the receiving of the halo data and the calcu-
lations on the inner part of the array. In a second step, the whole array is used to do the
calculation on the elements where inner+halo is needed. Note that the halo and the inner
area are strided arrays. Those can be used in non-blocking communication only with a TS
29113 based MPI library.

17.1.19 Permanent Data Movement

A Fortran compiler may implement permanent data movement during the execution of a
Fortran program. This would require that pointers to such data are appropriately updated.
An implementation with automatic garbage collection is one use case. Such permanent data
movement is in conflict with MPI in several areas:

• MPI datatype handles with absolute addresses in combination with MPI_BOTTOM.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

642 CHAPTER 17. LANGUAGE BINDINGS

• All nonblocking MPI operations if the internally used pointers to the buffers are not
updated by the Fortran runtime, or if within an MPI process, the data movement is
executed in parallel with the MPI operation.

This problem can be also solved by using the ASYNCHRONOUS attribute for such buffers.
This MPI standard requires that the problems with permanent data movement do not
occur by imposing suitable restrictions on the MPI library together with the compiler used;
see Section 17.1.7.

17.1.20 Comparison with C

In C, subroutines which modify variables that are not in the argument list will not cause
register optimization problems. This is because taking pointers to storage objects by using
the & operator and later referencing the objects by indirection on the pointer is an integral
part of the language. A C compiler understands the implications, so that the problem should
not occur, in general. However, some compilers do offer optional aggressive optimization
levels which may not be safe. Problems due to temporary memory modifications can also
occur in C. As above, the best advice is to avoid the problem: use different variables for
buffers in nonblocking MPI operations and computation that is executed while a nonblocking
operation is pending.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 643

Example 17.5 Protecting nonblocking communication with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL, ASYNCHRONOUS :: b(0:101) ! elements 0 and 101 are halo cells

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

TYPE(MPI_Request) :: req(4)

INTEGER :: left, right, i

CALL MPI_Cart_shift(...,left,right,...)

CALL MPI_Irecv(b(0), ..., left, ..., req(1), ...)

CALL MPI_Irecv(b(101), ..., right, ..., req(2), ...)

CALL MPI_Isend(b(1), ..., left, ..., req(3), ...)

CALL MPI_Isend(b(100), ..., right, ..., req(4), ...)

#ifdef WITHOUT_OVERLAPPING_COMMUNICATION_AND_COMPUTATION

! Case (a)

CALL MPI_Waitall(4,req,...)

DO i=1,100 ! compute all new local data

bnew(i) = function(b(i-1), b(i), b(i+1))

END DO

#endif

#ifdef WITH_OVERLAPPING_COMMUNICATION_AND_COMPUTATION

! Case (b)

DO i=2,99 ! compute only elements for which halo data is not needed

bnew(i) = function(b(i-1), b(i), b(i+1))

END DO

CALL MPI_Waitall(4,req,...)

i=1 ! compute leftmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

i=100 ! compute rightmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

#endif

Example 17.6 Overlapping Communication and Computation.

USE mpi_f08

REAL :: buf(100,100)

CALL MPI_Irecv(buf(1,1:100),...req,...)

DO j=1,100

DO i=2,100

buf(i,j)=....

END DO

END DO

CALL MPI_Wait(req,...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

644 CHAPTER 17. LANGUAGE BINDINGS

Example 17.7 The compiler may substitute the nested loops through loop fusion.

REAL :: buf(100,100), buf_1dim(10000)

EQUIVALENCE (buf(1,1), buf_1dim(1))

CALL MPI_Irecv(buf(1,1:100),...req,...)

tmp(1:100) = buf(1,1:100)

DO j=1,10000

buf_1dim(h)=...

END DO

buf(1,1:100) = tmp(1:100)

CALL MPI_Wait(req,...)

Example 17.8 Another optimization is based on the usage of a separate memory storage
area, e.g., in a GPU.

REAL :: buf(100,100), local_buf(100,100)

CALL MPI_Irecv(buf(1,1:100),...req,...)

local_buf = buf

DO j=1,100

DO i=2,100

local_buf(i,j)=....

END DO

END DO

buf = local_buf ! may overwrite asynchronously received

! data in buf(1,1:100)

CALL MPI_Wait(req,...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.1. FORTRAN SUPPORT 645

Example 17.9 Using separated variables for overlapping communication and computation
to allow the protection of nonblocking communication with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL :: b(0:101) ! elements 0 and 101 are halo cells

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

INTEGER :: i

CALL separated_sections(b(0), b(1:100), b(101), bnew(0:101))

i=1 ! compute leftmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

i=100 ! compute rightmost element

bnew(i) = function(b(i-1), b(i), b(i+1))

END

SUBROUTINE separated_sections(b_lefthalo, b_inner, b_righthalo, bnew)

USE mpi_f08

REAL, ASYNCHRONOUS :: b_lefthalo(0:0), b_inner(1:100), b_righthalo(101:101)

REAL :: bnew(0:101) ! elements 1 and 100 are newly computed

TYPE(MPI_Request) :: req(4)

INTEGER :: left, right, i

CALL MPI_Cart_shift(...,left,right,...)

CALL MPI_Irecv(b_lefthalo (0), ..., left, ..., req(1), ...)

CALL MPI_Irecv(b_righthalo(101), ..., right, ..., req(2), ...)

! b_lefthalo and b_righthalo is written asynchronously.

! There is no other concurrent access to b_lefthalo and b_righthalo.

CALL MPI_Isend(b_inner(1), ..., left, ..., req(3), ...)

CALL MPI_Isend(b_inner(100), ..., right, ..., req(4), ...)

DO i=2,99 ! compute only elements for which halo data is not needed

bnew(i) = function(b_inner(i-1), b_inner(i), b_inner(i+1))

! b_inner is read and sent at the same time.

! This is allowed based on the rules for ASYNCHRONOUS.

END DO

CALL MPI_Waitall(4,req,...)

END SUBROUTINE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

646 CHAPTER 17. LANGUAGE BINDINGS

Example 17.10 Protecting GPU optimizations with the ASYNCHRONOUS attribute.

USE mpi_f08

REAL :: buf(100,100)

CALL separated_sections(buf(1:1,1:100), buf(2:100,1:100))

END

SUBROUTINE separated_sections(buf_halo, buf_inner)

REAL, ASYNCHRONOUS :: buf_halo(1:1,1:100)

REAL :: buf_inner(2:100,1:100)

REAL :: local_buf(2:100,100)

CALL MPI_Irecv(buf_halo(1,1:100),...req,...)

local_buf = buf_inner

DO j=1,100

DO i=2,100

local_buf(i,j)=....

END DO

END DO

buf_inner = local_buf ! buf_halo is not touched!!!

CALL MPI_Wait(req,...)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 647

17.2 Language Interoperability

17.2.1 Introduction

It is not uncommon for library developers to use one language to develop an application
library that may be called by an application program written in a different language. MPI
currently supports ISO (previously ANSI) C and Fortran bindings. It should be possible
for applications in any of the supported languages to call MPI-related functions in another
language.

Moreover, MPI allows the development of client-server code, with MPI communication
used between a parallel client and a parallel server. It should be possible to code the server
in one language and the clients in another language. To do so, communications should be
possible between applications written in different languages.

There are several issues that need to be addressed in order to achieve interoperability.

Initialization We need to specify how the MPI environment is initialized for all languages.

Interlanguage passing of MPI opaque objects We need to specify how MPI object
handles are passed between languages. We also need to specify what happens when
an MPI object is accessed in one language, to retrieve information (e.g., attributes)
set in another language.

Interlanguage communication We need to specify how messages sent in one language
can be received in another language.

It is highly desirable that the solution for interlanguage interoperability be extensible
to new languages, should MPI bindings be defined for such languages.

17.2.2 Assumptions

We assume that conventions exist for programs written in one language to call routines
written in another language. These conventions specify how to link routines in different
languages into one program, how to call functions in a different language, how to pass
arguments between languages, and the correspondence between basic data types in different
languages. In general, these conventions will be implementation dependent. Furthermore,
not every basic datatype may have a matching type in other languages. For example,
C character strings may not be compatible with Fortran CHARACTER variables. However,
we assume that a Fortran INTEGER, as well as a (sequence associated) Fortran array of
INTEGERs, can be passed to a C program. We also assume that Fortran and C have address-
sized integers. This does not mean that the default-size integers are the same size as
default-sized pointers, but only that there is some way to hold (and pass) a C address in a
Fortran integer. It is also assumed that INTEGER(KIND=MPI_OFFSET_KIND) can be passed
from Fortran to C as MPI_Offset.

17.2.3 Initialization

A call to MPI_INIT or MPI_INIT_THREAD, from any language, initializes MPI for execution
in all languages.

Advice to users. Certain implementations use the (inout) argc, argv arguments
of the C version of MPI_INIT in order to propagate values for argc and argv to all

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

648 CHAPTER 17. LANGUAGE BINDINGS

executing processes. Use of the Fortran version of MPI_INIT to initialize MPI may
result in a loss of this ability. (End of advice to users.)

The function MPI_INITIALIZED returns the same answer in all languages.
The function MPI_FINALIZE finalizes the MPI environments for all languages.
The function MPI_FINALIZED returns the same answer in all languages.
The function MPI_ABORT kills processes, irrespective of the language used by the

caller or by the processes killed.
The MPI environment is initialized in the same manner for all languages by

MPI_INIT. E.g., MPI_COMM_WORLD carries the same information regardless of language:
same processes, same environmental attributes, same error handlers.

Information can be added to info objects in one language and retrieved in another.

Advice to users. The use of several languages in one MPI program may require the
use of special options at compile and/or link time. (End of advice to users.)

Advice to implementors. Implementations may selectively link language specific MPI
libraries only to codes that need them, so as not to increase the size of binaries for codes
that use only one language. The MPI initialization code need perform initialization for
a language only if that language library is loaded. (End of advice to implementors.)

17.2.4 Transfer of Handles

Handles are passed between Fortran and C by using an explicit C wrapper to convert Fortran
handles to C handles. There is no direct access to C handles in Fortran.

The type definition MPI_Fint is provided in C for an integer of the size that matches a
Fortran INTEGER; usually, MPI_Fint will be equivalent to int. With the Fortran mpi module
or the mpif.h include file, a Fortran handle is a Fortran INTEGER value that can be used in
the following conversion functions. With the Fortran mpi_f08 module, a Fortran handle is a
BIND(C) derived type that contains an INTEGER component named MPI_VAL. This INTEGER
value can be used in the following conversion functions.

The following functions are provided in C to convert from a Fortran communicator
handle (which is an integer) to a C communicator handle, and vice versa. See also Sec-
tion 2.6.4.
MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

If comm is a valid Fortran handle to a communicator, then MPI_Comm_f2c returns a
valid C handle to that same communicator; if comm = MPI_COMM_NULL (Fortran value),
then MPI_Comm_f2c returns a null C handle; if comm is an invalid Fortran handle, then
MPI_Comm_f2c returns an invalid C handle.
MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

The function MPI_Comm_c2f translates a C communicator handle into a Fortran handle
to the same communicator; it maps a null handle into a null handle and an invalid handle
into an invalid handle.

Similar functions are provided for the other types of opaque objects.
MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 649

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Request MPI_Request_f2c(MPI_Fint request)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_Win MPI_Win_f2c(MPI_Fint win)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Message MPI_Message_f2c(MPI_Fint message)

MPI_Fint MPI_Message_c2f(MPI_Message message)

Example 17.11 The example below illustrates how the Fortran MPI function
MPI_TYPE_COMMIT can be implemented by wrapping the C MPI function
MPI_Type_commit with a C wrapper to do handle conversions. In this example a Fortran-C
interface is assumed where a Fortran function is all upper case when referred to from C and
arguments are passed by addresses.

! FORTRAN PROCEDURE

SUBROUTINE MPI_TYPE_COMMIT(DATATYPE, IERR)

INTEGER :: DATATYPE, IERR

CALL MPI_X_TYPE_COMMIT(DATATYPE, IERR)

RETURN

END

/* C wrapper */

void MPI_X_TYPE_COMMIT(MPI_Fint *f_handle, MPI_Fint *ierr)

{

MPI_Datatype datatype;

datatype = MPI_Type_f2c(*f_handle);

*ierr = (MPI_Fint)MPI_Type_commit(&datatype);

*f_handle = MPI_Type_c2f(datatype);

return;

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

650 CHAPTER 17. LANGUAGE BINDINGS

}

The same approach can be used for all other MPI functions. The call to MPI_XXX_f2c
(resp. MPI_XXX_c2f) can be omitted when the handle is an OUT (resp. IN) argument,
rather than INOUT.

Rationale. The design here provides a convenient solution for the prevalent case,
where a C wrapper is used to allow Fortran code to call a C library, or C code to
call a Fortran library. The use of C wrappers is much more likely than the use of
Fortran wrappers, because it is much more likely that a variable of type INTEGER can
be passed to C, than a C handle can be passed to Fortran.

Returning the converted value as a function value rather than through the argument
list allows the generation of efficient inlined code when these functions are simple
(e.g., the identity). The conversion function in the wrapper does not catch an invalid
handle argument. Instead, an invalid handle is passed below to the library function,
which, presumably, checks its input arguments. (End of rationale.)

17.2.5 Status

The following two procedures are provided in C to convert from a Fortran (with the mpi

module or mpif.h) status (which is an array of integers) to a C status (which is a structure),
and vice versa. The conversion occurs on all the information in status, including that which
is hidden. That is, no status information is lost in the conversion.
int MPI_Status_f2c(const MPI_Fint *f_status, MPI_Status *c_status)

If f_status is a valid Fortran status, but not the Fortran value of MPI_STATUS_IGNORE

or MPI_STATUSES_IGNORE, then MPI_Status_f2c returns in c_status a valid C status with
the same content. If f_status is the Fortran value of MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE, or if f_status is not a valid Fortran status, then the call is erroneous.

The C status has the same source, tag and error code values as the Fortran status,
and returns the same answers when queried for count, elements, and cancellation. The
conversion function may be called with a Fortran status argument that has an undefined
error field, in which case the value of the error field in the C status argument is undefined.

Two global variables of type MPI_Fint*, MPI_F_STATUS_IGNORE and
MPI_F_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE defined in
the mpi module or mpif.h. These are global variables, not C constant expressions and
cannot be used in places where C requires constant expressions. Their value is defined only
between the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

To do the conversion in the other direction, we have the following:
int MPI_Status_c2f(const MPI_Status *c_status, MPI_Fint *f_status)

This call converts a C status into a Fortran status, and has a behavior similar to
MPI_Status_f2c. That is, the value of c_status must not be either MPI_STATUS_IGNORE or
MPI_STATUSES_IGNORE.

Advice to users. There exists no separate conversion function for arrays of statuses,
since one can simply loop through the array, converting each status with the routines
in Figure 17.1. (End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 651

Rationale. The handling of MPI_STATUS_IGNORE is required in order to layer libraries
with only a C wrapper: if the Fortran call has passed MPI_STATUS_IGNORE, then the
C wrapper must handle this correctly. Note that this constant need not have the
same value in Fortran and C. If MPI_Status_f2c were to handle MPI_STATUS_IGNORE,
then the type of its result would have to be MPI_Status**, which was considered an
inferior solution. (End of rationale.)

Using the mpi_f08 Fortran module, a status is declared as TYPE(MPI_Status). The C
type MPI_F08_status can be used to pass a Fortran TYPE(MPI_Status) argument into a
C routine. Figure 17.1 illustrates all status conversion routines. Some are only available in
C, some in both C and Fortran.

Fortran types and subroutines

MPI_Status
M

P
I_

S
ta

tu
s_

f0
8
2
c(

)

MPI_Status_f2f08()

M
P

I_
S

ta
tu

s_
f2

c()

M
P

I_
S

ta
tu

s_
c2

f()

MPI_Status_f082f()

M
P

I_
S

ta
tu

s_
c2

f0
8
()

MPI_Fint array

C types and functions

(identical memory layout) (identical memory layout)

Equivalent types Equivalent types

MPI_F08_status

INTEGER array
of size MPI_STATUS_SIZE

MPI_Status_f082f()

MPI_Status_f2f08()
TYPE(MPI_Status)

Figure 17.1: Status conversion routines

int MPI_Status_f082c(const MPI_F08_status *f08_status, MPI_Status

*c_status)

This C routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a C MPI_Status.
int MPI_Status_c2f08(const MPI_Status *c_status, MPI_F08_status

*f08_status)

This C routine converts a C MPI_Status into a Fortran mpi_f08 TYPE(MPI_Status).
Two global variables of type MPI_F08_status*, MPI_F08_STATUS_IGNORE and
MPI_F08_STATUSES_IGNORE are declared in mpi.h. They can be used to test, in C, whether
f_status is the Fortran value of MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE defined in
the mpi_f08 module. These are global variables, not C constant expressions and cannot be
used in places where C requires constant expressions. Their value is defined only between
the calls to MPI_INIT and MPI_FINALIZE and should not be changed by user code.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

652 CHAPTER 17. LANGUAGE BINDINGS

Conversion between the two Fortran versions of a status can be done with:

MPI_STATUS_F2F08(f_status, f08_status)

IN f_status status object declared as array

OUT f08_status status object declared as named type

int MPI_Status_f2f08(MPI_Fint *f_status, MPI_F08_status *f08_status)

MPI_Status_f2f08(f_status, f08_status, ierror)

INTEGER, INTENT(IN) :: f_status(MPI_STATUS_SIZE)

TYPE(MPI_Status), INTENT(OUT) :: f08_status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_F2F08(F_STATUS, F08_STATUS, IERROR)

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

TYPE(MPI_Status) :: F08_STATUS

INTEGER IERROR

This routine converts a Fortran INTEGER, DIMENSION(MPI_STATUS_SIZE) status array
into a Fortran mpi_f08 TYPE(MPI_Status).

MPI_STATUS_F082F(f08_status, f_status)

IN f08_status status object declared as named type

OUT f_status status object declared as array

int MPI_Status_f082f(MPI_F08_status *f08_status, MPI_Fint *f_status)

MPI_Status_f082f(f08_status, f_status, ierror)

TYPE(MPI_Status), INTENT(IN) :: f08_status

INTEGER, INTENT(OUT) :: f_status(MPI_STATUS_SIZE)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STATUS_F082F(F08_STATUS, F_STATUS, IERROR)

TYPE(MPI_Status) :: F08_STATUS

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

INTEGER IERROR

This routine converts a Fortran mpi_f08 TYPE(MPI_Status) into a Fortran INTEGER,
DIMENSION(MPI_STATUS_SIZE) status array.

17.2.6 MPI Opaque Objects

Unless said otherwise, opaque objects are “the same” in all languages: they carry the same
information, and have the same meaning in both languages. The mechanism described
in the previous section can be used to pass references to MPI objects from language to
language. An object created in one language can be accessed, modified or freed in another
language.

We examine below in more detail issues that arise for each type of MPI object.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 653

Datatypes

Datatypes encode the same information in all languages. E.g., a datatype accessor like
MPI_TYPE_GET_EXTENT will return the same information in all languages. If a datatype
defined in one language is used for a communication call in another language, then the
message sent will be identical to the message that would be sent from the first language:
the same communication buffer is accessed, and the same representation conversion is per-
formed, if needed. All predefined datatypes can be used in datatype constructors in any
language. If a datatype is committed, it can be used for communication in any language.

The function MPI_GET_ADDRESS returns the same value in all languages. Note that
we do not require that the constant MPI_BOTTOM have the same value in all languages (see
Section 17.2.9).

Example 17.12

! FORTRAN CODE

REAL :: R(5)

INTEGER :: TYPE, IERR, AOBLEN(1), AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) :: AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS(R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL C_ROUTINE(TYPE)

/* C code */

void C_ROUTINE(MPI_Fint *ftype)

{

int count = 5;

int lens[2] = {1,1};

MPI_Aint displs[2];

MPI_Datatype types[2], newtype;

/* create an absolute datatype for buffer that consists */

/* of count, followed by R(5) */

MPI_Get_address(&count, &displs[0]);

displs[1] = 0;

types[0] = MPI_INT;

types[1] = MPI_Type_f2c(*ftype);

MPI_Type_create_struct(2, lens, displs, types, &newtype);

MPI_Type_commit(&newtype);

MPI_Send(MPI_BOTTOM, 1, newtype, 1, 0, MPI_COMM_WORLD);

/* the message sent contains an int count of 5, followed */

/* by the 5 REAL entries of the Fortran array R. */

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

654 CHAPTER 17. LANGUAGE BINDINGS

}

Advice to implementors. The following implementation can be used: MPI addresses,
as returned by MPI_GET_ADDRESS, will have the same value in all languages. One
obvious choice is that MPI addresses be identical to regular addresses. The address
is stored in the datatype, when datatypes with absolute addresses are constructed.
When a send or receive operation is performed, then addresses stored in a datatype
are interpreted as displacements that are all augmented by a base address. This base
address is (the address of) buf, or zero, if buf = MPI_BOTTOM. Thus, if MPI_BOTTOM

is zero then a send or receive call with buf = MPI_BOTTOM is implemented exactly
as a call with a regular buffer argument: in both cases the base address is buf. On the
other hand, if MPI_BOTTOM is not zero, then the implementation has to be slightly
different. A test is performed to check whether buf = MPI_BOTTOM. If true, then the
base address is zero, otherwise it is buf. In particular, if MPI_BOTTOM does not have
the same value in Fortran and C, then an additional test for buf = MPI_BOTTOM is
needed in at least one of the languages.

It may be desirable to use a value other than zero for MPI_BOTTOM even in C, so as
to distinguish it from a NULL pointer. If MPI_BOTTOM = c then one can still avoid
the test buf = MPI_BOTTOM, by using the displacement from MPI_BOTTOM, i.e., the
regular address - c, as the MPI address returned by MPI_GET_ADDRESS and stored
in absolute datatypes. (End of advice to implementors.)

Callback Functions

MPI calls may associate callback functions with MPI objects: error handlers are associ-
ated with communicators and files, attribute copy and delete functions are associated with
attribute keys, reduce operations are associated with operation objects, etc. In a multilan-
guage environment, a function passed in an MPI call in one language may be invoked by an
MPI call in another language. MPI implementations must make sure that such invocation
will use the calling convention of the language the function is bound to.

Advice to implementors. Callback functions need to have a language tag. This
tag is set when the callback function is passed in by the library function (which is
presumably different for each language and language support method), and is used
to generate the right calling sequence when the callback function is invoked. (End of
advice to implementors.)

Advice to users. If a subroutine written in one language or Fortran support method
wants to pass a callback routine including the predefined Fortran functions (e.g.,
MPI_COMM_NULL_COPY_FN) to another application routine written in another lan-
guage or Fortran support method, then it must be guaranteed that both routines use
the callback interface definition that is defined for the argument when passing the
callback to an MPI routine (e.g., MPI_COMM_CREATE_KEYVAL); see also the advice
to users on page 270. (End of advice to users.)

Error Handlers

Advice to implementors. Error handlers, have, in C, a variable length argument list.
It might be useful to provide to the handler information on the language environment
where the error occurred. (End of advice to implementors.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 655

Reduce Operations

All predefined named and unnamed datatypes as listed in Section 5.9.2 can be used in the
listed predefined operations independent of the programming language from which the MPI
routine is called.

Advice to users. Reduce operations receive as one of their arguments the datatype
of the operands. Thus, one can define “polymorphic” reduce operations that work for
C and Fortran datatypes. (End of advice to users.)

17.2.7 Attributes

Attribute keys can be allocated in one language and freed in another. Similarly, attribute
values can be set in one language and accessed in another. To achieve this, attribute keys
will be allocated in an integer range that is valid all languages. The same holds true for
system-defined attribute values (such as MPI_TAG_UB, MPI_WTIME_IS_GLOBAL, etc.).

Attribute keys declared in one language are associated with copy and delete functions in
that language (the functions provided by the MPI_{TYPE,COMM,WIN}_CREATE_KEYVAL
call). When a communicator is duplicated, for each attribute, the corresponding copy
function is called, using the right calling convention for the language of that function; and
similarly, for the delete callback function.

Advice to implementors. This requires that attributes be tagged either as “C” or
“Fortran” and that the language tag be checked in order to use the right calling
convention for the callback function. (End of advice to implementors.)

The attribute manipulation functions described in Section 6.7 defines attributes argu-
ments to be of type void* in C, and of type INTEGER, in Fortran. On some systems, INTEGERs
will have 32 bits, while C pointers will have 64 bits. This is a problem if communicator
attributes are used to move information from a Fortran caller to a C callee, or vice-versa.

MPI behaves as if it stores, internally, address sized attributes. If Fortran INTEGERs
are smaller, then the (deprecated) Fortran function MPI_ATTR_GET will return the least
significant part of the attribute word; the (deprecated) Fortran function MPI_ATTR_PUT
will set the least significant part of the attribute word, which will be sign extended to the
entire word. (These two functions may be invoked explicitly by user code, or implicitly, by
attribute copying callback functions.)

As for addresses, new functions are provided that manipulate Fortran address sized
attributes, and have the same functionality as the old functions in C. These functions are
described in Section 6.7. Users are encouraged to use these new functions.

MPI supports two types of attributes: address-valued (pointer) attributes, and integer-
valued attributes. C attribute functions put and get address-valued attributes. Fortran
attribute functions put and get integer-valued attributes. When an integer-valued attribute
is accessed from C, then MPI_XXX_get_attr will return the address of (a pointer to) the
integer-valued attribute, which is a pointer to MPI_Aint if the attribute was stored with
Fortran MPI_XXX_SET_ATTR, and a pointer to int if it was stored with the deprecated
Fortran MPI_ATTR_PUT. When an address-valued attribute is accessed from Fortran, then
MPI_XXX_GET_ATTR will convert the address into an integer and return the result of this
conversion. This conversion is lossless if new style attribute functions are used, and an
integer of kind MPI_ADDRESS_KIND is returned. The conversion may cause truncation if

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

656 CHAPTER 17. LANGUAGE BINDINGS

deprecated attribute functions are used. In C, the deprecated routines MPI_Attr_put and
MPI_Attr_get behave identical to MPI_Comm_set_attr and MPI_Comm_get_attr.

Example 17.13
A. Setting an attribute value in C

int set_val = 3;

struct foo set_struct;

/* Set a value that is a pointer to an int */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval1, &set_val);

/* Set a value that is a pointer to a struct */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval2, &set_struct);

/* Set an integer value */

MPI_Comm_set_attr(MPI_COMM_WORLD, keyval3, (void *) 17);

B. Reading the attribute value in C

int flag, *get_val;

struct foo *get_struct;

/* Upon successful return, get_val == &set_val

(and therefore *get_val == 3) */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &get_val, &flag);

/* Upon successful return, get_struct == &set_struct */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &get_struct, &flag);

/* Upon successful return, get_val == (void*) 17 */

/* i.e., (MPI_Aint) get_val == 17 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval3, &get_val, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val, possibly truncated

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)

! Upon successful return, GET_STRUCT == &set_struct, possibly truncated

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)

! Upon successful return, GET_VAL == 17

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 657

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) GET_VAL, GET_STRUCT

! Upon successful return, GET_VAL == &set_val

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, GET_VAL, FLAG, IERR)

! Upon successful return, GET_STRUCT == &set_struct

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, GET_STRUCT, FLAG, IERR)

! Upon successful return, GET_VAL == 17

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL3, GET_VAL, FLAG, IERR)

Example 17.14 A. Setting an attribute value with the (deprecated) Fortran MPI-1 call

INTEGER IERR, VAL

VAL = 7

CALL MPI_ATTR_PUT(MPI_COMM_WORLD, KEYVAL, VAL, IERR)

B. Reading the attribute value in C

int flag;

int *value;

/* Upon successful return, value points to internal MPI storage and

*value == (int) 7 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval, &value, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, VALUE

! Upon successful return, VALUE == 7

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) VALUE

! Upon successful return, VALUE == 7 (sign extended)

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL, VALUE, FLAG, IERR)

Example 17.15 A. Setting an attribute value via a Fortran MPI-2 call

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

658 CHAPTER 17. LANGUAGE BINDINGS

INTEGER IERR

INTEGER(KIND=MPI_ADDRESS_KIND) VALUE1

INTEGER(KIND=MPI_ADDRESS_KIND) VALUE2

VALUE1 = 42

VALUE2 = INT(2, KIND=MPI_ADDRESS_KIND) ** 40

CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, IERR)

CALL MPI_COMM_SET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, IERR)

B. Reading the attribute value in C

int flag;

MPI_Aint *value1, *value2;

/* Upon successful return, value1 points to internal MPI storage and

*value1 == 42 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval1, &value1, &flag);

/* Upon successful return, value2 points to internal MPI storage and

*value2 == 2^40 */

MPI_Comm_get_attr(MPI_COMM_WORLD, keyval2, &value2, &flag);

C. Reading the attribute value with (deprecated) Fortran MPI-1 calls

LOGICAL FLAG

INTEGER IERR, VALUE1, VALUE2

! Upon successful return, VALUE1 == 42

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)

! Upon successful return, VALUE2 == 2^40, or 0 if truncation

! needed (i.e., the least significant part of the attribute word)

CALL MPI_ATTR_GET(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)

D. Reading the attribute value with Fortran MPI-2 calls

LOGICAL FLAG

INTEGER IERR

INTEGER (KIND=MPI_ADDRESS_KIND) VALUE1, VALUE2

! Upon successful return, VALUE1 == 42

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL1, VALUE1, FLAG, IERR)

! Upon successful return, VALUE2 == 2^40

CALL MPI_COMM_GET_ATTR(MPI_COMM_WORLD, KEYVAL2, VALUE2, FLAG, IERR)

The predefined MPI attributes can be integer valued or address-valued. Predefined
integer valued attributes, such as MPI_TAG_UB, behave as if they were put by a call to
the deprecated Fortran routine MPI_ATTR_PUT, i.e., in Fortran,
MPI_COMM_GET_ATTR(MPI_COMM_WORLD, MPI_TAG_UB, val, flag, ierr) will return
in val the upper bound for tag value; in C, MPI_Comm_get_attr(MPI_COMM_WORLD,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 659

MPI_TAG_UB, &p, &flag) will return in p a pointer to an int containing the upper bound
for tag value.

Address-valued predefined attributes, such as MPI_WIN_BASE behave as if they were
put by a C call, i.e., in Fortran, MPI_WIN_GET_ATTR(win, MPI_WIN_BASE, val, flag,
ierror) will return in val the base address of the window, converted to an integer. In C,
MPI_Win_get_attr(win, MPI_WIN_BASE, &p, &flag) will return in p a pointer to the window
base, cast to (void *).

Rationale. The design is consistent with the behavior specified for predefined at-
tributes, and ensures that no information is lost when attributes are passed from
language to language. Because the language interoperability for predefined attributes
was defined based on MPI_ATTR_PUT, this definition is kept for compatibility reasons
although the routine itself is now deprecated. (End of rationale.)

Advice to implementors. Implementations should tag attributes either as (1) address
attributes, (2) as INTEGER(KIND=MPI_ADDRESS_KIND) attributes or (3) as INTEGER

attributes, according to whether they were set in (1) C (with MPI_Attr_put or
MPI_XXX_set_attr), (2) in Fortran with MPI_XXX_SET_ATTR or (3) with the dep-
recated Fortran routine MPI_ATTR_PUT. Thus, the right choice can be made when
the attribute is retrieved. (End of advice to implementors.)

17.2.8 Extra-State

Extra-state should not be modified by the copy or delete callback functions. (This is obvious
from the C binding, but not obvious from the Fortran binding). However, these functions
may update state that is indirectly accessed via extra-state. E.g., in C, extra-state can be
a pointer to a data structure that is modified by the copy or callback functions; in Fortran,
extra-state can be an index into an entry in a COMMON array that is modified by the copy
or callback functions. In a multithreaded environment, users should be aware that distinct
threads may invoke the same callback function concurrently: if this function modifies state
associated with extra-state, then mutual exclusion code must be used to protect updates
and accesses to the shared state.

17.2.9 Constants

MPI constants have the same value in all languages, unless specified otherwise. This does not
apply to constant handles (MPI_INT, MPI_COMM_WORLD, MPI_ERRORS_RETURN, MPI_SUM,
etc.) These handles need to be converted, as explained in Section 17.2.4. Constants that
specify maximum lengths of strings (see Section A.1.1 for a listing) have a value one less
in Fortran than C since in C the length includes the null terminating character. Thus,
these constants represent the amount of space which must be allocated to hold the largest
possible such string, rather than the maximum number of printable characters the string
could contain.

Advice to users. This definition means that it is safe in C to allocate a buffer to
receive a string using a declaration like

char name [MPI_MAX_OBJECT_NAME];

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

660 CHAPTER 17. LANGUAGE BINDINGS

(End of advice to users.)

Also constant “addresses,” i.e., special values for reference arguments that are not han-
dles, such as MPI_BOTTOM or MPI_STATUS_IGNORE may have different values in different
languages.

Rationale. The current MPI standard specifies that MPI_BOTTOM can be used in
initialization expressions in C, but not in Fortran. Since Fortran does not normally
support call by value, then MPI_BOTTOM in Fortran must be the name of a predefined
static variable, e.g., a variable in an MPI declared COMMON block. On the other hand,
in C, it is natural to take MPI_BOTTOM = 0 (Caveat: Defining MPI_BOTTOM = 0
implies that NULL pointer cannot be distinguished from MPI_BOTTOM; it may be
that MPI_BOTTOM = 1 is better. See the advice to implementors in the Datatypes
subsection in Section 17.2.6) Requiring that the Fortran and C values be the same
will complicate the initialization process. (End of rationale.)

17.2.10 Interlanguage Communication

The type matching rules for communication in MPI are not changed: the datatype specifi-
cation for each item sent should match, in type signature, the datatype specification used to
receive this item (unless one of the types is MPI_PACKED). Also, the type of a message item
should match the type declaration for the corresponding communication buffer location,
unless the type is MPI_BYTE or MPI_PACKED. Interlanguage communication is allowed if it
complies with these rules.

Example 17.16 In the example below, a Fortran array is sent from Fortran and received
in C.

! FORTRAN CODE

SUBROUTINE MYEXAMPLE()

USE mpi_f08

REAL :: R(5)

INTEGER :: IERR, MYRANK, AOBLEN(1)

TYPE(MPI_Datatype) :: TYPE, AOTYPE(1)

INTEGER (KIND=MPI_ADDRESS_KIND) :: AODISP(1)

! create an absolute datatype for array R

AOBLEN(1) = 5

CALL MPI_GET_ADDRESS(R, AODISP(1), IERR)

AOTYPE(1) = MPI_REAL

CALL MPI_TYPE_CREATE_STRUCT(1, AOBLEN,AODISP,AOTYPE, TYPE, IERR)

CALL MPI_TYPE_COMMIT(TYPE, IERR)

CALL MPI_COMM_RANK(MPI_COMM_WORLD, MYRANK, IERR)

IF (MYRANK.EQ.0) THEN

CALL MPI_SEND(MPI_BOTTOM, 1, TYPE, 1, 0, MPI_COMM_WORLD, IERR)

ELSE

CALL C_ROUTINE(TYPE%MPI_VAL)

END IF

END SUBROUTINE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

17.2. LANGUAGE INTEROPERABILITY 661

/* C code */

void C_ROUTINE(MPI_Fint *fhandle)

{

MPI_Datatype type;

MPI_Status status;

type = MPI_Type_f2c(*fhandle);

MPI_Recv(MPI_BOTTOM, 1, type, 0, 0, MPI_COMM_WORLD, &status);

}

MPI implementors may weaken these type matching rules, and allow messages to be sent
with Fortran types and received with C types, and vice versa, when those types match. I.e.,
if the Fortran type INTEGER is identical to the C type int, then an MPI implementation may
allow data to be sent with datatype MPI_INTEGER and be received with datatype MPI_INT.
However, such code is not portable.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

662 CHAPTER 17. LANGUAGE BINDINGS

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex A

Language Bindings Summary

In this section we summarize the specific bindings for C and Fortran. First we present the
constants, type definitions, info values and keys. Then we present the routine prototypes
separately for each binding. Listings are alphabetical within chapter.

A.1 Defined Values and Handles

A.1.1 Defined Constants

The C and Fortran names are listed below. Constants with the type const int may also
be implemented as literal integer constants substituted by the preprocessor.

Error classes

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_SUCCESS

MPI_ERR_BUFFER

MPI_ERR_COUNT

MPI_ERR_TYPE

MPI_ERR_TAG

MPI_ERR_COMM

MPI_ERR_RANK

MPI_ERR_REQUEST

MPI_ERR_ROOT

MPI_ERR_GROUP

MPI_ERR_OP

MPI_ERR_TOPOLOGY

MPI_ERR_DIMS

MPI_ERR_ARG

MPI_ERR_UNKNOWN

MPI_ERR_TRUNCATE

MPI_ERR_OTHER

MPI_ERR_INTERN

MPI_ERR_PENDING

(Continued on next page)

663

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

664 ANNEX A. LANGUAGE BINDINGS SUMMARY

Error classes (continued)

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_ERR_IN_STATUS

MPI_ERR_ACCESS

MPI_ERR_AMODE

MPI_ERR_ASSERT

MPI_ERR_BAD_FILE

MPI_ERR_BASE

MPI_ERR_CONVERSION

MPI_ERR_DISP

MPI_ERR_DUP_DATAREP

MPI_ERR_FILE_EXISTS

MPI_ERR_FILE_IN_USE

MPI_ERR_FILE

MPI_ERR_INFO_KEY

MPI_ERR_INFO_NOKEY

MPI_ERR_INFO_VALUE

MPI_ERR_INFO

MPI_ERR_IO

MPI_ERR_KEYVAL

MPI_ERR_LOCKTYPE

MPI_ERR_NAME

MPI_ERR_NO_MEM

MPI_ERR_NOT_SAME

MPI_ERR_NO_SPACE

MPI_ERR_NO_SUCH_FILE

MPI_ERR_PORT

MPI_ERR_QUOTA

MPI_ERR_READ_ONLY

MPI_ERR_RMA_ATTACH

MPI_ERR_RMA_CONFLICT

MPI_ERR_RMA_RANGE

MPI_ERR_RMA_SHARED

MPI_ERR_RMA_SYNC

MPI_ERR_RMA_FLAVOR

MPI_ERR_SERVICE

MPI_ERR_SIZE

MPI_ERR_SPAWN

MPI_ERR_UNSUPPORTED_DATAREP

MPI_ERR_UNSUPPORTED_OPERATION

MPI_ERR_WIN

(Continued on next page)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 665

Error classes (continued)

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_T_ERR_CANNOT_INIT

MPI_T_ERR_NOT_INITIALIZED

MPI_T_ERR_MEMORY

MPI_T_ERR_INVALID

MPI_T_ERR_INVALID_INDEX

MPI_T_ERR_INVALID_ITEM

MPI_T_ERR_INVALID_SESSION

MPI_T_ERR_INVALID_HANDLE

MPI_T_ERR_OUT_OF_HANDLES

MPI_T_ERR_OUT_OF_SESSIONS

MPI_T_ERR_CVAR_SET_NOT_NOW

MPI_T_ERR_CVAR_SET_NEVER

MPI_T_ERR_PVAR_NO_WRITE

MPI_T_ERR_PVAR_NO_STARTSTOP

MPI_T_ERR_PVAR_NO_ATOMIC

MPI_ERR_LASTCODE

Buffer Address Constants

C type: void * const

Fortran type: (predefined memory location)1

MPI_BOTTOM

MPI_IN_PLACE
1 Note that in Fortran these constants are not usable for initialization

expressions or assignment. See Section 2.5.4.

Assorted Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_PROC_NULL

MPI_ANY_SOURCE

MPI_ANY_TAG

MPI_UNDEFINED

MPI_BSEND_OVERHEAD

MPI_KEYVAL_INVALID

MPI_LOCK_EXCLUSIVE

MPI_LOCK_SHARED

MPI_ROOT

No Process Message Handle

C type: MPI_Message

Fortran type: INTEGER or TYPE(MPI_Message)

MPI_MESSAGE_NO_PROC

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

666 ANNEX A. LANGUAGE BINDINGS SUMMARY

Fortran Support Method Specific Constants

Fortran type: LOGICAL

MPI_SUBARRAYS_SUPPORTED (Fortran only)
MPI_ASYNC_PROTECTS_NONBLOCKING (Fortran only)

Status size and reserved index values (Fortran only)

Fortran type: INTEGER

MPI_STATUS_SIZE

MPI_SOURCE

MPI_TAG

MPI_ERROR

Variable Address Size (Fortran only)

Fortran type: INTEGER

MPI_ADDRESS_KIND

MPI_COUNT_KIND

MPI_INTEGER_KIND

MPI_OFFSET_KIND

Error-handling specifiers

C type: MPI_Errhandler

Fortran type: INTEGER or TYPE(MPI_Errhandler)

MPI_ERRORS_ARE_FATAL

MPI_ERRORS_RETURN

Maximum Sizes for Strings

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_MAX_DATAREP_STRING

MPI_MAX_ERROR_STRING

MPI_MAX_INFO_KEY

MPI_MAX_INFO_VAL

MPI_MAX_LIBRARY_VERSION_STRING

MPI_MAX_OBJECT_NAME

MPI_MAX_PORT_NAME

MPI_MAX_PROCESSOR_NAME

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 667

Named Predefined Datatypes C types

C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long

MPI_LONG_LONG_INT signed long long

MPI_LONG_LONG (as a synonym) signed long long

MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long

MPI_UNSIGNED_LONG_LONG unsigned long long

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool

MPI_INT8_T int8_t

MPI_INT16_T int16_t

MPI_INT32_T int32_t

MPI_INT64_T int64_t

MPI_UINT8_T uint8_t

MPI_UINT16_T uint16_t

MPI_UINT32_T uint32_t

MPI_UINT64_T uint64_t

MPI_AINT MPI_Aint

MPI_COUNT MPI_Count

MPI_OFFSET MPI_Offset

MPI_C_COMPLEX float _Complex

MPI_C_FLOAT_COMPLEX float _Complex

MPI_C_DOUBLE_COMPLEX double _Complex

MPI_C_LONG_DOUBLE_COMPLEX long double _Complex

MPI_BYTE (any C type)
MPI_PACKED (any C type)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

668 ANNEX A. LANGUAGE BINDINGS SUMMARY

Named Predefined Datatypes Fortran types

C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_AINT INTEGER (KIND=MPI_ADDRESS_KIND)

MPI_COUNT INTEGER (KIND=MPI_COUNT_KIND)

MPI_OFFSET INTEGER (KIND=MPI_OFFSET_KIND)

MPI_BYTE (any Fortran type)
MPI_PACKED (any Fortran type)

Named Predefined Datatypes1 C++ types

C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>
1 If an accompanying C++ compiler is missing, then the

MPI datatypes in this table are not defined.

Optional datatypes (Fortran) Fortran types

C type: MPI_Datatype

Fortran type: INTEGER

or TYPE(MPI_Datatype)

MPI_DOUBLE_COMPLEX DOUBLE COMPLEX

MPI_INTEGER1 INTEGER*1

MPI_INTEGER2 INTEGER*2

MPI_INTEGER4 INTEGER*4

MPI_INTEGER8 INTEGER*8

MPI_INTEGER16 INTEGER*16

MPI_REAL2 REAL*2

MPI_REAL4 REAL*4

MPI_REAL8 REAL*8

MPI_REAL16 REAL*16

MPI_COMPLEX4 COMPLEX*4

MPI_COMPLEX8 COMPLEX*8

MPI_COMPLEX16 COMPLEX*16

MPI_COMPLEX32 COMPLEX*32

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 669

Datatypes for reduction functions (C)

C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_FLOAT_INT

MPI_DOUBLE_INT

MPI_LONG_INT

MPI_2INT

MPI_SHORT_INT

MPI_LONG_DOUBLE_INT

Datatypes for reduction functions (Fortran)

C type: MPI_Datatype

Fortran type: INTEGER or TYPE(MPI_Datatype)

MPI_2REAL

MPI_2DOUBLE_PRECISION

MPI_2INTEGER

Reserved communicators

C type: MPI_Comm

Fortran type: INTEGER or TYPE(MPI_Comm)

MPI_COMM_WORLD

MPI_COMM_SELF

Communicator split type constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_COMM_TYPE_SHARED

Results of communicator and group comparisons

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_IDENT

MPI_CONGRUENT

MPI_SIMILAR

MPI_UNEQUAL

Environmental inquiry info key

C type: MPI_Info

Fortran type: INTEGER or TYPE(MPI_Info)

MPI_INFO_ENV

Environmental inquiry keys

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_TAG_UB

MPI_IO

MPI_HOST

MPI_WTIME_IS_GLOBAL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

670 ANNEX A. LANGUAGE BINDINGS SUMMARY

Collective Operations

C type: MPI_Op

Fortran type: INTEGER or TYPE(MPI_Op)

MPI_MAX

MPI_MIN

MPI_SUM

MPI_PROD

MPI_MAXLOC

MPI_MINLOC

MPI_BAND

MPI_BOR

MPI_BXOR

MPI_LAND

MPI_LOR

MPI_LXOR

MPI_REPLACE

MPI_NO_OP

Null Handles

C/Fortran name
C type / Fortran type

MPI_GROUP_NULL

MPI_Group / INTEGER or TYPE(MPI_Group)

MPI_COMM_NULL

MPI_Comm / INTEGER or TYPE(MPI_Comm)

MPI_DATATYPE_NULL

MPI_Datatype / INTEGER or TYPE(MPI_Datatype)

MPI_REQUEST_NULL

MPI_Request / INTEGER or TYPE(MPI_Request)

MPI_OP_NULL

MPI_Op / INTEGER or TYPE(MPI_Op)

MPI_ERRHANDLER_NULL

MPI_Errhandler / INTEGER or TYPE(MPI_Errhandler)

MPI_FILE_NULL

MPI_File / INTEGER or TYPE(MPI_File)

MPI_INFO_NULL

MPI_Info / INTEGER or TYPE(MPI_Info)

MPI_WIN_NULL

MPI_Win / INTEGER or TYPE(MPI_Win)

MPI_MESSAGE_NULL

MPI_Message / INTEGER or TYPE(MPI_Message)

Empty group

C type: MPI_Group

Fortran type: INTEGER or TYPE(MPI_Group)

MPI_GROUP_EMPTY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 671

Topologies

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_GRAPH

MPI_CART

MPI_DIST_GRAPH

Predefined functions

C/Fortran name
C type

/ Fortran type with mpi module / Fortran type with mpi_f08 module

MPI_COMM_NULL_COPY_FN
MPI_Comm_copy_attr_function

/ COMM_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Comm_copy_attr_function) 1)

MPI_COMM_DUP_FN
MPI_Comm_copy_attr_function

/ COMM_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Comm_copy_attr_function) 1)

MPI_COMM_NULL_DELETE_FN
MPI_Comm_delete_attr_function

/ COMM_DELETE_ATTR_FUNCTION / PROCEDURE(MPI_Comm_delete_attr_function) 1)

MPI_WIN_NULL_COPY_FN
MPI_Win_copy_attr_function

/ WIN_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Win_copy_attr_function) 1)

MPI_WIN_DUP_FN
MPI_Win_copy_attr_function

/ WIN_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Win_copy_attr_function) 1)

MPI_WIN_NULL_DELETE_FN
MPI_Win_delete_attr_function

/ WIN_DELETE_ATTR_FUNCTION / PROCEDURE(MPI_Win_delete_attr_function) 1)

MPI_TYPE_NULL_COPY_FN
MPI_Type_copy_attr_function

/ TYPE_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Type_copy_attr_function) 1)

MPI_TYPE_DUP_FN
MPI_Type_copy_attr_function

/ TYPE_COPY_ATTR_FUNCTION / PROCEDURE(MPI_Type_copy_attr_function) 1)

MPI_TYPE_NULL_DELETE_FN
MPI_Type_delete_attr_function

/ TYPE_DELETE_ATTR_FUNCTION / PROCEDURE(MPI_Type_delete_attr_function) 1)

MPI_CONVERSION_FN_NULL
MPI_Datarep_conversion_function

/ DATAREP_CONVERSION_FUNCTION / PROCEDURE(MPI_Datarep_conversion_function) 1)
1 See the advice to implementors (on page 270) and advice to users (on page 270)

on the predefined Fortran functions MPI_COMM_NULL_COPY_FN, . . . in
Section 6.7.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

672 ANNEX A. LANGUAGE BINDINGS SUMMARY

Deprecated predefined functions

C/Fortran name
C type / Fortran type with mpi module

MPI_NULL_COPY_FN
MPI_Copy_function / COPY_FUNCTION

MPI_DUP_FN
MPI_Copy_function / COPY_FUNCTION

MPI_NULL_DELETE_FN
MPI_Delete_function / DELETE_FUNCTION

Predefined Attribute Keys

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_APPNUM

MPI_LASTUSEDCODE

MPI_UNIVERSE_SIZE

MPI_WIN_BASE

MPI_WIN_DISP_UNIT

MPI_WIN_SIZE

MPI_WIN_CREATE_FLAVOR

MPI_WIN_MODEL

MPI Window Create Flavors

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_WIN_FLAVOR_CREATE

MPI_WIN_FLAVOR_ALLOCATE

MPI_WIN_FLAVOR_DYNAMIC

MPI_WIN_FLAVOR_SHARED

MPI Window Models

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_WIN_SEPARATE

MPI_WIN_UNIFIED

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 673

Mode Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_MODE_APPEND

MPI_MODE_CREATE

MPI_MODE_DELETE_ON_CLOSE

MPI_MODE_EXCL

MPI_MODE_NOCHECK

MPI_MODE_NOPRECEDE

MPI_MODE_NOPUT

MPI_MODE_NOSTORE

MPI_MODE_NOSUCCEED

MPI_MODE_RDONLY

MPI_MODE_RDWR

MPI_MODE_SEQUENTIAL

MPI_MODE_UNIQUE_OPEN

MPI_MODE_WRONLY

Datatype Decoding Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_COMBINER_CONTIGUOUS

MPI_COMBINER_DARRAY

MPI_COMBINER_DUP

MPI_COMBINER_F90_COMPLEX

MPI_COMBINER_F90_INTEGER

MPI_COMBINER_F90_REAL

MPI_COMBINER_HINDEXED

MPI_COMBINER_HVECTOR

MPI_COMBINER_INDEXED_BLOCK

MPI_COMBINER_HINDEXED_BLOCK

MPI_COMBINER_INDEXED

MPI_COMBINER_NAMED

MPI_COMBINER_RESIZED

MPI_COMBINER_STRUCT

MPI_COMBINER_SUBARRAY

MPI_COMBINER_VECTOR

Threads Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_THREAD_FUNNELED

MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPI_THREAD_SINGLE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

674 ANNEX A. LANGUAGE BINDINGS SUMMARY

File Operation Constants, Part 1

C type: const MPI_Offset (or unnamed enum)

Fortran type: INTEGER (KIND=MPI_OFFSET_KIND)

MPI_DISPLACEMENT_CURRENT

File Operation Constants, Part 2

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_DISTRIBUTE_BLOCK

MPI_DISTRIBUTE_CYCLIC

MPI_DISTRIBUTE_DFLT_DARG

MPI_DISTRIBUTE_NONE

MPI_ORDER_C

MPI_ORDER_FORTRAN

MPI_SEEK_CUR

MPI_SEEK_END

MPI_SEEK_SET

F90 Datatype Matching Constants

C type: const int (or unnamed enum)

Fortran type: INTEGER

MPI_TYPECLASS_COMPLEX

MPI_TYPECLASS_INTEGER

MPI_TYPECLASS_REAL

Constants Specifying Empty or Ignored Input

C/Fortran name
C type / Fortran type1

MPI_ARGVS_NULL

char*** / 2-dim. array of CHARACTER*(*)

MPI_ARGV_NULL

char** / array of CHARACTER*(*)

MPI_ERRCODES_IGNORE

int* / INTEGER array
MPI_STATUSES_IGNORE

MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE,*)

or TYPE(MPI_Status), DIMENSION(*)

MPI_STATUS_IGNORE

MPI_Status* / INTEGER, DIMENSION(MPI_STATUS_SIZE)

or TYPE(MPI_Status)

MPI_UNWEIGHTED

int* / INTEGER array
MPI_WEIGHTS_EMPTY

int* / INTEGER array
1 Note that in Fortran these constants are not usable for initialization

expressions or assignment. See Section 2.5.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 675

C Constants Specifying Ignored Input (no Fortran)

C type: MPI_Fint* equivalent to Fortran

MPI_F_STATUSES_IGNORE MPI_STATUSES_IGNORE in mpi / mpif.h

MPI_F_STATUS_IGNORE MPI_STATUS_IGNORE in mpi / mpif.h

C type: MPI_F08_status* equivalent to Fortran

MPI_F08_STATUSES_IGNORE MPI_STATUSES_IGNORE in mpi_f08

MPI_F08_STATUS_IGNORE MPI_STATUS_IGNORE in mpi_f08

C preprocessor Constants and Fortran Parameters

C type: C-preprocessor macro that expands to an int value

Fortran type: INTEGER

MPI_SUBVERSION

MPI_VERSION

Null handles used in the MPI tool information interface

MPI_T_ENUM_NULL

MPI_T_enum

MPI_T_CVAR_HANDLE_NULL

MPI_T_cvar_handle

MPI_T_PVAR_HANDLE_NULL

MPI_T_pvar_handle

MPI_T_PVAR_SESSION_NULL

MPI_T_pvar_session

Verbosity Levels in the MPI tool information interface

C type: const int (or unnamed enum)

MPI_T_VERBOSITY_USER_BASIC

MPI_T_VERBOSITY_USER_DETAIL

MPI_T_VERBOSITY_USER_ALL

MPI_T_VERBOSITY_TUNER_BASIC

MPI_T_VERBOSITY_TUNER_DETAIL

MPI_T_VERBOSITY_TUNER_ALL

MPI_T_VERBOSITY_MPIDEV_BASIC

MPI_T_VERBOSITY_MPIDEV_DETAIL

MPI_T_VERBOSITY_MPIDEV_ALL

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

676 ANNEX A. LANGUAGE BINDINGS SUMMARY

Constants to identify associations of variables
in the MPI tool information interface

C type: const int (or unnamed enum)

MPI_T_BIND_NO_OBJECT

MPI_T_BIND_MPI_COMM

MPI_T_BIND_MPI_DATATYPE

MPI_T_BIND_MPI_ERRHANDLER

MPI_T_BIND_MPI_FILE

MPI_T_BIND_MPI_GROUP

MPI_T_BIND_MPI_OP

MPI_T_BIND_MPI_REQUEST

MPI_T_BIND_MPI_WIN

MPI_T_BIND_MPI_MESSAGE

MPI_T_BIND_MPI_INFO

Constants describing the scope of a control variable
in the MPI tool information interface

C type: const int (or unnamed enum)

MPI_T_SCOPE_CONSTANT

MPI_T_SCOPE_READONLY

MPI_T_SCOPE_LOCAL

MPI_T_SCOPE_GROUP

MPI_T_SCOPE_GROUP_EQ

MPI_T_SCOPE_ALL

MPI_T_SCOPE_ALL_EQ

Additional constants used
by the MPI tool information interface

C type: MPI_T_pvar_handle

MPI_T_PVAR_ALL_HANDLES

Performance variables classes used by the
MPI tool information interface

C type: const int (or unnamed enum)

MPI_T_PVAR_CLASS_STATE

MPI_T_PVAR_CLASS_LEVEL

MPI_T_PVAR_CLASS_SIZE

MPI_T_PVAR_CLASS_PERCENTAGE

MPI_T_PVAR_CLASS_HIGHWATERMARK

MPI_T_PVAR_CLASS_LOWWATERMARK

MPI_T_PVAR_CLASS_COUNTER

MPI_T_PVAR_CLASS_AGGREGATE

MPI_T_PVAR_CLASS_TIMER

MPI_T_PVAR_CLASS_GENERIC

A.1.2 Types

The following are defined C type definitions, included in the file mpi.h.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 677

/* C opaque types */

MPI_Aint

MPI_Count

MPI_Fint

MPI_Offset

MPI_Status

MPI_F08_status

/* C handles to assorted structures */

MPI_Comm

MPI_Datatype

MPI_Errhandler

MPI_File

MPI_Group

MPI_Info

MPI_Message

MPI_Op

MPI_Request

MPI_Win

/* Types for the MPI_T interface */

MPI_T_enum

MPI_T_cvar_handle

MPI_T_pvar_handle

MPI_T_pvar_session

The following are defined Fortran type definitions, included in the mpi_f08 and mpi

modules.

! Fortran opaque types in the mpi_f08 and mpi modules

TYPE(MPI_Status)

! Fortran handles in the mpi_f08 and mpi modules

TYPE(MPI_Comm)

TYPE(MPI_Datatype)

TYPE(MPI_Errhandler)

TYPE(MPI_File)

TYPE(MPI_Group)

TYPE(MPI_Info)

TYPE(MPI_Message)

TYPE(MPI_Op)

TYPE(MPI_Request)

TYPE(MPI_Win)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

678 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.1.3 Prototype Definitions

C Bindings

The following are defined C typedefs for user-defined functions, also included in the file
mpi.h.

/* prototypes for user-defined functions */

typedef void MPI_User_function(void *invec, void *inoutvec, int *len,

MPI_Datatype *datatype);

typedef int MPI_Comm_copy_attr_function(MPI_Comm oldcomm,

int comm_keyval, void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Comm_delete_attr_function(MPI_Comm comm,

int comm_keyval, void *attribute_val, void *extra_state);

typedef int MPI_Win_copy_attr_function(MPI_Win oldwin, int win_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Win_delete_attr_function(MPI_Win win, int win_keyval,

void *attribute_val, void *extra_state);

typedef int MPI_Type_copy_attr_function(MPI_Datatype oldtype,

int type_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag);

typedef int MPI_Type_delete_attr_function(MPI_Datatype datatype,

int type_keyval, void *attribute_val, void *extra_state);

typedef void MPI_Comm_errhandler_function(MPI_Comm *, int *, ...);

typedef void MPI_Win_errhandler_function(MPI_Win *, int *, ...);

typedef void MPI_File_errhandler_function(MPI_File *, int *, ...);

typedef int MPI_Grequest_query_function(void *extra_state,

MPI_Status *status);

typedef int MPI_Grequest_free_function(void *extra_state);

typedef int MPI_Grequest_cancel_function(void *extra_state, int complete);

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

Fortran 2008 Bindings with the mpi_f08 Module

The callback prototypes when using the Fortran mpi_f08 module are shown below:
The user-function argument to MPI_Op_create should be declared according to:

ABSTRACT INTERFACE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 679

SUBROUTINE MPI_User_function(invec, inoutvec, len, datatype)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), VALUE :: invec, inoutvec

INTEGER :: len

TYPE(MPI_Datatype) :: datatype

The copy and delete function arguments to MPI_Comm_create_keyval should be de-
clared according to:
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_copy_attr_function(oldcomm, comm_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

attribute_val_out

LOGICAL :: flag

ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_delete_attr_function(comm, comm_keyval,

attribute_val, extra_state, ierror)

TYPE(MPI_Comm) :: comm

INTEGER :: comm_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The copy and delete function arguments to MPI_Win_create_keyval should be declared
according to:
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_copy_attr_function(oldwin, win_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

attribute_val_out

LOGICAL :: flag

ABSTRACT INTERFACE

SUBROUTINE MPI_Win_delete_attr_function(win, win_keyval, attribute_val,

extra_state, ierror)

TYPE(MPI_Win) :: win

INTEGER :: win_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The copy and delete function arguments to MPI_Type_create_keyval should be declared
according to:
ABSTRACT INTERFACE

SUBROUTINE MPI_Type_copy_attr_function(oldtype, type_keyval, extra_state,

attribute_val_in, attribute_val_out, flag, ierror)

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

680 ANNEX A. LANGUAGE BINDINGS SUMMARY

attribute_val_out

LOGICAL :: flag

ABSTRACT INTERFACE

SUBROUTINE MPI_Type_delete_attr_function(datatype, type_keyval,

attribute_val, extra_state, ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER :: type_keyval, ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

The handler-function argument to MPI_Comm_create_errhandler should be declared
like this:
ABSTRACT INTERFACE

SUBROUTINE MPI_Comm_errhandler_function(comm, error_code)

TYPE(MPI_Comm) :: comm

INTEGER :: error_code

The handler-function argument to MPI_Win_create_errhandler should be declared like
this:
ABSTRACT INTERFACE

SUBROUTINE MPI_Win_errhandler_function(win, error_code)

TYPE(MPI_Win) :: win

INTEGER :: error_code

The handler-function argument to MPI_File_create_errhandler should be declared like
this:
ABSTRACT INTERFACE

SUBROUTINE MPI_File_errhandler_function(file, error_code)

TYPE(MPI_File) :: file

INTEGER :: error_code

The query, free, and cancel function arguments to MPI_Grequest_start should be de-
clared according to:
ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_query_function(extra_state, status, ierror)

TYPE(MPI_Status) :: status

INTEGER :: ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_free_function(extra_state, ierror)

INTEGER :: ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

ABSTRACT INTERFACE

SUBROUTINE MPI_Grequest_cancel_function(extra_state, complete, ierror)

INTEGER :: ierror

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

LOGICAL :: complete

The extent and conversion function arguments to MPI_Register_datarep should be de-

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 681

clared according to:
ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_extent_function(datatype, extent, extra_state,

ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND) :: extent, extra_state

INTEGER :: ierror

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_conversion_function(userbuf, datatype, count,

filebuf, position, extra_state, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), VALUE :: userbuf, filebuf

TYPE(MPI_Datatype) :: datatype

INTEGER :: count, ierror

INTEGER(KIND=MPI_OFFSET_KIND) :: position

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

Fortran Bindings with mpif.h or the mpi Module

With the Fortran mpi module or mpif.h, here are examples of how each of the user-defined
subroutines should be declared.

The user-function argument to MPI_OP_CREATE should be declared like this:

SUBROUTINE USER_FUNCTION(INVEC, INOUTVEC, LEN, DATATYPE)

<type> INVEC(LEN), INOUTVEC(LEN)

INTEGER LEN, DATATYPE

The copy and delete function arguments to MPI_COMM_CREATE_KEYVAL should be
declared like these:

SUBROUTINE COMM_COPY_ATTR_FUNCTION(OLDCOMM, COMM_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE COMM_DELETE_ATTR_FUNCTION(COMM, COMM_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_WIN_CREATE_KEYVAL should be
declared like these:

SUBROUTINE WIN_COPY_ATTR_FUNCTION(OLDWIN, WIN_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

682 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE WIN_DELETE_ATTR_FUNCTION(WIN, WIN_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The copy and delete function arguments to MPI_TYPE_CREATE_KEYVAL should be
declared like these:

SUBROUTINE TYPE_COPY_ATTR_FUNCTION(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT

LOGICAL FLAG

SUBROUTINE TYPE_DELETE_ATTR_FUNCTION(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL,

EXTRA_STATE, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

The handler-function argument to MPI_COMM_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE COMM_ERRHANDLER_FUNCTION(COMM, ERROR_CODE)

INTEGER COMM, ERROR_CODE

The handler-function argument to MPI_WIN_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE WIN_ERRHANDLER_FUNCTION(WIN, ERROR_CODE)

INTEGER WIN, ERROR_CODE

The handler-function argument to MPI_FILE_CREATE_ERRHANDLER should be de-
clared like this:

SUBROUTINE FILE_ERRHANDLER_FUNCTION(FILE, ERROR_CODE)

INTEGER FILE, ERROR_CODE

The query, free, and cancel function arguments to MPI_GREQUEST_START should be
declared like these:

SUBROUTINE GREQUEST_QUERY_FUNCTION(EXTRA_STATE, STATUS, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 683

SUBROUTINE GREQUEST_FREE_FUNCTION(EXTRA_STATE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

SUBROUTINE GREQUEST_CANCEL_FUNCTION(EXTRA_STATE, COMPLETE, IERROR)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

LOGICAL COMPLETE

The extent and conversion function arguments to MPI_REGISTER_DATAREP should
be declared like these:

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

A.1.4 Deprecated Prototype Definitions

The following are defined C typedefs for deprecated user-defined functions, also included in
the file mpi.h.

/* prototypes for user-defined functions */

typedef int MPI_Copy_function(MPI_Comm oldcomm, int keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag);

typedef int MPI_Delete_function(MPI_Comm comm, int keyval,

void *attribute_val, void *extra_state);

The following are deprecated Fortran user-defined callback subroutine prototypes. The
deprecated copy and delete function arguments to MPI_KEYVAL_CREATE should be de-
clared like these:

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE,

ATTRIBUTE_VAL_IN, ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

684 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.1.5 Info Keys

The following info keys are reserved. They are strings.

access_style

accumulate_ops

accumulate_ordering

alloc_shared_noncontig

appnum

arch

cb_block_size

cb_buffer_size

cb_nodes

chunked_item

chunked_size

chunked

collective_buffering

file_perm

filename

file

host

io_node_list

ip_address

ip_port

nb_proc

no_locks

num_io_nodes

path

same_size

soft

striping_factor

striping_unit

wdir

A.1.6 Info Values

The following info values are reserved. They are strings.

false

random

rar

raw

read_mostly

read_once

reverse_sequential

same_op

sequential

true

war

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.1. DEFINED VALUES AND HANDLES 685

waw

write_mostly

write_once

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

686 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.2 C Bindings

A.2.1 Point-to-Point Communication C Bindings

int MPI_Bsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Bsend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Buffer_attach(void* buffer, int size)

int MPI_Buffer_detach(void* buffer_addr, int* size)

int MPI_Cancel(MPI_Request *request)

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,

int *count)

int MPI_Ibsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Message *message, MPI_Status *status)

int MPI_Imrecv(void* buf, int count, MPI_Datatype datatype,

MPI_Message *message, MPI_Request *request)

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,

MPI_Status *status)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Irsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Issend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,

MPI_Status *status)

int MPI_Mrecv(void* buf, int count, MPI_Datatype datatype,

MPI_Message *message, MPI_Status *status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Status *status)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,

int tag, MPI_Comm comm, MPI_Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 687

int MPI_Request_free(MPI_Request *request)

int MPI_Request_get_status(MPI_Request request, int *flag,

MPI_Status *status)

int MPI_Rsend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Rsend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Send_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,

int dest, int sendtag, void *recvbuf, int recvcount,

MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,

int dest, int sendtag, int source, int recvtag, MPI_Comm comm,

MPI_Status *status)

int MPI_Ssend(const void* buf, int count, MPI_Datatype datatype, int dest,

int tag, MPI_Comm comm)

int MPI_Ssend_init(const void* buf, int count, MPI_Datatype datatype,

int dest, int tag, MPI_Comm comm, MPI_Request *request)

int MPI_Start(MPI_Request *request)

int MPI_Startall(int count, MPI_Request array_of_requests[])

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

int MPI_Test_cancelled(const MPI_Status *status, int *flag)

int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,

MPI_Status array_of_statuses[])

int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,

int *flag, MPI_Status *status)

int MPI_Testsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

int MPI_Wait(MPI_Request *request, MPI_Status *status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],

MPI_Status array_of_statuses[])

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

688 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_Status *status)

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],

int *outcount, int array_of_indices[],

MPI_Status array_of_statuses[])

A.2.2 Datatypes C Bindings

int MPI_Get_address(const void *location, MPI_Aint *address)

int MPI_Get_elements(const MPI_Status *status, MPI_Datatype datatype,

int *count)

int MPI_Get_elements_x(const MPI_Status *status, MPI_Datatype datatype,

MPI_Count *count)

int MPI_Pack(const void* inbuf, int incount, MPI_Datatype datatype,

void *outbuf, int outsize, int *position, MPI_Comm comm)

int MPI_Pack_external(const char datarep[], const void *inbuf, int incount,

MPI_Datatype datatype, void *outbuf, MPI_Aint outsize,

MPI_Aint *position)

int MPI_Pack_external_size(const char datarep[], int incount,

MPI_Datatype datatype, MPI_Aint *size)

int MPI_Pack_size(int incount, MPI_Datatype datatype, MPI_Comm comm,

int *size)

int MPI_Type_commit(MPI_Datatype *datatype)

int MPI_Type_contiguous(int count, MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_create_darray(int size, int rank, int ndims, const

int array_of_gsizes[], const int array_of_distribs[], const

int array_of_dargs[], const int array_of_psizes[], int order,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_hindexed(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_create_hindexed_block(int count, int blocklength, const

MPI_Aint array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_create_hvector(int count, int blocklength, MPI_Aint stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_create_indexed_block(int count, int blocklength, const

int array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 689

int MPI_Type_create_resized(MPI_Datatype oldtype, MPI_Aint lb, MPI_Aint

extent, MPI_Datatype *newtype)

int MPI_Type_create_struct(int count, const int array_of_blocklengths[],

const MPI_Aint array_of_displacements[], const

MPI_Datatype array_of_types[], MPI_Datatype *newtype)

int MPI_Type_create_subarray(int ndims, const int array_of_sizes[], const

int array_of_subsizes[], const int array_of_starts[], int

order, MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_dup(MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Type_free(MPI_Datatype *datatype)

int MPI_Type_get_contents(MPI_Datatype datatype, int max_integers,

int max_addresses, int max_datatypes, int array_of_integers[],

MPI_Aint array_of_addresses[],

MPI_Datatype array_of_datatypes[])

int MPI_Type_get_envelope(MPI_Datatype datatype, int *num_integers,

int *num_addresses, int *num_datatypes, int *combiner)

int MPI_Type_get_extent(MPI_Datatype datatype, MPI_Aint *lb,

MPI_Aint *extent)

int MPI_Type_get_extent_x(MPI_Datatype datatype, MPI_Count *lb,

MPI_Count *extent)

int MPI_Type_get_true_extent(MPI_Datatype datatype, MPI_Aint *true_lb,

MPI_Aint *true_extent)

int MPI_Type_get_true_extent_x(MPI_Datatype datatype, MPI_Count *true_lb,

MPI_Count *true_extent)

int MPI_Type_indexed(int count, const int array_of_blocklengths[], const

int array_of_displacements[], MPI_Datatype oldtype,

MPI_Datatype *newtype)

int MPI_Type_size(MPI_Datatype datatype, int *size)

int MPI_Type_size_x(MPI_Datatype datatype, MPI_Count *size)

int MPI_Type_vector(int count, int blocklength, int stride,

MPI_Datatype oldtype, MPI_Datatype *newtype)

int MPI_Unpack(const void* inbuf, int insize, int *position, void *outbuf,

int outcount, MPI_Datatype datatype, MPI_Comm comm)

int MPI_Unpack_external(const char datarep[], const void *inbuf,

MPI_Aint insize, MPI_Aint *position, void *outbuf,

int outcount, MPI_Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

690 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.2.3 Collective Communication C Bindings

int MPI_Allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Allreduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Alltoall(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

int MPI_Alltoallv(const void* sendbuf, const int sendcounts[], const

int sdispls[], MPI_Datatype sendtype, void* recvbuf, const

int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

MPI_Comm comm)

int MPI_Alltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const MPI_Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const

MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Barrier(MPI_Comm comm)

int MPI_Bcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm)

int MPI_Exscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Gather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

int MPI_Gatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm)

int MPI_Iallgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Iallgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Request* request)

int MPI_Iallreduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 691

MPI_Request *request)

int MPI_Ialltoall(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallv(const void* sendbuf, const int sendcounts[], const

int sdispls[], MPI_Datatype sendtype, void* recvbuf, const

int recvcounts[], const int rdispls[], MPI_Datatype recvtype,

MPI_Comm comm, MPI_Request *request)

int MPI_Ialltoallw(const void* sendbuf, const int sendcounts[], const

int sdispls[], const MPI_Datatype sendtypes[], void* recvbuf,

const int recvcounts[], const int rdispls[], const

MPI_Datatype recvtypes[], MPI_Comm comm, MPI_Request *request)

int MPI_Ibarrier(MPI_Comm comm, MPI_Request *request)

int MPI_Ibcast(void* buffer, int count, MPI_Datatype datatype, int root,

MPI_Comm comm, MPI_Request *request)

int MPI_Iexscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

int MPI_Igather(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, MPI_Request *request)

int MPI_Igatherv(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, const int recvcounts[], const int displs[],

MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

int MPI_Ireduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm,

MPI_Request *request)

int MPI_Ireduce_scatter(const void* sendbuf, void* recvbuf, const

int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm, MPI_Request *request)

int MPI_Ireduce_scatter_block(const void* sendbuf, void* recvbuf,

int recvcount, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm, MPI_Request *request)

int MPI_Iscan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm,

MPI_Request *request)

int MPI_Iscatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm, MPI_Request *request)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

692 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_Iscatterv(const void* sendbuf, const int sendcounts[], const

int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm,

MPI_Request *request)

int MPI_Op_commutative(MPI_Op op, int *commute)

int MPI_Op_create(MPI_User_function* user_fn, int commute, MPI_Op* op)

int MPI_Op_free(MPI_Op *op)

int MPI_Reduce(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, int root, MPI_Comm comm)

int MPI_Reduce_local(const void* inbuf, void* inoutbuf, int count,

MPI_Datatype datatype, MPI_Op op)

int MPI_Reduce_scatter(const void* sendbuf, void* recvbuf, const

int recvcounts[], MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

int MPI_Reduce_scatter_block(const void* sendbuf, void* recvbuf,

int recvcount, MPI_Datatype datatype, MPI_Op op,

MPI_Comm comm)

int MPI_Scan(const void* sendbuf, void* recvbuf, int count,

MPI_Datatype datatype, MPI_Op op, MPI_Comm comm)

int MPI_Scatter(const void* sendbuf, int sendcount, MPI_Datatype sendtype,

void* recvbuf, int recvcount, MPI_Datatype recvtype, int root,

MPI_Comm comm)

int MPI_Scatterv(const void* sendbuf, const int sendcounts[], const

int displs[], MPI_Datatype sendtype, void* recvbuf,

int recvcount, MPI_Datatype recvtype, int root, MPI_Comm comm)

A.2.4 Groups, Contexts, Communicators, and Caching C Bindings

int MPI_COMM_DUP_FN(MPI_Comm oldcomm, int comm_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_COMM_NULL_COPY_FN(MPI_Comm oldcomm, int comm_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_COMM_NULL_DELETE_FN(MPI_Comm comm, int comm_keyval, void

*attribute_val, void *extra_state)

int MPI_Comm_compare(MPI_Comm comm1, MPI_Comm comm2, int *result)

int MPI_Comm_create(MPI_Comm comm, MPI_Group group, MPI_Comm *newcomm)

int MPI_Comm_create_group(MPI_Comm comm, MPI_Group group, int tag,

MPI_Comm *newcomm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 693

int MPI_Comm_create_keyval(MPI_Comm_copy_attr_function *comm_copy_attr_fn,

MPI_Comm_delete_attr_function *comm_delete_attr_fn,

int *comm_keyval, void *extra_state)

int MPI_Comm_delete_attr(MPI_Comm comm, int comm_keyval)

int MPI_Comm_dup(MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_dup_with_info(MPI_Comm comm, MPI_Info info, MPI_Comm *newcomm)

int MPI_Comm_free(MPI_Comm *comm)

int MPI_Comm_free_keyval(int *comm_keyval)

int MPI_Comm_get_attr(MPI_Comm comm, int comm_keyval, void *attribute_val,

int *flag)

int MPI_Comm_get_info(MPI_Comm comm, MPI_Info *info_used)

int MPI_Comm_get_name(MPI_Comm comm, char *comm_name, int *resultlen)

int MPI_Comm_group(MPI_Comm comm, MPI_Group *group)

int MPI_Comm_idup(MPI_Comm comm, MPI_Comm *newcomm, MPI_Request *request)

int MPI_Comm_rank(MPI_Comm comm, int *rank)

int MPI_Comm_remote_group(MPI_Comm comm, MPI_Group *group)

int MPI_Comm_remote_size(MPI_Comm comm, int *size)

int MPI_Comm_set_attr(MPI_Comm comm, int comm_keyval, void *attribute_val)

int MPI_Comm_set_info(MPI_Comm comm, MPI_Info info)

int MPI_Comm_set_name(MPI_Comm comm, const char *comm_name)

int MPI_Comm_size(MPI_Comm comm, int *size)

int MPI_Comm_split(MPI_Comm comm, int color, int key, MPI_Comm *newcomm)

int MPI_Comm_split_type(MPI_Comm comm, int split_type, int key,

MPI_Info info, MPI_Comm *newcomm)

int MPI_Comm_test_inter(MPI_Comm comm, int *flag)

int MPI_Group_compare(MPI_Group group1,MPI_Group group2, int *result)

int MPI_Group_difference(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Group_excl(MPI_Group group, int n, const int ranks[],

MPI_Group *newgroup)

int MPI_Group_free(MPI_Group *group)

int MPI_Group_incl(MPI_Group group, int n, const int ranks[],

MPI_Group *newgroup)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

694 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_Group_intersection(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Group_range_excl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

int MPI_Group_range_incl(MPI_Group group, int n, int ranges[][3],

MPI_Group *newgroup)

int MPI_Group_rank(MPI_Group group, int *rank)

int MPI_Group_size(MPI_Group group, int *size)

int MPI_Group_translate_ranks(MPI_Group group1, int n, const int ranks1[],

MPI_Group group2, int ranks2[])

int MPI_Group_union(MPI_Group group1, MPI_Group group2,

MPI_Group *newgroup)

int MPI_Intercomm_create(MPI_Comm local_comm, int local_leader,

MPI_Comm peer_comm, int remote_leader, int tag,

MPI_Comm *newintercomm)

int MPI_Intercomm_merge(MPI_Comm intercomm, int high,

MPI_Comm *newintracomm)

int MPI_TYPE_DUP_FN(MPI_Datatype oldtype, int type_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_COPY_FN(MPI_Datatype oldtype, int type_keyval,

void *extra_state, void *attribute_val_in,

void *attribute_val_out, int *flag)

int MPI_TYPE_NULL_DELETE_FN(MPI_Datatype datatype, int type_keyval, void

*attribute_val, void *extra_state)

int MPI_Type_create_keyval(MPI_Type_copy_attr_function *type_copy_attr_fn,

MPI_Type_delete_attr_function *type_delete_attr_fn,

int *type_keyval, void *extra_state)

int MPI_Type_delete_attr(MPI_Datatype datatype, int type_keyval)

int MPI_Type_free_keyval(int *type_keyval)

int MPI_Type_get_attr(MPI_Datatype datatype, int type_keyval, void

*attribute_val, int *flag)

int MPI_Type_get_name(MPI_Datatype datatype, char *type_name, int

*resultlen)

int MPI_Type_set_attr(MPI_Datatype datatype, int type_keyval,

void *attribute_val)

int MPI_Type_set_name(MPI_Datatype datatype, const char *type_name)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 695

int MPI_WIN_DUP_FN(MPI_Win oldwin, int win_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_WIN_NULL_COPY_FN(MPI_Win oldwin, int win_keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_WIN_NULL_DELETE_FN(MPI_Win win, int win_keyval, void

*attribute_val, void *extra_state)

int MPI_Win_create_keyval(MPI_Win_copy_attr_function *win_copy_attr_fn,

MPI_Win_delete_attr_function *win_delete_attr_fn,

int *win_keyval, void *extra_state)

int MPI_Win_delete_attr(MPI_Win win, int win_keyval)

int MPI_Win_free_keyval(int *win_keyval)

int MPI_Win_get_attr(MPI_Win win, int win_keyval, void *attribute_val,

int *flag)

int MPI_Win_get_name(MPI_Win win, char *win_name, int *resultlen)

int MPI_Win_set_attr(MPI_Win win, int win_keyval, void *attribute_val)

int MPI_Win_set_name(MPI_Win win, const char *win_name)

A.2.5 Process Topologies C Bindings

int MPI_Cart_coords(MPI_Comm comm, int rank, int maxdims, int coords[])

int MPI_Cart_create(MPI_Comm comm_old, int ndims, const int dims[], const

int periods[], int reorder, MPI_Comm *comm_cart)

int MPI_Cart_get(MPI_Comm comm, int maxdims, int dims[], int periods[],

int coords[])

int MPI_Cart_map(MPI_Comm comm, int ndims, const int dims[], const

int periods[], int *newrank)

int MPI_Cart_rank(MPI_Comm comm, const int coords[], int *rank)

int MPI_Cart_shift(MPI_Comm comm, int direction, int disp,

int *rank_source, int *rank_dest)

int MPI_Cart_sub(MPI_Comm comm, const int remain_dims[], MPI_Comm *newcomm)

int MPI_Cartdim_get(MPI_Comm comm, int *ndims)

int MPI_Dims_create(int nnodes, int ndims, int dims[])

int MPI_Dist_graph_create(MPI_Comm comm_old, int n, const int sources[],

const int degrees[], const int destinations[], const

int weights[], MPI_Info info, int reorder,

MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_create_adjacent(MPI_Comm comm_old, int indegree, const

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

696 ANNEX A. LANGUAGE BINDINGS SUMMARY

int sources[], const int sourceweights[], int outdegree, const

int destinations[], const int destweights[], MPI_Info info,

int reorder, MPI_Comm *comm_dist_graph)

int MPI_Dist_graph_neighbors(MPI_Comm comm, int maxindegree, int sources[],

int sourceweights[], int maxoutdegree, int destinations[],

int destweights[])

int MPI_Dist_graph_neighbors_count(MPI_Comm comm, int *indegree,

int *outdegree, int *weighted)

int MPI_Graph_create(MPI_Comm comm_old, int nnodes, const int index[],

const int edges[], int reorder, MPI_Comm *comm_graph)

int MPI_Graph_get(MPI_Comm comm, int maxindex, int maxedges, int index[],

int edges[])

int MPI_Graph_map(MPI_Comm comm, int nnodes, const int index[], const

int edges[], int *newrank)

int MPI_Graph_neighbors(MPI_Comm comm, int rank, int maxneighbors,

int neighbors[])

int MPI_Graph_neighbors_count(MPI_Comm comm, int rank, int *nneighbors)

int MPI_Graphdims_get(MPI_Comm comm, int *nnodes, int *nedges)

int MPI_Ineighbor_allgather(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, int recvcount,

MPI_Datatype recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm,

MPI_Request *request)

int MPI_Ineighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[], MPI_Datatype

recvtype, MPI_Comm comm, MPI_Request *request)

int MPI_Ineighbor_alltoallw(const void* sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void* recvbuf, const int recvcounts[], const MPI_Aint

rdispls[], const MPI_Datatype recvtypes[], MPI_Comm comm,

MPI_Request *request)

int MPI_Neighbor_allgather(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 697

int MPI_Neighbor_allgatherv(const void* sendbuf, int sendcount,

MPI_Datatype sendtype, void* recvbuf, const int recvcounts[],

const int displs[], MPI_Datatype recvtype, MPI_Comm comm)

int MPI_Neighbor_alltoall(const void* sendbuf, int sendcount, MPI_Datatype

sendtype, void* recvbuf, int recvcount, MPI_Datatype recvtype,

MPI_Comm comm)

int MPI_Neighbor_alltoallv(const void* sendbuf, const int sendcounts[],

const int sdispls[], MPI_Datatype sendtype, void* recvbuf,

const int recvcounts[], const int rdispls[], MPI_Datatype

recvtype, MPI_Comm comm)

int MPI_Neighbor_alltoallw(const void* sendbuf, const int sendcounts[],

const MPI_Aint sdispls[], const MPI_Datatype sendtypes[],

void* recvbuf, const int recvcounts[], const MPI_Aint

rdispls[], const MPI_Datatype recvtypes[], MPI_Comm comm)

int MPI_Topo_test(MPI_Comm comm, int *status)

A.2.6 MPI Environmental Management C Bindings

double MPI_Wtick(void)

double MPI_Wtime(void)

int MPI_Abort(MPI_Comm comm, int errorcode)

int MPI_Add_error_class(int *errorclass)

int MPI_Add_error_code(int errorclass, int *errorcode)

int MPI_Add_error_string(int errorcode, const char *string)

int MPI_Alloc_mem(MPI_Aint size, MPI_Info info, void *baseptr)

int MPI_Comm_call_errhandler(MPI_Comm comm, int errorcode)

int MPI_Comm_create_errhandler(MPI_Comm_errhandler_function

*comm_errhandler_fn, MPI_Errhandler *errhandler)

int MPI_Comm_get_errhandler(MPI_Comm comm, MPI_Errhandler *errhandler)

int MPI_Comm_set_errhandler(MPI_Comm comm, MPI_Errhandler errhandler)

int MPI_Errhandler_free(MPI_Errhandler *errhandler)

int MPI_Error_class(int errorcode, int *errorclass)

int MPI_Error_string(int errorcode, char *string, int *resultlen)

int MPI_File_call_errhandler(MPI_File fh, int errorcode)

int MPI_File_create_errhandler(MPI_File_errhandler_function

*file_errhandler_fn, MPI_Errhandler *errhandler)

int MPI_File_get_errhandler(MPI_File file, MPI_Errhandler *errhandler)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

698 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_File_set_errhandler(MPI_File file, MPI_Errhandler errhandler)

int MPI_Finalize(void)

int MPI_Finalized(int *flag)

int MPI_Free_mem(void *base)

int MPI_Get_library_version(char *version, int *resultlen)

int MPI_Get_processor_name(char *name, int *resultlen)

int MPI_Get_version(int *version, int *subversion)

int MPI_Init(int *argc, char ***argv)

int MPI_Initialized(int *flag)

int MPI_Win_call_errhandler(MPI_Win win, int errorcode)

int MPI_Win_create_errhandler(MPI_Win_errhandler_function

*win_errhandler_fn, MPI_Errhandler *errhandler)

int MPI_Win_get_errhandler(MPI_Win win, MPI_Errhandler *errhandler)

int MPI_Win_set_errhandler(MPI_Win win, MPI_Errhandler errhandler)

A.2.7 The Info Object C Bindings

int MPI_Info_create(MPI_Info *info)

int MPI_Info_delete(MPI_Info info, const char *key)

int MPI_Info_dup(MPI_Info info, MPI_Info *newinfo)

int MPI_Info_free(MPI_Info *info)

int MPI_Info_get(MPI_Info info, const char *key, int valuelen, char *value,

int *flag)

int MPI_Info_get_nkeys(MPI_Info info, int *nkeys)

int MPI_Info_get_nthkey(MPI_Info info, int n, char *key)

int MPI_Info_get_valuelen(MPI_Info info, const char *key, int *valuelen,

int *flag)

int MPI_Info_set(MPI_Info info, const char *key, const char *value)

A.2.8 Process Creation and Management C Bindings

int MPI_Close_port(const char *port_name)

int MPI_Comm_accept(const char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

int MPI_Comm_connect(const char *port_name, MPI_Info info, int root,

MPI_Comm comm, MPI_Comm *newcomm)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 699

int MPI_Comm_disconnect(MPI_Comm *comm)

int MPI_Comm_get_parent(MPI_Comm *parent)

int MPI_Comm_join(int fd, MPI_Comm *intercomm)

int MPI_Comm_spawn(const char *command, char *argv[], int maxprocs,

MPI_Info info, int root, MPI_Comm comm, MPI_Comm *intercomm,

int array_of_errcodes[])

int MPI_Comm_spawn_multiple(int count, char *array_of_commands[],

char **array_of_argv[], const int array_of_maxprocs[], const

MPI_Info array_of_info[], int root, MPI_Comm comm,

MPI_Comm *intercomm, int array_of_errcodes[])

int MPI_Lookup_name(const char *service_name, MPI_Info info,

char *port_name)

int MPI_Open_port(MPI_Info info, char *port_name)

int MPI_Publish_name(const char *service_name, MPI_Info info, const

char *port_name)

int MPI_Unpublish_name(const char *service_name, MPI_Info info, const

char *port_name)

A.2.9 One-Sided Communications C Bindings

int MPI_Accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Compare_and_swap(const void *origin_addr, const void *compare_addr,

void *result_addr, MPI_Datatype datatype, int target_rank,

MPI_Aint target_disp, MPI_Win win)

int MPI_Fetch_and_op(const void *origin_addr, void *result_addr,

MPI_Datatype datatype, int target_rank, MPI_Aint target_disp,

MPI_Op op, MPI_Win win)

int MPI_Get(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win)

int MPI_Get_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr,

int result_count, MPI_Datatype result_datatype,

int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win)

int MPI_Put(const void *origin_addr, int origin_count, MPI_Datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

700 ANNEX A. LANGUAGE BINDINGS SUMMARY

origin_datatype, int target_rank, MPI_Aint target_disp, int

target_count, MPI_Datatype target_datatype, MPI_Win win)

int MPI_Raccumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,

MPI_Request *request)

int MPI_Rget(void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_Request *request)

int MPI_Rget_accumulate(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, void *result_addr,

int result_count, MPI_Datatype result_datatype,

int target_rank, MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Op op, MPI_Win win,

MPI_Request *request)

int MPI_Rput(const void *origin_addr, int origin_count,

MPI_Datatype origin_datatype, int target_rank,

MPI_Aint target_disp, int target_count,

MPI_Datatype target_datatype, MPI_Win win,

MPI_Request *request)

int MPI_Win_allocate(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_allocate_shared(MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, void *baseptr, MPI_Win *win)

int MPI_Win_attach(MPI_Win win, void *base, MPI_Aint size)

int MPI_Win_complete(MPI_Win win)

int MPI_Win_create(void *base, MPI_Aint size, int disp_unit, MPI_Info info,

MPI_Comm comm, MPI_Win *win)

int MPI_Win_create_dynamic(MPI_Info info, MPI_Comm comm, MPI_Win *win)

int MPI_Win_detach(MPI_Win win, const void *base)

int MPI_Win_fence(int assert, MPI_Win win)

int MPI_Win_flush(int rank, MPI_Win win)

int MPI_Win_flush_all(MPI_Win win)

int MPI_Win_flush_local(int rank, MPI_Win win)

int MPI_Win_flush_local_all(MPI_Win win)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 701

int MPI_Win_free(MPI_Win *win)

int MPI_Win_get_group(MPI_Win win, MPI_Group *group)

int MPI_Win_get_info(MPI_Win win, MPI_Info *info_used)

int MPI_Win_lock(int lock_type, int rank, int assert, MPI_Win win)

int MPI_Win_lock_all(int assert, MPI_Win win)

int MPI_Win_post(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_set_info(MPI_Win win, MPI_Info info)

int MPI_Win_shared_query(MPI_Win win, int rank, MPI_Aint *size,

int *disp_unit, void *baseptr)

int MPI_Win_start(MPI_Group group, int assert, MPI_Win win)

int MPI_Win_sync(MPI_Win win)

int MPI_Win_test(MPI_Win win, int *flag)

int MPI_Win_unlock(int rank, MPI_Win win)

int MPI_Win_unlock_all(MPI_Win win)

int MPI_Win_wait(MPI_Win win)

A.2.10 External Interfaces C Bindings

int MPI_Grequest_complete(MPI_Request request)

int MPI_Grequest_start(MPI_Grequest_query_function *query_fn,

MPI_Grequest_free_function *free_fn,

MPI_Grequest_cancel_function *cancel_fn, void *extra_state,

MPI_Request *request)

int MPI_Init_thread(int *argc, char ***argv, int required, int *provided)

int MPI_Is_thread_main(int *flag)

int MPI_Query_thread(int *provided)

int MPI_Status_set_cancelled(MPI_Status *status, int flag)

int MPI_Status_set_elements(MPI_Status *status, MPI_Datatype datatype,

int count)

int MPI_Status_set_elements_x(MPI_Status *status, MPI_Datatype datatype,

MPI_Count count)

A.2.11 I/O C Bindings

int MPI_File_close(MPI_File *fh)

int MPI_File_delete(const char *filename, MPI_Info info)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

702 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_File_get_amode(MPI_File fh, int *amode)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

int MPI_File_iwrite_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

int MPI_File_open(MPI_Comm comm, const char *filename, int amode,

MPI_Info info, MPI_File *fh)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 703

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

int MPI_File_set_atomicity(MPI_File fh, int flag)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, const char *datarep, MPI_Info info)

int MPI_File_sync(MPI_File fh)

int MPI_File_write(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_all_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, const

void *buf, int count, MPI_Datatype datatype)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

704 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_File_write_at_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

int MPI_File_write_ordered(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_File_write_ordered_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

int MPI_File_write_ordered_end(MPI_File fh, const void *buf,

MPI_Status *status)

int MPI_File_write_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

int MPI_Register_datarep(const char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,

MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

A.2.12 Language Bindings C Bindings

int MPI_Status_f082f(MPI_F08_status *f08_status, MPI_Fint *f_status)

int MPI_Status_f2f08(MPI_Fint *f_status, MPI_F08_status *f08_status)

int MPI_Type_create_f90_complex(int p, int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_integer(int r, MPI_Datatype *newtype)

int MPI_Type_create_f90_real(int p, int r, MPI_Datatype *newtype)

int MPI_Type_match_size(int typeclass, int size, MPI_Datatype *datatype)

MPI_Fint MPI_Comm_c2f(MPI_Comm comm)

MPI_Comm MPI_Comm_f2c(MPI_Fint comm)

MPI_Fint MPI_Errhandler_c2f(MPI_Errhandler errhandler)

MPI_Errhandler MPI_Errhandler_f2c(MPI_Fint errhandler)

MPI_Fint MPI_File_c2f(MPI_File file)

MPI_File MPI_File_f2c(MPI_Fint file)

MPI_Fint MPI_Group_c2f(MPI_Group group)

MPI_Group MPI_Group_f2c(MPI_Fint group)

MPI_Fint MPI_Info_c2f(MPI_Info info)

MPI_Info MPI_Info_f2c(MPI_Fint info)

MPI_Fint MPI_Message_c2f(MPI_Message message)

MPI_Message MPI_Message_f2c(MPI_Fint message)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 705

MPI_Fint MPI_Op_c2f(MPI_Op op)

MPI_Op MPI_Op_f2c(MPI_Fint op)

MPI_Fint MPI_Request_c2f(MPI_Request request)

MPI_Request MPI_Request_f2c(MPI_Fint request)

int MPI_Status_c2f(const MPI_Status *c_status, MPI_Fint *f_status)

int MPI_Status_c2f08(const MPI_Status *c_status, MPI_F08_status

*f08_status)

int MPI_Status_f082c(const MPI_F08_status *f08_status, MPI_Status

*c_status)

int MPI_Status_f2c(const MPI_Fint *f_status, MPI_Status *c_status)

MPI_Fint MPI_Type_c2f(MPI_Datatype datatype)

MPI_Datatype MPI_Type_f2c(MPI_Fint datatype)

MPI_Fint MPI_Win_c2f(MPI_Win win)

MPI_Win MPI_Win_f2c(MPI_Fint win)

A.2.13 Tools / Profiling Interface C Bindings

int MPI_Pcontrol(const int level, ...)

A.2.14 Tools / MPI Tool Information Interface C Bindings

int MPI_T_pvar_start(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

int MPI_T_category_changed(int *stamp)

int MPI_T_category_get_categories(int cat_index, int len, int indices[])

int MPI_T_category_get_cvars(int cat_index, int len, int indices[])

int MPI_T_category_get_index(const char *name, int *cat_index)

int MPI_T_category_get_info(int cat_index, char *name, int *name_len,

char *desc, int *desc_len, int *num_cvars, int *num_pvars,

int *num_categories)

int MPI_T_category_get_num(int *num_cat)

int MPI_T_category_get_pvars(int cat_index, int len, int indices[])

int MPI_T_cvar_get_index(const char *name, int *cvar_index)

int MPI_T_cvar_get_info(int cvar_index, char *name, int *name_len, int

*verbosity, MPI_Datatype *datatype, MPI_T_enum *enumtype, char

*desc, int *desc_len, int *bind, int *scope)

int MPI_T_cvar_get_num(int *num_cvar)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

706 ANNEX A. LANGUAGE BINDINGS SUMMARY

int MPI_T_cvar_handle_alloc(int cvar_index, void *obj_handle,

MPI_T_cvar_handle *handle, int *count)

int MPI_T_cvar_handle_free(MPI_T_cvar_handle *handle)

int MPI_T_cvar_read(MPI_T_cvar_handle handle, void* buf)

int MPI_T_cvar_write(MPI_T_cvar_handle handle, const void* buf)

int MPI_T_enum_get_info(MPI_T_enum enumtype, int *num, char *name, int

*name_len)

int MPI_T_enum_get_item(MPI_T_enum enumtype, int index, int *value, char

*name, int *name_len)

int MPI_T_finalize(void)

int MPI_T_init_thread(int required, int *provided)

int MPI_T_pvar_get_index(const char *name, int var_class, int *pvar_index)

int MPI_T_pvar_get_info(int pvar_index, char *name, int *name_len,

int *verbosity, int *var_class, MPI_Datatype *datatype,

MPI_T_enum *enumtype, char *desc, int *desc_len, int *bind,

int *readonly, int *continuous, int *atomic)

int MPI_T_pvar_get_num(int *num_pvar)

int MPI_T_pvar_handle_alloc(MPI_T_pvar_session session, int pvar_index,

void *obj_handle, MPI_T_pvar_handle *handle, int *count)

int MPI_T_pvar_handle_free(MPI_T_pvar_session session, MPI_T_pvar_handle

*handle)

int MPI_T_pvar_read(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

void* buf)

int MPI_T_pvar_readreset(MPI_T_pvar_session session, MPI_T_pvar_handle

handle, void* buf)

int MPI_T_pvar_reset(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

int MPI_T_pvar_session_create(MPI_T_pvar_session *session)

int MPI_T_pvar_session_free(MPI_T_pvar_session *session)

int MPI_T_pvar_stop(MPI_T_pvar_session session, MPI_T_pvar_handle handle)

int MPI_T_pvar_write(MPI_T_pvar_session session, MPI_T_pvar_handle handle,

const void* buf)

A.2.15 Deprecated C Bindings

int MPI_Attr_delete(MPI_Comm comm, int keyval)

int MPI_Attr_get(MPI_Comm comm, int keyval, void *attribute_val, int *flag)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.2. C BINDINGS 707

int MPI_Attr_put(MPI_Comm comm, int keyval, void* attribute_val)

int MPI_DUP_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_Keyval_create(MPI_Copy_function *copy_fn, MPI_Delete_function

*delete_fn, int *keyval, void* extra_state)

int MPI_Keyval_free(int *keyval)

int MPI_NULL_COPY_FN(MPI_Comm oldcomm, int keyval, void *extra_state,

void *attribute_val_in, void *attribute_val_out, int *flag)

int MPI_NULL_DELETE_FN(MPI_Comm comm, int keyval, void *attribute_val,

void *extra_state)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

708 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.3 Fortran 2008 Bindings with the mpi_f08 Module

A.3.1 Point-to-Point Communication Fortran 2008 Bindings

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_attach(buffer, size, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

INTEGER, INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Buffer_detach(buffer_addr, size, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), INTENT(OUT) :: buffer_addr

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cancel(request, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_count(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Improbe(source, tag, comm, flag, message, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 709

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Message), INTENT(OUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Imrecv(buf, count, datatype, message, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Message), INTENT(INOUT) :: message

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iprobe(source, tag, comm, flag, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

710 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mprobe(source, tag, comm, message, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Message), INTENT(OUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Mrecv(buf, count, datatype, message, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Message), INTENT(INOUT) :: message

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Probe(source, tag, comm, status, ierror)

INTEGER, INTENT(IN) :: source, tag

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, source, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_free(request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Request_get_status(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 711

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,

recvcount, recvtype, source, recvtag, comm, status, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,

recvtag

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,

comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

712 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count, dest, tag

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Start(request, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Startall(count, array_of_requests, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Test(request, flag, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Test_cancelled(status, flag, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testany(count, array_of_requests, index, flag, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, INTENT(OUT) :: index

LOGICAL, INTENT(OUT) :: flag

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,

array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 713

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)

INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Wait(request, status, ierror)

TYPE(MPI_Request), INTENT(INOUT) :: request

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitany(count, array_of_requests, index, status, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)

INTEGER, INTENT(OUT) :: index

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,

array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)

INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)

TYPE(MPI_Status) :: array_of_statuses(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.2 Datatypes Fortran 2008 Bindings

MPI_Get_address(location, address, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: location

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: address

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_elements(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_elements_x(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(IN) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack(inbuf, incount, datatype, outbuf, outsize, position, comm, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

714 ANNEX A. LANGUAGE BINDINGS SUMMARY

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount, outsize

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(INOUT) :: position

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external(datarep, inbuf, incount, datatype, outbuf, outsize,

position, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: outsize

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_external_size(datarep, incount, datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: incount

CHARACTER(LEN=*), INTENT(IN) :: datarep

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Pack_size(incount, datatype, comm, size, ierror)

INTEGER, INTENT(IN) :: incount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_commit(datatype, ierror)

TYPE(MPI_Datatype), INTENT(INOUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_contiguous(count, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_darray(size, rank, ndims, array_of_gsizes,

array_of_distribs, array_of_dargs, array_of_psizes, order,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: size, rank, ndims, array_of_gsizes(ndims),

array_of_distribs(ndims), array_of_dargs(ndims),

array_of_psizes(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 715

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed(count, array_of_blocklengths,

array_of_displacements, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hindexed_block(count, blocklength, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_hvector(count, blocklength, stride, oldtype, newtype,

ierror)

INTEGER, INTENT(IN) :: count, blocklength

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: stride

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_indexed_block(count, blocklength, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength,

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_resized(oldtype, lb, extent, newtype, ierror)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: lb, extent

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_struct(count, array_of_blocklengths,

array_of_displacements, array_of_types, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) ::

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: array_of_types(count)

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

716 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_subarray(ndims, array_of_sizes, array_of_subsizes,

array_of_starts, order, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: ndims, array_of_sizes(ndims),

array_of_subsizes(ndims), array_of_starts(ndims), order

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_dup(oldtype, newtype, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_free(datatype, ierror)

TYPE(MPI_Datatype), INTENT(INOUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_contents(datatype, max_integers, max_addresses, max_datatypes,

array_of_integers, array_of_addresses, array_of_datatypes,

ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: max_integers, max_addresses, max_datatypes

INTEGER, INTENT(OUT) :: array_of_integers(max_integers)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) ::

array_of_addresses(max_addresses)

TYPE(MPI_Datatype), INTENT(OUT) :: array_of_datatypes(max_datatypes)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_envelope(datatype, num_integers, num_addresses, num_datatypes,

combiner, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: num_integers, num_addresses, num_datatypes,

combiner

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: lb, extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_extent_x(datatype, lb, extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: lb, extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_true_extent(datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: true_lb, true_extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 717

MPI_Type_get_true_extent_x(datatype, true_lb, true_extent, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(OUT) :: true_lb, true_extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_indexed(count, array_of_blocklengths, array_of_displacements,

oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, array_of_blocklengths(count),

array_of_displacements(count)

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_size(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_size_x(datatype, size, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_COUNT_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_vector(count, blocklength, stride, oldtype, newtype, ierror)

INTEGER, INTENT(IN) :: count, blocklength, stride

TYPE(MPI_Datatype), INTENT(IN) :: oldtype

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack(inbuf, insize, position, outbuf, outcount, datatype, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER, INTENT(IN) :: insize, outcount

INTEGER, INTENT(INOUT) :: position

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpack_external(datarep, inbuf, insize, position, outbuf, outcount,

datatype, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: outbuf

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: insize

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(INOUT) :: position

INTEGER, INTENT(IN) :: outcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

718 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.3.3 Collective Communication Fortran 2008 Bindings

MPI_Allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Allreduce(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf, recvcounts,

rdispls, recvtypes, comm, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 719

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*)

TYPE(MPI_Datatype), INTENT(IN) :: recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Barrier(comm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Bcast(buffer, count, datatype, root, comm, ierror)

TYPE(*), DIMENSION(..) :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Exscan(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Gatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*), root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

720 ANNEX A. LANGUAGE BINDINGS SUMMARY

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iallreduce(sendbuf, recvbuf, count, datatype, op, comm, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ialltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ialltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf, recvcounts,

rdispls, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 721

MPI_Ialltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ibarrier(comm, request, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ibcast(buffer, count, datatype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iexscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igather(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Igatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts, displs,

recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, root

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

722 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce(sendbuf, recvbuf, count, datatype, op, root, comm, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ireduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,

request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: recvcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscan(sendbuf, recvbuf, count, datatype, op, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 723

root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Iscatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,

recvtype, root, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), displs(*)

INTEGER, INTENT(IN) :: recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_commutative(op, commute, ierror)

TYPE(MPI_Op), INTENT(IN) :: op

LOGICAL, INTENT(OUT) :: commute

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_create(user_fn, commute, op, ierror)

PROCEDURE(MPI_User_function) :: user_fn

LOGICAL, INTENT(IN) :: commute

TYPE(MPI_Op), INTENT(OUT) :: op

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Op_free(op, ierror)

TYPE(MPI_Op), INTENT(INOUT) :: op

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce(sendbuf, recvbuf, count, datatype, op, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count, root

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_local(inbuf, inoutbuf, count, datatype, op, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: inbuf

TYPE(*), DIMENSION(..) :: inoutbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

724 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter(sendbuf, recvbuf, recvcounts, datatype, op, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: recvcounts(*)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Reduce_scatter_block(sendbuf, recvbuf, recvcount, datatype, op, comm,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: recvcount

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scan(sendbuf, recvbuf, count, datatype, op, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatter(sendbuf, sendcount, sendtype, recvbuf, recvcount, recvtype,

root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Scatterv(sendbuf, sendcounts, displs, sendtype, recvbuf, recvcount,

recvtype, root, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), displs(*), recvcount, root

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 725

A.3.4 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings

MPI_COMM_DUP_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_COMM_NULL_COPY_FN(oldcomm, comm_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Comm) :: oldcomm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_COMM_NULL_DELETE_FN(comm, comm_keyval, attribute_val, extra_state,

ierror)

TYPE(MPI_Comm) :: comm

INTEGER :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER :: ierror

MPI_Comm_compare(comm1, comm2, result, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm1, comm2

INTEGER, INTENT(OUT) :: result

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create(comm, group, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(IN) :: group

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_group(comm, group, tag, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: tag

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_keyval(comm_copy_attr_fn, comm_delete_attr_fn, comm_keyval,

extra_state, ierror)

PROCEDURE(MPI_Comm_copy_attr_function) :: comm_copy_attr_fn

PROCEDURE(MPI_Comm_delete_attr_function) :: comm_delete_attr_fn

INTEGER, INTENT(OUT) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

726 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_delete_attr(comm, comm_keyval, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_dup(comm, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_dup_with_info(comm, info, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_free(comm, ierror)

TYPE(MPI_Comm), INTENT(INOUT) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_free_keyval(comm_keyval, ierror)

INTEGER, INTENT(INOUT) :: comm_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_attr(comm, comm_keyval, attribute_val, flag, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_info(comm, info_used, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_name(comm, comm_name, resultlen, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: comm_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_group(comm, group, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_idup(comm, newcomm, request, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT), ASYNCHRONOUS :: newcomm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 727

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_rank(comm, rank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_remote_group(comm, group, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_remote_size(comm, size, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_attr(comm, comm_keyval, attribute_val, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: comm_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_info(comm, info, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_name(comm, comm_name, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=*), INTENT(IN) :: comm_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_size(comm, size, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_split(comm, color, key, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: color, key

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_split_type(comm, split_type, key, info, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: split_type, key

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

728 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_Comm_test_inter(comm, flag, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_compare(group1, group2, result, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

INTEGER, INTENT(OUT) :: result

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_difference(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_excl(group, n, ranks, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranks(n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_free(group, ierror)

TYPE(MPI_Group), INTENT(INOUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_incl(group, n, ranks, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranks(n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_intersection(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_range_excl(group, n, ranges, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranges(3,n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_range_incl(group, n, ranges, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: n, ranges(3,n)

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_rank(group, rank, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 729

MPI_Group_size(group, size, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_translate_ranks(group1, n, ranks1, group2, ranks2, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

INTEGER, INTENT(IN) :: n, ranks1(n)

INTEGER, INTENT(OUT) :: ranks2(n)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Group_union(group1, group2, newgroup, ierror)

TYPE(MPI_Group), INTENT(IN) :: group1, group2

TYPE(MPI_Group), INTENT(OUT) :: newgroup

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Intercomm_create(local_comm, local_leader, peer_comm, remote_leader,

tag, newintercomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: local_comm, peer_comm

INTEGER, INTENT(IN) :: local_leader, remote_leader, tag

TYPE(MPI_Comm), INTENT(OUT) :: newintercomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Intercomm_merge(intercomm, high, newintracomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: intercomm

LOGICAL, INTENT(IN) :: high

TYPE(MPI_Comm), INTENT(OUT) :: newintracomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TYPE_DUP_FN(oldtype, type_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_TYPE_NULL_COPY_FN(oldtype, type_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Datatype) :: oldtype

INTEGER :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_TYPE_NULL_DELETE_FN(datatype, type_keyval, attribute_val, extra_state,

ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER :: type_keyval

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

730 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER, INTENT(OUT) :: ierror

MPI_Type_create_keyval(type_copy_attr_fn, type_delete_attr_fn, type_keyval,

extra_state, ierror)

PROCEDURE(MPI_Type_copy_attr_function) :: type_copy_attr_fn

PROCEDURE(MPI_Type_delete_attr_function) :: type_delete_attr_fn

INTEGER, INTENT(OUT) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_delete_attr(datatype, type_keyval, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_free_keyval(type_keyval, ierror)

INTEGER, INTENT(INOUT) :: type_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_attr(datatype, type_keyval, attribute_val, flag, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_get_name(datatype, type_name, resultlen, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: type_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_set_attr(datatype, type_keyval, attribute_val, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: type_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_set_name(datatype, type_name, ierror)

TYPE(MPI_Datatype), INTENT(IN) :: datatype

CHARACTER(LEN=*), INTENT(IN) :: type_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WIN_DUP_FN(oldwin, win_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 731

INTEGER :: ierror

MPI_WIN_NULL_COPY_FN(oldwin, win_keyval, extra_state, attribute_val_in,

attribute_val_out, flag, ierror)

TYPE(MPI_Win) :: oldwin

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state, attribute_val_in

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val_out

LOGICAL :: flag

INTEGER :: ierror

MPI_WIN_NULL_DELETE_FN(win, win_keyval, attribute_val, extra_state, ierror)

TYPE(MPI_Win) :: win

INTEGER :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND) :: attribute_val, extra_state

INTEGER :: ierror

MPI_Win_create_keyval(win_copy_attr_fn, win_delete_attr_fn, win_keyval,

extra_state, ierror)

PROCEDURE(MPI_Win_copy_attr_function) :: win_copy_attr_fn

PROCEDURE(MPI_Win_delete_attr_function) :: win_delete_attr_fn

INTEGER, INTENT(OUT) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_delete_attr(win, win_keyval, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_free_keyval(win_keyval, ierror)

INTEGER, INTENT(INOUT) :: win_keyval

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_attr(win, win_keyval, attribute_val, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: attribute_val

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_name(win, win_name, resultlen, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

CHARACTER(LEN=MPI_MAX_OBJECT_NAME), INTENT(OUT) :: win_name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_set_attr(win, win_keyval, attribute_val, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: win_keyval

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: attribute_val

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

732 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_set_name(win, win_name, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

CHARACTER(LEN=*), INTENT(IN) :: win_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.5 Process Topologies Fortran 2008 Bindings

MPI_Cart_coords(comm, rank, maxdims, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxdims

INTEGER, INTENT(OUT) :: coords(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_create(comm_old, ndims, dims, periods, reorder, comm_cart, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims), reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_cart

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_get(comm, maxdims, dims, periods, coords, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxdims

INTEGER, INTENT(OUT) :: dims(maxdims), coords(maxdims)

LOGICAL, INTENT(OUT) :: periods(maxdims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_map(comm, ndims, dims, periods, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: ndims, dims(ndims)

LOGICAL, INTENT(IN) :: periods(ndims)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_rank(comm, coords, rank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: coords(*)

INTEGER, INTENT(OUT) :: rank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_shift(comm, direction, disp, rank_source, rank_dest, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: direction, disp

INTEGER, INTENT(OUT) :: rank_source, rank_dest

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cart_sub(comm, remain_dims, newcomm, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

LOGICAL, INTENT(IN) :: remain_dims(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 733

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Cartdim_get(comm, ndims, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: ndims

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dims_create(nnodes, ndims, dims, ierror)

INTEGER, INTENT(IN) :: nnodes, ndims

INTEGER, INTENT(INOUT) :: dims(ndims)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dist_graph_create(comm_old, n, sources, degrees, destinations, weights,

info, reorder, comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: n, sources(n), degrees(n), destinations(*)

INTEGER, INTENT(IN) :: weights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dist_graph_create_adjacent(comm_old, indegree, sources, sourceweights,

outdegree, destinations, destweights, info, reorder,

comm_dist_graph, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: indegree, sources(indegree), outdegree,

destinations(outdegree)

INTEGER, INTENT(IN) :: sourceweights(*), destweights(*)

TYPE(MPI_Info), INTENT(IN) :: info

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_dist_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dist_graph_neighbors(comm, maxindegree, sources, sourceweights,

maxoutdegree, destinations, destweights, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindegree, maxoutdegree

INTEGER, INTENT(OUT) :: sources(maxindegree),

destinations(maxoutdegree)

INTEGER :: sourceweights(*), destweights(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Dist_graph_neighbors_count(comm, indegree, outdegree, weighted, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: indegree, outdegree

LOGICAL, INTENT(OUT) :: weighted

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_create(comm_old, nnodes, index, edges, reorder, comm_graph,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

734 ANNEX A. LANGUAGE BINDINGS SUMMARY

ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm_old

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

LOGICAL, INTENT(IN) :: reorder

TYPE(MPI_Comm), INTENT(OUT) :: comm_graph

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_get(comm, maxindex, maxedges, index, edges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: maxindex, maxedges

INTEGER, INTENT(OUT) :: index(maxindex), edges(maxedges)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_map(comm, nnodes, index, edges, newrank, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: nnodes, index(nnodes), edges(*)

INTEGER, INTENT(OUT) :: newrank

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_neighbors(comm, rank, maxneighbors, neighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank, maxneighbors

INTEGER, INTENT(OUT) :: neighbors(maxneighbors)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graph_neighbors_count(comm, rank, nneighbors, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: rank

INTEGER, INTENT(OUT) :: nneighbors

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Graphdims_get(comm, nnodes, nedges, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: nnodes, nedges

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

displs, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 735

INTEGER, INTENT(IN), ASYNCHRONOUS :: recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), sdispls(*),

recvcounts(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Ineighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, request, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: sendbuf

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: recvbuf

INTEGER, INTENT(IN), ASYNCHRONOUS :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN), ASYNCHRONOUS ::

sdispls(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN), ASYNCHRONOUS :: sendtypes(*),

recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgather(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_allgatherv(sendbuf, sendcount, sendtype, recvbuf, recvcounts,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

736 ANNEX A. LANGUAGE BINDINGS SUMMARY

displs, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcounts(*), displs(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoall(sendbuf, sendcount, sendtype, recvbuf, recvcount,

recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcount, recvcount

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallv(sendbuf, sendcounts, sdispls, sendtype, recvbuf,

recvcounts, rdispls, recvtype, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), sdispls(*), recvcounts(*),

rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Neighbor_alltoallw(sendbuf, sendcounts, sdispls, sendtypes, recvbuf,

recvcounts, rdispls, recvtypes, comm, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf

TYPE(*), DIMENSION(..) :: recvbuf

INTEGER, INTENT(IN) :: sendcounts(*), recvcounts(*)

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: sdispls(*), rdispls(*)

TYPE(MPI_Datatype), INTENT(IN) :: sendtypes(*), recvtypes(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Topo_test(comm, status, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(OUT) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.6 MPI Environmental Management Fortran 2008 Bindings

DOUBLE PRECISION MPI_Wtick()

DOUBLE PRECISION MPI_Wtime()

MPI_Abort(comm, errorcode, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 737

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Add_error_class(errorclass, ierror)

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Add_error_code(errorclass, errorcode, ierror)

INTEGER, INTENT(IN) :: errorclass

INTEGER, INTENT(OUT) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Add_error_string(errorcode, string, ierror)

INTEGER, INTENT(IN) :: errorcode

CHARACTER(LEN=*), INTENT(IN) :: string

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Alloc_mem(size, info, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_call_errhandler(comm, errorcode, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_create_errhandler(comm_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Comm_errhandler_function) :: comm_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_errhandler(comm, errhandler, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_set_errhandler(comm, errhandler, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Errhandler_free(errhandler, ierror)

TYPE(MPI_Errhandler), INTENT(INOUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Error_class(errorcode, errorclass, ierror)

INTEGER, INTENT(IN) :: errorcode

INTEGER, INTENT(OUT) :: errorclass

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

738 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_Error_string(errorcode, string, resultlen, ierror)

INTEGER, INTENT(IN) :: errorcode

CHARACTER(LEN=MPI_MAX_ERROR_STRING), INTENT(OUT) :: string

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_call_errhandler(fh, errorcode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_create_errhandler(file_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_File_errhandler_function) :: file_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_errhandler(file, errhandler, ierror)

TYPE(MPI_File), INTENT(IN) :: file

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Finalize(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Finalized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Free_mem(base, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: base

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_library_version(version, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_LIBRARY_VERSION_STRING), INTENT(OUT) :: version

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_processor_name(name, resultlen, ierror)

CHARACTER(LEN=MPI_MAX_PROCESSOR_NAME), INTENT(OUT) :: name

INTEGER, INTENT(OUT) :: resultlen

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_version(version, subversion, ierror)

INTEGER, INTENT(OUT) :: version, subversion

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Init(ierror)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 739

MPI_Initialized(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_call_errhandler(win, errorcode, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: errorcode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create_errhandler(win_errhandler_fn, errhandler, ierror)

PROCEDURE(MPI_Win_errhandler_function) :: win_errhandler_fn

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(OUT) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_set_errhandler(win, errhandler, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Errhandler), INTENT(IN) :: errhandler

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.7 The Info Object Fortran 2008 Bindings

MPI_Info_create(info, ierror)

TYPE(MPI_Info), INTENT(OUT) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_delete(info, key, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_dup(info, newinfo, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Info), INTENT(OUT) :: newinfo

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_free(info, ierror)

TYPE(MPI_Info), INTENT(INOUT) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_get(info, key, valuelen, value, flag, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, INTENT(IN) :: valuelen

CHARACTER(LEN=valuelen), INTENT(OUT) :: value

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

740 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_Info_get_nkeys(info, nkeys, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(OUT) :: nkeys

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_get_nthkey(info, n, key, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: n

CHARACTER(LEN=*), INTENT(OUT) :: key

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_get_valuelen(info, key, valuelen, flag, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key

INTEGER, INTENT(OUT) :: valuelen

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Info_set(info, key, value, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: key, value

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.8 Process Creation and Management Fortran 2008 Bindings

MPI_Close_port(port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_accept(port_name, info, root, comm, newcomm, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_connect(port_name, info, root, comm, newcomm, ierror)

CHARACTER(LEN=*), INTENT(IN) :: port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, INTENT(IN) :: root

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: newcomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_disconnect(comm, ierror)

TYPE(MPI_Comm), INTENT(INOUT) :: comm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_get_parent(parent, ierror)

TYPE(MPI_Comm), INTENT(OUT) :: parent

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 741

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_join(fd, intercomm, ierror)

INTEGER, INTENT(IN) :: fd

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_spawn(command, argv, maxprocs, info, root, comm, intercomm,

array_of_errcodes, ierror)

CHARACTER(LEN=*), INTENT(IN) :: command, argv(*)

INTEGER, INTENT(IN) :: maxprocs, root

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER :: array_of_errcodes(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Comm_spawn_multiple(count, array_of_commands, array_of_argv,

array_of_maxprocs, array_of_info, root, comm, intercomm,

array_of_errcodes, ierror)

INTEGER, INTENT(IN) :: count, array_of_maxprocs(*), root

CHARACTER(LEN=*), INTENT(IN) :: array_of_commands(*)

CHARACTER(LEN=*), INTENT(IN) :: array_of_argv(count, *)

TYPE(MPI_Info), INTENT(IN) :: array_of_info(*)

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Comm), INTENT(OUT) :: intercomm

INTEGER :: array_of_errcodes(*)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Lookup_name(service_name, info, port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: service_name

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Open_port(info, port_name, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=MPI_MAX_PORT_NAME), INTENT(OUT) :: port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Publish_name(service_name, info, port_name, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Unpublish_name(service_name, info, port_name, ierror)

CHARACTER(LEN=*), INTENT(IN) :: service_name, port_name

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

742 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.3.9 One-Sided Communications Fortran 2008 Bindings

MPI_Accumulate(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Compare_and_swap(origin_addr, compare_addr, result_addr, datatype,

target_rank, target_disp, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: compare_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: target_rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Fetch_and_op(origin_addr, result_addr, datatype, target_rank,

target_disp, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: target_rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Get_accumulate(origin_addr, origin_count, origin_datatype, result_addr,

result_count, result_datatype, target_rank, target_disp,

target_count, target_datatype, op, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,

target_count

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 743

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype,

result_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Put(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Raccumulate(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rget(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, request,

ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rget_accumulate(origin_addr, origin_count, origin_datatype,

result_addr, result_count, result_datatype, target_rank,

target_disp, target_count, target_datatype, op, win, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: result_addr

INTEGER, INTENT(IN) :: origin_count, result_count, target_rank,

target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype,

result_datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

744 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Op), INTENT(IN) :: op

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Rput(origin_addr, origin_count, origin_datatype, target_rank,

target_disp, target_count, target_datatype, win, request,

ierror)

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: origin_addr

INTEGER, INTENT(IN) :: origin_count, target_rank, target_count

TYPE(MPI_Datatype), INTENT(IN) :: origin_datatype, target_datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: target_disp

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate(size, disp_unit, info, comm, baseptr, win, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(C_PTR), INTENT(OUT) :: baseptr

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_allocate_shared(size, disp_unit, info, comm, baseptr, win, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(C_PTR), INTENT(OUT) :: baseptr

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_attach(win, base, size, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_complete(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create(base, size, disp_unit, info, comm, win, ierror)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 745

INTEGER, INTENT(IN) :: disp_unit

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_create_dynamic(info, comm, win, ierror)

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_Comm), INTENT(IN) :: comm

TYPE(MPI_Win), INTENT(OUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_detach(win, base, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: base

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_fence(assert, win, ierror)

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush_local(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_flush_local_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_free(win, ierror)

TYPE(MPI_Win), INTENT(INOUT) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_group(win, group, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_get_info(win, info_used, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Info), INTENT(OUT) :: info_used

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

746 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_lock(lock_type, rank, assert, win, ierror)

INTEGER, INTENT(IN) :: lock_type, rank, assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_lock_all(assert, win, ierror)

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_post(group, assert, win, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_set_info(win, info, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_shared_query(win, rank, size, disp_unit, baseptr, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, INTENT(IN) :: rank

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: size

INTEGER, INTENT(OUT) :: disp_unit

TYPE(C_PTR), INTENT(OUT) :: baseptr

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_start(group, assert, win, ierror)

TYPE(MPI_Group), INTENT(IN) :: group

INTEGER, INTENT(IN) :: assert

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_sync(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_test(win, flag, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_unlock(rank, win, ierror)

INTEGER, INTENT(IN) :: rank

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 747

MPI_Win_unlock_all(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Win_wait(win, ierror)

TYPE(MPI_Win), INTENT(IN) :: win

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.10 External Interfaces Fortran 2008 Bindings

MPI_Grequest_complete(request, ierror)

TYPE(MPI_Request), INTENT(IN) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Grequest_start(query_fn, free_fn, cancel_fn, extra_state, request,

ierror)

PROCEDURE(MPI_Grequest_query_function) :: query_fn

PROCEDURE(MPI_Grequest_free_function) :: free_fn

PROCEDURE(MPI_Grequest_cancel_function) :: cancel_fn

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Init_thread(required, provided, ierror)

INTEGER, INTENT(IN) :: required

INTEGER, INTENT(OUT) :: provided

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Is_thread_main(flag, ierror)

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Query_thread(provided, ierror)

INTEGER, INTENT(OUT) :: provided

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_cancelled(status, flag, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_elements(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, INTENT(IN) :: count

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_set_elements_x(status, datatype, count, ierror)

TYPE(MPI_Status), INTENT(INOUT) :: status

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND = MPI_COUNT_KIND), INTENT(IN) :: count

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

748 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.11 I/O Fortran 2008 Bindings

MPI_File_close(fh, ierror)

TYPE(MPI_File), INTENT(INOUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_delete(filename, info, ierror)

CHARACTER(LEN=*), INTENT(IN) :: filename

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_amode(fh, amode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(OUT) :: amode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_byte_offset(fh, offset, disp, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_group(fh, group, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_info(fh, info_used, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_position(fh, offset, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_position_shared(fh, offset, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: size

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 749

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_type_extent(fh, datatype, extent, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_get_view(fh, disp, etype, filetype, datarep, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

TYPE(MPI_Datatype), INTENT(OUT) :: etype, filetype

CHARACTER(LEN=*), INTENT(OUT) :: datarep

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iread_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

750 ANNEX A. LANGUAGE BINDINGS SUMMARY

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_open(comm, filename, amode, info, fh, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=*), INTENT(IN) :: filename

INTEGER, INTENT(IN) :: amode

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_File), INTENT(OUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_preallocate(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_all_end(fh, buf, status, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 751

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

752 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_read_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_seek(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_seek_shared(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(IN) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_info(fh, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: disp

TYPE(MPI_Datatype), INTENT(IN) :: etype, filetype

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_sync(fh, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 753

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all_begin(fh, offset, buf, count, datatype, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

754 ANNEX A. LANGUAGE BINDINGS SUMMARY

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_File_write_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Register_datarep(datarep, read_conversion_fn, write_conversion_fn,

dtype_file_extent_fn, extra_state, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

PROCEDURE(MPI_Datarep_conversion_function) :: read_conversion_fn

PROCEDURE(MPI_Datarep_conversion_function) :: write_conversion_fn

PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.3. FORTRAN 2008 BINDINGS WITH THE MPI_F08 MODULE 755

A.3.12 Language Bindings Fortran 2008 Bindings

MPI_F_sync_reg(buf)

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

MPI_Sizeof(x, size, ierror)

TYPE(*), DIMENSION(..) :: x

INTEGER, INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_f082f(f08_status, f_status, ierror)

TYPE(MPI_Status), INTENT(IN) :: f08_status

INTEGER, INTENT(OUT) :: f_status(MPI_STATUS_SIZE)

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Status_f2f08(f_status, f08_status, ierror)

INTEGER, INTENT(IN) :: f_status(MPI_STATUS_SIZE)

TYPE(MPI_Status), INTENT(OUT) :: f08_status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_complex(p, r, newtype, ierror)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_integer(r, newtype, ierror)

INTEGER, INTENT(IN) :: r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_create_f90_real(p, r, newtype, ierror)

INTEGER, INTENT(IN) :: p, r

TYPE(MPI_Datatype), INTENT(OUT) :: newtype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_Type_match_size(typeclass, size, datatype, ierror)

INTEGER, INTENT(IN) :: typeclass, size

TYPE(MPI_Datatype), INTENT(OUT) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

A.3.13 Tools / Profiling Interface Fortran 2008 Bindings

MPI_Pcontrol(level)

INTEGER, INTENT(IN) :: level

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

756 ANNEX A. LANGUAGE BINDINGS SUMMARY

A.4 Fortran Bindings with mpif.h or the mpi Module

A.4.1 Point-to-Point Communication Fortran Bindings

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)

<type> BUFFER(*)

INTEGER SIZE, IERROR

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)

<type> BUFFER_ADDR(*)

INTEGER SIZE, IERROR

MPI_CANCEL(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 757

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)

INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

MPI_REQUEST_FREE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_REQUEST_GET_STATUS(REQUEST, FLAG, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,

RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,

SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,

COMM, STATUS, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,

STATUS(MPI_STATUS_SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

758 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)

<type> BUF(*)

INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

MPI_START(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)

LOGICAL FLAG

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)

LOGICAL FLAG

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAIT(REQUEST, STATUS, IERROR)

INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*)

INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)

INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),

IERROR

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,

ARRAY_OF_STATUSES, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 759

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),

ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

A.4.2 Datatypes Fortran Bindings

MPI_GET_ADDRESS(LOCATION, ADDRESS, IERROR)

<type> LOCATION(*)

INTEGER IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ADDRESS

MPI_GET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_GET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR

INTEGER(KIND=MPI_COUNT_KIND) COUNT

MPI_PACK(INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE, POSITION, COMM, IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INCOUNT, DATATYPE, OUTSIZE, POSITION, COMM, IERROR

MPI_PACK_EXTERNAL(DATAREP, INBUF, INCOUNT, DATATYPE, OUTBUF, OUTSIZE,

POSITION, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) OUTSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

MPI_PACK_EXTERNAL_SIZE(DATAREP, INCOUNT, DATATYPE, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

CHARACTER*(*) DATAREP

MPI_PACK_SIZE(INCOUNT, DATATYPE, COMM, SIZE, IERROR)

INTEGER INCOUNT, DATATYPE, COMM, SIZE, IERROR

MPI_TYPE_COMMIT(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_CONTIGUOUS(COUNT, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_DARRAY(SIZE, RANK, NDIMS, ARRAY_OF_GSIZES,

ARRAY_OF_DISTRIBS, ARRAY_OF_DARGS, ARRAY_OF_PSIZES, ORDER,

OLDTYPE, NEWTYPE, IERROR)

INTEGER SIZE, RANK, NDIMS, ARRAY_OF_GSIZES(*), ARRAY_OF_DISTRIBS(*),

ARRAY_OF_DARGS(*), ARRAY_OF_PSIZES(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_CREATE_HINDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

760 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_TYPE_CREATE_HINDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_HVECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE,

IERROR)

INTEGER COUNT, BLOCKLENGTH, OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) STRIDE

MPI_TYPE_CREATE_INDEXED_BLOCK(COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, ARRAY_OF_DISPLACEMENTS(*), OLDTYPE,

NEWTYPE, IERROR

MPI_TYPE_CREATE_RESIZED(OLDTYPE, LB, EXTENT, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_CREATE_STRUCT(COUNT, ARRAY_OF_BLOCKLENGTHS,

ARRAY_OF_DISPLACEMENTS, ARRAY_OF_TYPES, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_TYPES(*), NEWTYPE,

IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_DISPLACEMENTS(*)

MPI_TYPE_CREATE_SUBARRAY(NDIMS, ARRAY_OF_SIZES, ARRAY_OF_SUBSIZES,

ARRAY_OF_STARTS, ORDER, OLDTYPE, NEWTYPE, IERROR)

INTEGER NDIMS, ARRAY_OF_SIZES(*), ARRAY_OF_SUBSIZES(*),

ARRAY_OF_STARTS(*), ORDER, OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_DUP(OLDTYPE, NEWTYPE, IERROR)

INTEGER OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_FREE(DATATYPE, IERROR)

INTEGER DATATYPE, IERROR

MPI_TYPE_GET_CONTENTS(DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS, ARRAY_OF_ADDRESSES, ARRAY_OF_DATATYPES,

IERROR)

INTEGER DATATYPE, MAX_INTEGERS, MAX_ADDRESSES, MAX_DATATYPES,

ARRAY_OF_INTEGERS(*), ARRAY_OF_DATATYPES(*), IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ARRAY_OF_ADDRESSES(*)

MPI_TYPE_GET_ENVELOPE(DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES,

COMBINER, IERROR)

INTEGER DATATYPE, NUM_INTEGERS, NUM_ADDRESSES, NUM_DATATYPES, COMBINER,

IERROR

MPI_TYPE_GET_EXTENT(DATATYPE, LB, EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) LB, EXTENT

MPI_TYPE_GET_EXTENT_X(DATATYPE, LB, EXTENT, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 761

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) LB, EXTENT

MPI_TYPE_GET_TRUE_EXTENT(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_ADDRESS_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_GET_TRUE_EXTENT_X(DATATYPE, TRUE_LB, TRUE_EXTENT, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) TRUE_LB, TRUE_EXTENT

MPI_TYPE_INDEXED(COUNT, ARRAY_OF_BLOCKLENGTHS, ARRAY_OF_DISPLACEMENTS,

OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, ARRAY_OF_BLOCKLENGTHS(*), ARRAY_OF_DISPLACEMENTS(*),

OLDTYPE, NEWTYPE, IERROR

MPI_TYPE_SIZE(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, SIZE, IERROR

MPI_TYPE_SIZE_X(DATATYPE, SIZE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND = MPI_COUNT_KIND) SIZE

MPI_TYPE_VECTOR(COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR)

INTEGER COUNT, BLOCKLENGTH, STRIDE, OLDTYPE, NEWTYPE, IERROR

MPI_UNPACK(INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT, DATATYPE, COMM,

IERROR)

<type> INBUF(*), OUTBUF(*)

INTEGER INSIZE, POSITION, OUTCOUNT, DATATYPE, COMM, IERROR

MPI_UNPACK_EXTERNAL(DATAREP, INBUF, INSIZE, POSITION, OUTBUF, OUTCOUNT,

DATATYPE, IERROR)

INTEGER OUTCOUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) INSIZE, POSITION

CHARACTER*(*) DATAREP

<type> INBUF(*), OUTBUF(*)

A.4.3 Collective Communication Fortran Bindings

MPI_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

MPI_ALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

762 ANNEX A. LANGUAGE BINDINGS SUMMARY

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, IERROR

MPI_BARRIER(COMM, IERROR)

INTEGER COMM, IERROR

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, IERROR

MPI_EXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_GATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_GATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, IERROR

MPI_IALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 763

MPI_IALLREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_IALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF, RECVCOUNTS,

RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST, IERROR

MPI_IALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPES(*), RECVCOUNTS(*),

RDISPLS(*), RECVTYPES(*), COMM, REQUEST, IERROR

MPI_IBARRIER(COMM, REQUEST, IERROR)

INTEGER COMM, REQUEST, IERROR

MPI_IBCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR)

<type> BUFFER(*)

INTEGER COUNT, DATATYPE, ROOT, COMM, REQUEST, IERROR

MPI_IEXSCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_IGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,

IERROR

MPI_IGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS, DISPLS,

RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, ROOT,

COMM, REQUEST, IERROR

MPI_IREDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, REQUEST,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, REQUEST, IERROR

MPI_IREDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

REQUEST, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

764 ANNEX A. LANGUAGE BINDINGS SUMMARY

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, REQUEST, IERROR

MPI_IREDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,

REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_ISCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, REQUEST, IERROR

MPI_ISCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, REQUEST,

IERROR

MPI_ISCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, REQUEST, IERROR

MPI_OP_COMMUTATIVE(OP, COMMUTE, IERROR)

LOGICAL COMMUTE

INTEGER OP, IERROR

MPI_OP_CREATE(USER_FN, COMMUTE, OP, IERROR)

EXTERNAL USER_FN

LOGICAL COMMUTE

INTEGER OP, IERROR

MPI_OP_FREE(OP, IERROR)

INTEGER OP, IERROR

MPI_REDUCE(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_REDUCE_LOCAL(INBUF, INOUTBUF, COUNT, DATATYPE, OP, IERROR)

<type> INBUF(*), INOUTBUF(*)

INTEGER COUNT, DATATYPE, OP, IERROR

MPI_REDUCE_SCATTER(SENDBUF, RECVBUF, RECVCOUNTS, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNTS(*), DATATYPE, OP, COMM, IERROR

MPI_REDUCE_SCATTER_BLOCK(SENDBUF, RECVBUF, RECVCOUNT, DATATYPE, OP, COMM,

IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER RECVCOUNT, DATATYPE, OP, COMM, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 765

MPI_SCAN(SENDBUF, RECVBUF, COUNT, DATATYPE, OP, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER COUNT, DATATYPE, OP, COMM, IERROR

MPI_SCATTER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT, RECVTYPE,

ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, ROOT, COMM, IERROR

MPI_SCATTERV(SENDBUF, SENDCOUNTS, DISPLS, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, ROOT, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), DISPLS(*), SENDTYPE, RECVCOUNT, RECVTYPE, ROOT,

COMM, IERROR

A.4.4 Groups, Contexts, Communicators, and Caching Fortran Bindings

MPI_COMM_COMPARE(COMM1, COMM2, RESULT, IERROR)

INTEGER COMM1, COMM2, RESULT, IERROR

MPI_COMM_CREATE(COMM, GROUP, NEWCOMM, IERROR)

INTEGER COMM, GROUP, NEWCOMM, IERROR

MPI_COMM_CREATE_GROUP(COMM, GROUP, TAG, NEWCOMM, IERROR)

INTEGER COMM, GROUP, TAG, NEWCOMM, IERROR

MPI_COMM_CREATE_KEYVAL(COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN, COMM_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL COMM_COPY_ATTR_FN, COMM_DELETE_ATTR_FN

INTEGER COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_COMM_DELETE_ATTR(COMM, COMM_KEYVAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

MPI_COMM_DUP(COMM, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

MPI_COMM_DUP_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_DUP_WITH_INFO(COMM, INFO, NEWCOMM, IERROR)

INTEGER COMM, INFO, NEWCOMM, IERROR

MPI_COMM_FREE(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_FREE_KEYVAL(COMM_KEYVAL, IERROR)

INTEGER COMM_KEYVAL, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

766 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_COMM_GET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_COMM_GET_INFO(COMM, INFO_USED, IERROR)

INTEGER COMM, INFO_USED, IERROR

MPI_COMM_GET_NAME(COMM, COMM_NAME, RESULTLEN, IERROR)

INTEGER COMM, RESULTLEN, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_IDUP(COMM, NEWCOMM, REQUEST, IERROR)

INTEGER COMM, NEWCOMM, REQUEST, IERROR

MPI_COMM_NULL_COPY_FN(OLDCOMM, COMM_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDCOMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_COMM_NULL_DELETE_FN(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_COMM_RANK(COMM, RANK, IERROR)

INTEGER COMM, RANK, IERROR

MPI_COMM_REMOTE_GROUP(COMM, GROUP, IERROR)

INTEGER COMM, GROUP, IERROR

MPI_COMM_REMOTE_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_COMM_SET_ATTR(COMM, COMM_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, COMM_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_COMM_SET_INFO(COMM, INFO, IERROR)

INTEGER COMM, INFO, IERROR

MPI_COMM_SET_NAME(COMM, COMM_NAME, IERROR)

INTEGER COMM, IERROR

CHARACTER*(*) COMM_NAME

MPI_COMM_SIZE(COMM, SIZE, IERROR)

INTEGER COMM, SIZE, IERROR

MPI_COMM_SPLIT(COMM, COLOR, KEY, NEWCOMM, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 767

INTEGER COMM, COLOR, KEY, NEWCOMM, IERROR

MPI_COMM_SPLIT_TYPE(COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR)

INTEGER COMM, SPLIT_TYPE, KEY, INFO, NEWCOMM, IERROR

MPI_COMM_TEST_INTER(COMM, FLAG, IERROR)

INTEGER COMM, IERROR

LOGICAL FLAG

MPI_GROUP_COMPARE(GROUP1, GROUP2, RESULT, IERROR)

INTEGER GROUP1, GROUP2, RESULT, IERROR

MPI_GROUP_DIFFERENCE(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_EXCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_FREE(GROUP, IERROR)

INTEGER GROUP, IERROR

MPI_GROUP_INCL(GROUP, N, RANKS, NEWGROUP, IERROR)

INTEGER GROUP, N, RANKS(*), NEWGROUP, IERROR

MPI_GROUP_INTERSECTION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_GROUP_RANGE_EXCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANGE_INCL(GROUP, N, RANGES, NEWGROUP, IERROR)

INTEGER GROUP, N, RANGES(3,*), NEWGROUP, IERROR

MPI_GROUP_RANK(GROUP, RANK, IERROR)

INTEGER GROUP, RANK, IERROR

MPI_GROUP_SIZE(GROUP, SIZE, IERROR)

INTEGER GROUP, SIZE, IERROR

MPI_GROUP_TRANSLATE_RANKS(GROUP1, N, RANKS1, GROUP2, RANKS2, IERROR)

INTEGER GROUP1, N, RANKS1(*), GROUP2, RANKS2(*), IERROR

MPI_GROUP_UNION(GROUP1, GROUP2, NEWGROUP, IERROR)

INTEGER GROUP1, GROUP2, NEWGROUP, IERROR

MPI_INTERCOMM_CREATE(LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER,

TAG, NEWINTERCOMM, IERROR)

INTEGER LOCAL_COMM, LOCAL_LEADER, PEER_COMM, REMOTE_LEADER, TAG,

NEWINTERCOMM, IERROR

MPI_INTERCOMM_MERGE(INTERCOMM, HIGH, NEWINTRACOMM, IERROR)

INTEGER INTERCOMM, NEWINTRACOMM, IERROR

LOGICAL HIGH

MPI_TYPE_CREATE_KEYVAL(TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN, TYPE_KEYVAL,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

768 ANNEX A. LANGUAGE BINDINGS SUMMARY

EXTRA_STATE, IERROR)

EXTERNAL TYPE_COPY_ATTR_FN, TYPE_DELETE_ATTR_FN

INTEGER TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

MPI_TYPE_DELETE_ATTR(DATATYPE, TYPE_KEYVAL, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

MPI_TYPE_DUP_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_FREE_KEYVAL(TYPE_KEYVAL, IERROR)

INTEGER TYPE_KEYVAL, IERROR

MPI_TYPE_GET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_TYPE_GET_NAME(DATATYPE, TYPE_NAME, RESULTLEN, IERROR)

INTEGER DATATYPE, RESULTLEN, IERROR

CHARACTER*(*) TYPE_NAME

MPI_TYPE_NULL_COPY_FN(OLDTYPE, TYPE_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDTYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_TYPE_NULL_DELETE_FN(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE,

IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_TYPE_SET_ATTR(DATATYPE, TYPE_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER DATATYPE, TYPE_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_TYPE_SET_NAME(DATATYPE, TYPE_NAME, IERROR)

INTEGER DATATYPE, IERROR

CHARACTER*(*) TYPE_NAME

MPI_WIN_CREATE_KEYVAL(WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN, WIN_KEYVAL,

EXTRA_STATE, IERROR)

EXTERNAL WIN_COPY_ATTR_FN, WIN_DELETE_ATTR_FN

INTEGER WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 769

MPI_WIN_DELETE_ATTR(WIN, WIN_KEYVAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

MPI_WIN_DUP_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_WIN_FREE_KEYVAL(WIN_KEYVAL, IERROR)

INTEGER WIN_KEYVAL, IERROR

MPI_WIN_GET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

LOGICAL FLAG

MPI_WIN_GET_NAME(WIN, WIN_NAME, RESULTLEN, IERROR)

INTEGER WIN, RESULTLEN, IERROR

CHARACTER*(*) WIN_NAME

MPI_WIN_NULL_COPY_FN(OLDWIN, WIN_KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERROR)

INTEGER OLDWIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT

LOGICAL FLAG

MPI_WIN_NULL_DELETE_FN(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL, EXTRA_STATE

MPI_WIN_SET_ATTR(WIN, WIN_KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER WIN, WIN_KEYVAL, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) ATTRIBUTE_VAL

MPI_WIN_SET_NAME(WIN, WIN_NAME, IERROR)

INTEGER WIN, IERROR

CHARACTER*(*) WIN_NAME

A.4.5 Process Topologies Fortran Bindings

MPI_CARTDIM_GET(COMM, NDIMS, IERROR)

INTEGER COMM, NDIMS, IERROR

MPI_CART_COORDS(COMM, RANK, MAXDIMS, COORDS, IERROR)

INTEGER COMM, RANK, MAXDIMS, COORDS(*), IERROR

MPI_CART_CREATE(COMM_OLD, NDIMS, DIMS, PERIODS, REORDER, COMM_CART, IERROR)

INTEGER COMM_OLD, NDIMS, DIMS(*), COMM_CART, IERROR

LOGICAL PERIODS(*), REORDER

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

770 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_CART_GET(COMM, MAXDIMS, DIMS, PERIODS, COORDS, IERROR)

INTEGER COMM, MAXDIMS, DIMS(*), COORDS(*), IERROR

LOGICAL PERIODS(*)

MPI_CART_MAP(COMM, NDIMS, DIMS, PERIODS, NEWRANK, IERROR)

INTEGER COMM, NDIMS, DIMS(*), NEWRANK, IERROR

LOGICAL PERIODS(*)

MPI_CART_RANK(COMM, COORDS, RANK, IERROR)

INTEGER COMM, COORDS(*), RANK, IERROR

MPI_CART_SHIFT(COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR)

INTEGER COMM, DIRECTION, DISP, RANK_SOURCE, RANK_DEST, IERROR

MPI_CART_SUB(COMM, REMAIN_DIMS, NEWCOMM, IERROR)

INTEGER COMM, NEWCOMM, IERROR

LOGICAL REMAIN_DIMS(*)

MPI_DIMS_CREATE(NNODES, NDIMS, DIMS, IERROR)

INTEGER NNODES, NDIMS, DIMS(*), IERROR

MPI_DIST_GRAPH_CREATE(COMM_OLD, N, SOURCES, DEGREES, DESTINATIONS, WEIGHTS,

INFO, REORDER, COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, N, SOURCES(*), DEGREES(*), DESTINATIONS(*),

WEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_CREATE_ADJACENT(COMM_OLD, INDEGREE, SOURCES, SOURCEWEIGHTS,

OUTDEGREE, DESTINATIONS, DESTWEIGHTS, INFO, REORDER,

COMM_DIST_GRAPH, IERROR)

INTEGER COMM_OLD, INDEGREE, SOURCES(*), SOURCEWEIGHTS(*), OUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), INFO, COMM_DIST_GRAPH, IERROR

LOGICAL REORDER

MPI_DIST_GRAPH_NEIGHBORS(COMM, MAXINDEGREE, SOURCES, SOURCEWEIGHTS,

MAXOUTDEGREE, DESTINATIONS, DESTWEIGHTS, IERROR)

INTEGER COMM, MAXINDEGREE, SOURCES(*), SOURCEWEIGHTS(*), MAXOUTDEGREE,

DESTINATIONS(*), DESTWEIGHTS(*), IERROR

MPI_DIST_GRAPH_NEIGHBORS_COUNT(COMM, INDEGREE, OUTDEGREE, WEIGHTED, IERROR)

INTEGER COMM, INDEGREE, OUTDEGREE, IERROR

LOGICAL WEIGHTED

MPI_GRAPHDIMS_GET(COMM, NNODES, NEDGES, IERROR)

INTEGER COMM, NNODES, NEDGES, IERROR

MPI_GRAPH_CREATE(COMM_OLD, NNODES, INDEX, EDGES, REORDER, COMM_GRAPH,

IERROR)

INTEGER COMM_OLD, NNODES, INDEX(*), EDGES(*), COMM_GRAPH, IERROR

LOGICAL REORDER

MPI_GRAPH_GET(COMM, MAXINDEX, MAXEDGES, INDEX, EDGES, IERROR)

INTEGER COMM, MAXINDEX, MAXEDGES, INDEX(*), EDGES(*), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 771

MPI_GRAPH_MAP(COMM, NNODES, INDEX, EDGES, NEWRANK, IERROR)

INTEGER COMM, NNODES, INDEX(*), EDGES(*), NEWRANK, IERROR

MPI_GRAPH_NEIGHBORS(COMM, RANK, MAXNEIGHBORS, NEIGHBORS, IERROR)

INTEGER COMM, RANK, MAXNEIGHBORS, NEIGHBORS(*), IERROR

MPI_GRAPH_NEIGHBORS_COUNT(COMM, RANK, NNEIGHBORS, IERROR)

INTEGER COMM, RANK, NNEIGHBORS, IERROR

MPI_INEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, REQUEST, IERROR

MPI_INEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, REQUEST, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

REQUEST, IERROR

MPI_NEIGHBOR_ALLGATHER(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLGATHERV(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNTS,

DISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNTS(*), DISPLS(*), RECVTYPE, COMM,

IERROR

MPI_NEIGHBOR_ALLTOALL(SENDBUF, SENDCOUNT, SENDTYPE, RECVBUF, RECVCOUNT,

RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

772 ANNEX A. LANGUAGE BINDINGS SUMMARY

INTEGER SENDCOUNT, SENDTYPE, RECVCOUNT, RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLTOALLV(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPE, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPE, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER SENDCOUNTS(*), SDISPLS(*), SENDTYPE, RECVCOUNTS(*), RDISPLS(*),

RECVTYPE, COMM, IERROR

MPI_NEIGHBOR_ALLTOALLW(SENDBUF, SENDCOUNTS, SDISPLS, SENDTYPES, RECVBUF,

RECVCOUNTS, RDISPLS, RECVTYPES, COMM, IERROR)

<type> SENDBUF(*), RECVBUF(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SDISPLS(*), RDISPLS(*)

INTEGER SENDCOUNTS(*), SENDTYPES(*), RECVCOUNTS(*), RECVTYPES(*), COMM,

IERROR

MPI_TOPO_TEST(COMM, STATUS, IERROR)

INTEGER COMM, STATUS, IERROR

A.4.6 MPI Environmental Management Fortran Bindings

DOUBLE PRECISION MPI_WTICK()

DOUBLE PRECISION MPI_WTIME()

MPI_ABORT(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

MPI_ADD_ERROR_CLASS(ERRORCLASS, IERROR)

INTEGER ERRORCLASS, IERROR

MPI_ADD_ERROR_CODE(ERRORCLASS, ERRORCODE, IERROR)

INTEGER ERRORCLASS, ERRORCODE, IERROR

MPI_ADD_ERROR_STRING(ERRORCODE, STRING, IERROR)

INTEGER ERRORCODE, IERROR

CHARACTER*(*) STRING

MPI_ALLOC_MEM(SIZE, INFO, BASEPTR, IERROR)

INTEGER INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_ALLOC_MEM

SUBROUTINE MPI_ALLOC_MEM_CPTR(SIZE, INFO, BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: INFO, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

MPI_COMM_CALL_ERRHANDLER(COMM, ERRORCODE, IERROR)

INTEGER COMM, ERRORCODE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 773

MPI_COMM_CREATE_ERRHANDLER(COMM_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL COMM_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

MPI_COMM_GET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_COMM_SET_ERRHANDLER(COMM, ERRHANDLER, IERROR)

INTEGER COMM, ERRHANDLER, IERROR

MPI_ERRHANDLER_FREE(ERRHANDLER, IERROR)

INTEGER ERRHANDLER, IERROR

MPI_ERROR_CLASS(ERRORCODE, ERRORCLASS, IERROR)

INTEGER ERRORCODE, ERRORCLASS, IERROR

MPI_ERROR_STRING(ERRORCODE, STRING, RESULTLEN, IERROR)

INTEGER ERRORCODE, RESULTLEN, IERROR

CHARACTER*(*) STRING

MPI_FILE_CALL_ERRHANDLER(FH, ERRORCODE, IERROR)

INTEGER FH, ERRORCODE, IERROR

MPI_FILE_CREATE_ERRHANDLER(FILE_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL FILE_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

MPI_FILE_GET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI_FILE_SET_ERRHANDLER(FILE, ERRHANDLER, IERROR)

INTEGER FILE, ERRHANDLER, IERROR

MPI_FINALIZE(IERROR)

INTEGER IERROR

MPI_FINALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_FREE_MEM(BASE, IERROR)

<type> BASE(*)

INTEGER IERROR

MPI_GET_LIBRARY_VERSION(VERSION, RESULTLEN, IERROR)

CHARACTER*(*) VERSION

INTEGER RESULTLEN,IERROR

MPI_GET_PROCESSOR_NAME(NAME, RESULTLEN, IERROR)

CHARACTER*(*) NAME

INTEGER RESULTLEN,IERROR

MPI_GET_VERSION(VERSION, SUBVERSION, IERROR)

INTEGER VERSION, SUBVERSION, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

774 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_INIT(IERROR)

INTEGER IERROR

MPI_INITIALIZED(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_WIN_CALL_ERRHANDLER(WIN, ERRORCODE, IERROR)

INTEGER WIN, ERRORCODE, IERROR

MPI_WIN_CREATE_ERRHANDLER(WIN_ERRHANDLER_FN, ERRHANDLER, IERROR)

EXTERNAL WIN_ERRHANDLER_FN

INTEGER ERRHANDLER, IERROR

MPI_WIN_GET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

MPI_WIN_SET_ERRHANDLER(WIN, ERRHANDLER, IERROR)

INTEGER WIN, ERRHANDLER, IERROR

A.4.7 The Info Object Fortran Bindings

MPI_INFO_CREATE(INFO, IERROR)

INTEGER INFO, IERROR

MPI_INFO_DELETE(INFO, KEY, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) KEY

MPI_INFO_DUP(INFO, NEWINFO, IERROR)

INTEGER INFO, NEWINFO, IERROR

MPI_INFO_FREE(INFO, IERROR)

INTEGER INFO, IERROR

MPI_INFO_GET(INFO, KEY, VALUELEN, VALUE, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

CHARACTER*(*) KEY, VALUE

LOGICAL FLAG

MPI_INFO_GET_NKEYS(INFO, NKEYS, IERROR)

INTEGER INFO, NKEYS, IERROR

MPI_INFO_GET_NTHKEY(INFO, N, KEY, IERROR)

INTEGER INFO, N, IERROR

CHARACTER*(*) KEY

MPI_INFO_GET_VALUELEN(INFO, KEY, VALUELEN, FLAG, IERROR)

INTEGER INFO, VALUELEN, IERROR

LOGICAL FLAG

CHARACTER*(*) KEY

MPI_INFO_SET(INFO, KEY, VALUE, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 775

INTEGER INFO, IERROR

CHARACTER*(*) KEY, VALUE

A.4.8 Process Creation and Management Fortran Bindings

MPI_CLOSE_PORT(PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER IERROR

MPI_COMM_ACCEPT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_CONNECT(PORT_NAME, INFO, ROOT, COMM, NEWCOMM, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, ROOT, COMM, NEWCOMM, IERROR

MPI_COMM_DISCONNECT(COMM, IERROR)

INTEGER COMM, IERROR

MPI_COMM_GET_PARENT(PARENT, IERROR)

INTEGER PARENT, IERROR

MPI_COMM_JOIN(FD, INTERCOMM, IERROR)

INTEGER FD, INTERCOMM, IERROR

MPI_COMM_SPAWN(COMMAND, ARGV, MAXPROCS, INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

CHARACTER*(*) COMMAND, ARGV(*)

INTEGER INFO, MAXPROCS, ROOT, COMM, INTERCOMM, ARRAY_OF_ERRCODES(*),

IERROR

MPI_COMM_SPAWN_MULTIPLE(COUNT, ARRAY_OF_COMMANDS, ARRAY_OF_ARGV,

ARRAY_OF_MAXPROCS, ARRAY_OF_INFO, ROOT, COMM, INTERCOMM,

ARRAY_OF_ERRCODES, IERROR)

INTEGER COUNT, ARRAY_OF_INFO(*), ARRAY_OF_MAXPROCS(*), ROOT, COMM,

INTERCOMM, ARRAY_OF_ERRCODES(*), IERROR

CHARACTER*(*) ARRAY_OF_COMMANDS(*), ARRAY_OF_ARGV(COUNT, *)

MPI_LOOKUP_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

CHARACTER*(*) SERVICE_NAME, PORT_NAME

INTEGER INFO, IERROR

MPI_OPEN_PORT(INFO, PORT_NAME, IERROR)

CHARACTER*(*) PORT_NAME

INTEGER INFO, IERROR

MPI_PUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

CHARACTER*(*) SERVICE_NAME, PORT_NAME

MPI_UNPUBLISH_NAME(SERVICE_NAME, INFO, PORT_NAME, IERROR)

INTEGER INFO, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

776 ANNEX A. LANGUAGE BINDINGS SUMMARY

CHARACTER*(*) SERVICE_NAME, PORT_NAME

A.4.9 One-Sided Communications Fortran Bindings

MPI_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE,TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, IERROR

MPI_COMPARE_AND_SWAP(ORIGIN_ADDR, COMPARE_ADDR, RESULT_ADDR, DATATYPE,

TARGET_RANK, TARGET_DISP, WIN, IERROR)

<type> ORIGIN_ADDR(*), COMPARE_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER DATATYPE, TARGET_RANK, WIN, IERROR

MPI_FETCH_AND_OP(ORIGIN_ADDR, RESULT_ADDR, DATATYPE, TARGET_RANK,

TARGET_DISP, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER DATATYPE, TARGET_RANK, OP, WIN, IERROR

MPI_GET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_GET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_ADDR,

RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK, TARGET_DISP,

TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,

TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, IERROR

MPI_PUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, IERROR

MPI_RACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 777

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, OP, WIN, REQUEST, IERROR

MPI_RGET(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, REQUEST, IERROR

MPI_RGET_ACCUMULATE(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE,

RESULT_ADDR, RESULT_COUNT, RESULT_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*), RESULT_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, RESULT_COUNT, RESULT_DATATYPE,

TARGET_RANK, TARGET_COUNT, TARGET_DATATYPE, OP, WIN, REQUEST, IERROR

MPI_RPUT(ORIGIN_ADDR, ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK,

TARGET_DISP, TARGET_COUNT, TARGET_DATATYPE, WIN, REQUEST,

IERROR)

<type> ORIGIN_ADDR(*)

INTEGER(KIND=MPI_ADDRESS_KIND) TARGET_DISP

INTEGER ORIGIN_COUNT, ORIGIN_DATATYPE, TARGET_RANK, TARGET_COUNT,

TARGET_DATATYPE, WIN, REQUEST, IERROR

MPI_WIN_ALLOCATE(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_WIN_ALLOCATE

SUBROUTINE MPI_WIN_ALLOCATE_CPTR(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, &

WIN, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

MPI_WIN_ALLOCATE_SHARED(SIZE, DISP_UNIT, INFO, COMM, BASEPTR, WIN, IERROR)

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_WIN_ALLOCATE_SHARED

SUBROUTINE MPI_WIN_ALLOCATE_SHARED_CPTR(SIZE, DISP_UNIT, INFO, COMM, &

BASEPTR, WIN, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

778 ANNEX A. LANGUAGE BINDINGS SUMMARY

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: DISP_UNIT, INFO, COMM, WIN, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

MPI_WIN_ATTACH(WIN, BASE, SIZE, IERROR)

INTEGER WIN, IERROR

<type> BASE(*)

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE

MPI_WIN_COMPLETE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_CREATE(BASE, SIZE, DISP_UNIT, INFO, COMM, WIN, IERROR)

<type> BASE(*)

INTEGER(KIND=MPI_ADDRESS_KIND) SIZE

INTEGER DISP_UNIT, INFO, COMM, WIN, IERROR

MPI_WIN_CREATE_DYNAMIC(INFO, COMM, WIN, IERROR)

INTEGER INFO, COMM, WIN, IERROR

MPI_WIN_DETACH(WIN, BASE, IERROR)

INTEGER WIN, IERROR

<type> BASE(*)

MPI_WIN_FENCE(ASSERT, WIN, IERROR)

INTEGER ASSERT, WIN, IERROR

MPI_WIN_FLUSH(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH_ALL(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_FLUSH_LOCAL(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_FLUSH_LOCAL_ALL(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_FREE(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_GET_GROUP(WIN, GROUP, IERROR)

INTEGER WIN, GROUP, IERROR

MPI_WIN_GET_INFO(WIN, INFO_USED, IERROR)

INTEGER WIN, INFO_USED, IERROR

MPI_WIN_LOCK(LOCK_TYPE, RANK, ASSERT, WIN, IERROR)

INTEGER LOCK_TYPE, RANK, ASSERT, WIN, IERROR

MPI_WIN_LOCK_ALL(ASSERT, WIN, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 779

INTEGER ASSERT, WIN, IERROR

MPI_WIN_POST(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_SET_INFO(WIN, INFO, IERROR)

INTEGER WIN, INFO, IERROR

MPI_WIN_SHARED_QUERY(WIN, RANK, SIZE, DISP_UNIT, BASEPTR, IERROR)

INTEGER WIN, RANK, DISP_UNIT, IERROR

INTEGER (KIND=MPI_ADDRESS_KIND) SIZE, BASEPTR

If the Fortran compiler provides TYPE(C_PTR), then overloaded by:

INTERFACE MPI_WIN_SHARED_QUERY

SUBROUTINE MPI_WIN_SHARED_QUERY_CPTR(WIN, RANK, SIZE, DISP_UNIT, &

BASEPTR, IERROR)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

INTEGER :: WIN, RANK, DISP_UNIT, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) :: SIZE

TYPE(C_PTR) :: BASEPTR

END SUBROUTINE

END INTERFACE

MPI_WIN_START(GROUP, ASSERT, WIN, IERROR)

INTEGER GROUP, ASSERT, WIN, IERROR

MPI_WIN_SYNC(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_TEST(WIN, FLAG, IERROR)

INTEGER WIN, IERROR

LOGICAL FLAG

MPI_WIN_UNLOCK(RANK, WIN, IERROR)

INTEGER RANK, WIN, IERROR

MPI_WIN_UNLOCK_ALL(WIN, IERROR)

INTEGER WIN, IERROR

MPI_WIN_WAIT(WIN, IERROR)

INTEGER WIN, IERROR

A.4.10 External Interfaces Fortran Bindings

MPI_GREQUEST_COMPLETE(REQUEST, IERROR)

INTEGER REQUEST, IERROR

MPI_GREQUEST_START(QUERY_FN, FREE_FN, CANCEL_FN, EXTRA_STATE, REQUEST,

IERROR)

INTEGER REQUEST, IERROR

EXTERNAL QUERY_FN, FREE_FN, CANCEL_FN

INTEGER (KIND=MPI_ADDRESS_KIND) EXTRA_STATE

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

780 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

INTEGER REQUIRED, PROVIDED, IERROR

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

MPI_STATUS_SET_CANCELLED(STATUS, FLAG, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), IERROR

LOGICAL FLAG

MPI_STATUS_SET_ELEMENTS(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

MPI_STATUS_SET_ELEMENTS_X(STATUS, DATATYPE, COUNT, IERROR)

INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, IERROR

INTEGER (KIND=MPI_COUNT_KIND) COUNT

A.4.11 I/O Fortran Bindings

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 781

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

782 ANNEX A. LANGUAGE BINDINGS SUMMARY

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 783

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

784 ANNEX A. LANGUAGE BINDINGS SUMMARY

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

A.4.12 Language Bindings Fortran Bindings

MPI_F_SYNC_REG(buf)

<type> buf(*)

MPI_SIZEOF(X, SIZE, IERROR)

<type> X

INTEGER SIZE, IERROR

MPI_STATUS_F082F(F08_STATUS, F_STATUS, IERROR)

TYPE(MPI_Status) :: F08_STATUS

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

INTEGER IERROR

MPI_STATUS_F2F08(F_STATUS, F08_STATUS, IERROR)

INTEGER :: F_STATUS(MPI_STATUS_SIZE)

TYPE(MPI_Status) :: F08_STATUS

INTEGER IERROR

MPI_TYPE_CREATE_F90_COMPLEX(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_INTEGER(R, NEWTYPE, IERROR)

INTEGER R, NEWTYPE, IERROR

MPI_TYPE_CREATE_F90_REAL(P, R, NEWTYPE, IERROR)

INTEGER P, R, NEWTYPE, IERROR

MPI_TYPE_MATCH_SIZE(TYPECLASS, SIZE, DATATYPE, IERROR)

INTEGER TYPECLASS, SIZE, DATATYPE, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

A.4. FORTRAN BINDINGS WITH MPIF.H OR THE MPI MODULE 785

A.4.13 Tools / Profiling Interface Fortran Bindings

MPI_PCONTROL(LEVEL)

INTEGER LEVEL

A.4.14 Deprecated Fortran Bindings

MPI_ATTR_DELETE(COMM, KEYVAL, IERROR)

INTEGER COMM, KEYVAL, IERROR

MPI_ATTR_GET(COMM, KEYVAL, ATTRIBUTE_VAL, FLAG, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

LOGICAL FLAG

MPI_ATTR_PUT(COMM, KEYVAL, ATTRIBUTE_VAL, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, IERROR

MPI_DUP_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_KEYVAL_CREATE(COPY_FN, DELETE_FN, KEYVAL, EXTRA_STATE, IERROR)

EXTERNAL COPY_FN, DELETE_FN

INTEGER KEYVAL, EXTRA_STATE, IERROR

MPI_KEYVAL_FREE(KEYVAL, IERROR)

INTEGER KEYVAL, IERROR

MPI_NULL_COPY_FN(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

MPI_NULL_DELETE_FN(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERROR

SUBROUTINE COPY_FUNCTION(OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, FLAG, IERR)

INTEGER OLDCOMM, KEYVAL, EXTRA_STATE, ATTRIBUTE_VAL_IN,

ATTRIBUTE_VAL_OUT, IERR

LOGICAL FLAG

SUBROUTINE DELETE_FUNCTION(COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR)

INTEGER COMM, KEYVAL, ATTRIBUTE_VAL, EXTRA_STATE, IERR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

786 ANNEX A. LANGUAGE BINDINGS SUMMARY

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Annex B

Change-Log

This annex summarizes changes from the previous version of the MPI standard to the
version presented by this document. Only significant changes (i.e., clarifications and new
features) that might either require implementation effort in the MPI libraries or change
the understanding of MPI from a user’s perspective are presented. Editorial modifications,
formatting, typo corrections and minor clarifications are not shown.

B.1 Changes from Version 2.2 to Version 3.0

B.1.1 Fixes to Errata in Previous Versions of MPI

1. Sections 2.6.2 and 2.6.3 on pages 18 and 19, and
MPI-2.2 Section 2.6.2 on page 17, lines 41-42, Section 2.6.3 on page 18, lines 15-16,
and Section 2.6.4 on page 18, lines 40-41.
This is an MPI-2 erratum: The scope for the reserved prefix MPI_ and the C++
namespace MPI is now any name as originally intended in MPI-1.

2. Sections 3.2.2, 5.9.2, 13.7.2 Table 13.2, and Annex A.1.1 on pages 25, 176, 535, and
663, and
MPI-2.2 Sections 3.2.2, 5.9.2, 13.5.2 Table 13.2, 16.1.16 Table 16.1, and Annex A.1.1
on pages 27, 164, 433, 472 and 513
This is an MPI-2.2 erratum: New named predefined datatypes MPI_CXX_BOOL,
MPI_CXX_FLOAT_COMPLEX, MPI_CXX_DOUBLE_COMPLEX, and
MPI_CXX_LONG_DOUBLE_COMPLEX were added in C and Fortran corresponding
to the C++ types bool, std::complex<float>, std::complex<double>, and
std::complex<long double>. These datatypes also correspond to the deprecated
C++ predefined datatypes MPI::BOOL, MPI::COMPLEX, MPI::DOUBLE_COMPLEX,
and MPI::LONG_DOUBLE_COMPLEX, which were removed in MPI-3.0. The non-
standard C++ types Complex<...> were substituted by the standard types
std::complex<...>.

3. Sections 5.9.2 on pages 176 and MPI-2.2 Section 5.9.2, page 165, line 47.
This is an MPI-2.2 erratum: MPI_C_COMPLEX was added to the “Complex” reduc-
tion group.

4. Section 7.5.5 on page 302, and
MPI-2.2, Section 7.5.5 on page 257, C++ interface on page 264, line 3.

787

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

788 ANNEX B. CHANGE-LOG

This is an MPI-2.2 erratum: The argument rank was removed and in/outdegree are
now defined as int& indegree and int& outdegree in the C++ interface of
MPI_DIST_GRAPH_NEIGHBORS_COUNT.

5. Section 13.7.2, Table 13.2 on page 535, and
MPI-2.2, Section 13.5.3, Table 13.2 on page 433.
This was an MPI-2.2 erratum: The MPI_C_BOOL “external32” representation is cor-
rected to a 1-byte size.

6. MPI-2.2 Section 16.1.16 on page 471, line 45.
This is an MPI-2.2 erratum: The constant MPI::_LONG_LONG should be
MPI::LONG_LONG.

7. Annex A.1.1 on page 663, Table “Optional datatypes (Fortran),” and
MPI-2.2, Annex A.1.1, Table on page 517, lines 34, and 37-41.
This is an MPI-2.2 erratum: The C++ datatype handles MPI::INTEGER16,
MPI::REAL16, MPI::F_COMPLEX4, MPI::F_COMPLEX8, MPI::F_COMPLEX16,
MPI::F_COMPLEX32 were added to the table.

B.1.2 Changes in MPI-3.0

1. Section 2.6.1 on page 17, Section 16.2 on page 598 and all other chapters.
The C++ bindings were removed from the standard. See errata in Section B.1.1 on
page 787 for the latest changes to the MPI C++ binding defined in MPI-2.2.
This change may affect backward compatibility.

2. Section 2.6.1 on page 17, Section 15.1 on page 593 and Section 16.1 on page 597.
The deprecated functions MPI_TYPE_HVECTOR, MPI_TYPE_HINDEXED,
MPI_TYPE_STRUCT, MPI_ADDRESS, MPI_TYPE_EXTENT, MPI_TYPE_LB,
MPI_TYPE_UB, MPI_ERRHANDLER_CREATE (and its callback function prototype
MPI_Handler_function), MPI_ERRHANDLER_SET, MPI_ERRHANDLER_GET, the dep-
recated special datatype handles MPI_LB, MPI_UB, and the constants
MPI_COMBINER_HINDEXED_INTEGER, MPI_COMBINER_HVECTOR_INTEGER,
MPI_COMBINER_STRUCT_INTEGER were removed from the standard.
This change may affect backward compatibility.

3. Section 2.3 on page 10.
Clarified parameter usage for IN parameters. C bindings are now const-correct where
backward compatibility is preserved.

4. Section 2.5.4 on page 15 and Section 7.5.4 on page 296.
The recommended C implementation value for MPI_UNWEIGHTED changed from NULL
to non-NULL. An additional weight array constant (MPI_WEIGHTS_EMPTY) was in-
troduced.

5. Section 2.5.4 on page 15 and Section 8.1.1 on page 333.
Added the new routine MPI_GET_LIBRARY_VERSION to query library specific ver-
sions, and the new constant MPI_MAX_LIBRARY_VERSION_STRING.

6. Sections 2.5.8, 3.2.2, 3.3, 5.9.2, on pages 16, 25, 27, 176, Sections 4.1, 4.1.7, 4.1.8,
4.1.11, 12.3 on pages 83, 105, 107, 110, 480, and Annex A.1.1 on page 663.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.1. CHANGES FROM VERSION 2.2 TO VERSION 3.0 789

New inquiry functions, MPI_TYPE_SIZE_X, MPI_TYPE_GET_EXTENT_X,
MPI_TYPE_GET_TRUE_EXTENT_X, and MPI_GET_ELEMENTS_X, return their re-
sults as an MPI_Count value, which is a new type large enough to represent ele-
ment counts in memory, file views, etc. A new function,
MPI_STATUS_SET_ELEMENTS_X, modifies the opaque part of an MPI_Status object
so that a call to MPI_GET_ELEMENTS_X returns the provided MPI_Count value (in
Fortran, INTEGER (KIND=MPI_COUNT_KIND)). The corresponding predefined datatype
is MPI_COUNT.

7. Chapter 3 on page 23 until Chapter 17 on page 599.
In the C language bindings, the array-arguments’ interfaces were modified to consis-
tently use use [] instead of *.

Exceptions are MPI_INIT, which continues to use char ***argv (correct because of
subtle rules regarding the use of the & operator with char *argv[]), and
MPI_INIT_THREAD, which is changed to be consistent with MPI_INIT.

8. Sections 3.2.5, 4.1.5, 4.1.11, 4.2 on pages 30, 101, 110, 130.
The functions MPI_GET_COUNT and MPI_GET_ELEMENTS were defined to set the
count argument to MPI_UNDEFINED when that argument would overflow. The func-
tions MPI_PACK_SIZE and MPI_TYPE_SIZE were defined to set the size argument
to MPI_UNDEFINED when that argument would overflow. In all other MPI-2.2 rou-
tines, the type and semantics of the count arguments remain unchanged, i.e., int or
INTEGER.

9. Section 3.2.6 on page 32, and Section 3.8 on page 64.
MPI_STATUS_IGNORE can be also used in MPI_IPROBE, MPI_PROBE, MPI_IMPROBE,
and MPI_MPROBE.

10. Section 3.8 on page 64 and Section 3.11 on page 80.
The use of MPI_PROC_NULL in probe operations was clarified. A special predefined
message MPI_MESSAGE_NO_PROC was defined for the use of matching probe (i.e., the
new MPI_MPROBE and MPI_IMPROBE) with MPI_PROC_NULL.

11. Sections 3.8.2, 3.8.3, 17.2.4, A.1.1 on pages 67, 69, 648, 663.
Like MPI_PROBE and MPI_IPROBE, the new MPI_MPROBE and MPI_IMPROBE
operations allow incoming messages to be queried without actually receiving them,
except that MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the
specific message with the new routines MPI_MRECV and MPI_IMRECV regardless of
other intervening probe or receive operations. The opaque object MPI_Message, the
null handle MPI_MESSAGE_NULL, and the conversion functions MPI_Message_c2f and
MPI_Message_f2c were defined.

12. Section 4.1.2 on page 85 and Section 4.1.13 on page 115.
The routine MPI_TYPE_CREATE_HINDEXED_BLOCK and constant
MPI_COMBINER_HINDEXED_BLOCK were added.

13. Chapter 5 on page 141 and Section 5.12 on page 196.
Added nonblocking interfaces to all collective operations.

14. Sections 6.4.2, 6.4.4, 11.2.7, on pages 237, 248, 415.
The new routines MPI_COMM_DUP_WITH_INFO, MPI_COMM_SET_INFO,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

790 ANNEX B. CHANGE-LOG

MPI_COMM_GET_INFO, MPI_WIN_SET_INFO, and MPI_WIN_GET_INFO were
added. The routine MPI_COMM_DUP must also duplicate info hints.

15. Section 6.4.2 on page 237.
Added MPI_COMM_IDUP.

16. Section 6.4.2 on page 237.
Added the new communicator construction routine MPI_COMM_CREATE_GROUP,
which is invoked only by the processes in the group of the new communicator being
constructed.

17. Section 6.4.2 on page 237.
Added the MPI_COMM_SPLIT_TYPE routine and the communicator split type con-
stant MPI_COMM_TYPE_SHARED.

18. Section 6.6.2 on page 260.
In MPI-2.2, communication involved in an MPI_INTERCOMM_CREATE operation
could interfere with point-to-point communication on the parent communicator with
the same tag or MPI_ANY_TAG. This interference has been removed in MPI-3.0.

19. Section 6.8 on page 281.
Section 6.8 on page 238. The constant MPI_MAX_OBJECT_NAME also applies for type
and window names.

20. Section 7.5.8 on page 312.
MPI_CART_MAP can also be used for a zero-dimensional topologies.

21. Section 7.6 on page 314 and Section 7.7 on page 323.
The following neighborhood collective communication routines were added to sup-
port sparse communication on virtual topology grids: MPI_NEIGHBOR_ALLGATHER,
MPI_NEIGHBOR_ALLGATHERV, MPI_NEIGHBOR_ALLTOALL,
MPI_NEIGHBOR_ALLTOALLV, MPI_NEIGHBOR_ALLTOALLW and the nonblocking
variants MPI_INEIGHBOR_ALLGATHER, MPI_INEIGHBOR_ALLGATHERV,
MPI_INEIGHBOR_ALLTOALL, MPI_INEIGHBOR_ALLTOALLV, and
MPI_INEIGHBOR_ALLTOALLW. The displacement arguments in
MPI_NEIGHBOR_ALLTOALLW and MPI_INEIGHBOR_ALLTOALLW were defined as
address size integers. In MPI_DIST_GRAPH_NEIGHBORS, an ordering rule was added
for communicators created with MPI_DIST_GRAPH_CREATE_ADJACENT.

22. Section 8.7 on page 355 and Section 12.4.3 on page 485.
The use of MPI_INIT, MPI_INIT_THREAD and MPI_FINALIZE was clarified. After
MPI is initialized, the application can access information about the execution envi-
ronment by querying the new predefined info object MPI_INFO_ENV.

23. Section 8.7 on page 355.
Allow calls to MPI_T routines before MPI_INIT and after MPI_FINALIZE.

24. Chapter 11 on page 401.
Substantial revision of the entire One-sided chapter, with new routines for window
creation, additional synchronization methods in passive target communication, new
one-sided communication routines, a new memory model, and other changes.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.1. CHANGES FROM VERSION 2.2 TO VERSION 3.0 791

25. Section 14.3 on page 561.
A new MPI Tool Information Interface was added.

The following changes are related to the Fortran language support.

26. Section 2.3 on page 10, and Sections 17.1.1, 17.1.2, 17.1.7 on pages 599, 600, and 615.
The new mpi_08 Fortran module was introduced.

27. Section 2.5.1 on page 12, and Sections 17.1.2, 17.1.3, 17.1.7 on pages 600, 603, and 615.
Handles to opaque objects were defined as named types within the mpi_08 Fortran
module. The operators .EQ., .NE., ==, and /= were overloaded to allow the compari-
son of these handles. The handle types and the overloaded operators are also available
through the mpi Fortran module.

28. Sections 2.5.4, 2.5.5 on pages 15, 16, Sections 17.1.1, 17.1.10, 17.1.11, 17.1.12, 17.1.13
on pages 599, 625, 626, 627, 630, and Sections 17.1.2, 17.1.3, 17.1.7 on pages 600, 603,
615.
Within the mpi_08 Fortran module, choice buffers were defined as assumed-type and
assumed-rank according to Fortran 2008 TS 29113 [41], and the compile-time constant
MPI_SUBARRAYS_SUPPORTED was set to .TRUE.. With this, Fortran subscript triplets
can be used in nonblocking MPI operations; vector subscripts are not supported in
nonblocking operations. If the compiler does not support this Fortran TR 29113
feature, the constant is set to .FALSE..

29. Section 2.6.2 on page 18, Section 17.1.2 on page 600, and Section 17.1.7 on page 615.
The ierror dummy arguments are OPTIONAL within the mpi_08 Fortran module.

30. Section 3.2.5 on page 30, Sections 17.1.2, 17.1.3, 17.1.7, on pages 600, 603, 615, and
Section 17.2.5 on page 650.
Within the mpi_08 Fortran module, the status was defined as TYPE(MPI_Status).
Additionally, within both the mpi and the mpi_f08 modules, the constants
MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG, MPI_ERROR, and TYPE(MPI_Status) are
defined. New conversion routines were added: MPI_STATUS_F2F08,
MPI_STATUS_F082F, MPI_Status_c2f08, and MPI_Status_f082c, In mpi.h, the new
type MPI_F08_status, and the external variables MPI_F08_STATUS_IGNORE and
MPI_F08_STATUSES_IGNORE were added.

31. Section 3.6 on page 44.
In Fortran with the mpi module or mpif.h, the type of the buffer_addr argument of
MPI_BUFFER_DETACH is incorrectly defined and the argument is therefore unused.

32. Section 4.1 on page 83, Section 4.1.6 on page 103, and Section 17.1.15 on page 631.
The Fortran alignments of basic datatypes within Fortran derived types are imple-
mentation dependent; therefore it is recommended to use the BIND(C) attribute for
derived types in MPI communication buffers. If an array of structures (in C/C++)
or derived types (in Fortran) is to be used in MPI communication buffers, it is rec-
ommended that the user creates a portable datatype handle and additionally applies
MPI_TYPE_CREATE_RESIZED to this datatype handle.

33. Sections 4.1.10, 5.9.5, 5.9.7, 6.7.4, 6.8, 8.3.1, 8.3.2, 8.3.3, 15.1, 17.1.9 on pages 110,
183, 189, 275, 281, 341, 343, 345, 593, and 617. In some routines, the dummy ar-
gument names were changed because they were identical to the Fortran keywords

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

792 ANNEX B. CHANGE-LOG

TYPE and FUNCTION. The new dummy argument names must be used because the
mpi and mpi_08 modules guarantee keyword-based actual argument lists. The ar-
gument name type was changed in MPI_TYPE_DUP, the Fortran
USER_FUNCTION of MPI_OP_CREATE, MPI_TYPE_SET_ATTR,
MPI_TYPE_GET_ATTR, MPI_TYPE_DELETE_ATTR, MPI_TYPE_SET_NAME,
MPI_TYPE_GET_NAME, MPI_TYPE_MATCH_SIZE, the callback prototype defini-
tion MPI_Type_delete_attr_function, and the predefined callback function
MPI_TYPE_NULL_DELETE_FN; function was changed in MPI_OP_CREATE,
MPI_COMM_CREATE_ERRHANDLER, MPI_WIN_CREATE_ERRHANDLER,
MPI_FILE_CREATE_ERRHANDLER, and MPI_ERRHANDLER_CREATE. For consis-
tency reasons, INOUBUF was changed to INOUTBUF in MPI_REDUCE_LOCAL, and
intracomm to newintracomm in MPI_INTERCOMM_MERGE.

34. Section 6.7.2 on page 267.
Section 6.7.2 on page 226. It was clarified that in Fortran, the flag values returned
by a comm_copy_attr_fn callback, including MPI_COMM_NULL_COPY_FN and
MPI_COMM_DUP_FN, are .FALSE. and .TRUE.; see MPI_COMM_CREATE_KEYVAL.

35. Section 8.2 on page 337.
With the mpi and mpi_f08 Fortran modules, MPI_ALLOC_MEM now also supports
TYPE(C_PTR) C-pointers instead of only returning an address-sized integer that may
be usable together with a non-standard Cray-pointer.

36. Section 17.1.15 on page 631, and Section 17.1.7 on page 615.
Fortran SEQUENCE and BIND(C) derived application types can now be used as buffers
in MPI operations.

37. Section 17.1.16 on page 632 to Section 17.1.19 on page 641, Section 17.1.7 on page 615,
and Section 17.1.8 on page 616.
The sections about Fortran optimization problems and their solutions were partially
rewritten and new methods are added, e.g., the use of the ASYNCHRONOUS attribute.
The constant MPI_ASYNC_PROTECTS_NONBLOCKING tells whether the semantics of
the ASYNCHRONOUS attribute is extended to protect nonblocking operations. The For-
tran routine MPI_F_SYNC_REG is added. MPI-3.0 compliance for an MPI library
together with a Fortran compiler is defined in Section 17.1.7.

38. Section 17.1.2 on page 600.
Within the mpi_08 Fortran module, dummy arguments are now declared with
INTENT=IN, OUT, or INOUT as defined in the mpi_08 interfaces.

39. Section 17.1.3 on page 603, and Section 17.1.7 on page 615.
The existing mpi Fortran module must implement compile-time argument checking.

40. Section 17.1.4 on page 605.
The use of the mpif.h Fortran include file is now strongly discouraged.

41. Section A.1.1, Table “Predefined functions” on page 671, Section A.1.3 on page 678,
and Section A.3.4 on page 725.
Within the new mpi_f08 module, all callback prototype definitions are now defined
with explicit interfaces PROCEDURE(MPI_...) that have the BIND(C) attribute; user-
written callbacks must be modified if the mpi_f08 module is used.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.2. CHANGES FROM VERSION 2.1 TO VERSION 2.2 793

42. Section A.1.3 on page 678.
In some routines, the Fortran callback prototype names were changed from . . ._FN to
. . ._FUNCTION to be consistent with the other language bindings.

B.2 Changes from Version 2.1 to Version 2.2

1. Section 2.5.4 on page 15.
It is now guaranteed that predefined named constant handles (as other constants)
can be used in initialization expressions or assignments, i.e., also before the call to
MPI_INIT.

2. Section 2.6 on page 17, and Section 16.2 on page 598.
The C++ language bindings have been deprecated and may be removed in a future
version of the MPI specification.

3. Section 3.2.2 on page 25.
MPI_CHAR for printable characters is now defined for C type char (instead of signed
char). This change should not have any impact on applications nor on MPI libraries
(except some comment lines), because printable characters could and can be stored in
any of the C types char, signed char, and unsigned char, and MPI_CHAR is not allowed
for predefined reduction operations.

4. Section 3.2.2 on page 25.
MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are now valid predefined MPI datatypes.

5. Section 3.4 on page 37, Section 3.7.2 on page 48, Section 3.9 on page 73, and Section 5.1
on page 141.
The read access restriction on the send buffer for blocking, non blocking and collective
API has been lifted. It is permitted to access for read the send buffer while the
operation is in progress.

6. Section 3.7 on page 47.
The Advice to users for IBSEND and IRSEND was slightly changed.

7. Section 3.7.3 on page 52.
The advice to free an active request was removed in the Advice to users for
MPI_REQUEST_FREE.

8. Section 3.7.6 on page 63.
MPI_REQUEST_GET_STATUS changed to permit inactive or null requests as input.

9. Section 5.8 on page 168.
“In place” option is added to MPI_ALLTOALL, MPI_ALLTOALLV, and
MPI_ALLTOALLW for intracommunicators.

10. Section 5.9.2 on page 176.
Predefined parameterized datatypes (e.g., returned by
MPI_TYPE_CREATE_F90_REAL) and optional named predefined datatypes (e.g.
MPI_REAL8) have been added to the list of valid datatypes in reduction operations.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

794 ANNEX B. CHANGE-LOG

11. Section 5.9.2 on page 176.
MPI_(U)INT{8,16,32,64}_T are all considered C integer types for the purposes of the
predefined reduction operators. MPI_AINT and MPI_OFFSET are considered Fortran
integer types. MPI_C_BOOL is considered a Logical type.
MPI_C_COMPLEX, MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are considered Complex types.

12. Section 5.9.7 on page 189.
The local routines MPI_REDUCE_LOCAL and MPI_OP_COMMUTATIVE have been
added.

13. Section 5.10.1 on page 190.
The collective function MPI_REDUCE_SCATTER_BLOCK is added to the MPI stan-
dard.

14. Section 5.11.2 on page 194.
Added in place argument to MPI_EXSCAN.

15. Section 6.4.2 on page 237, and Section 6.6 on page 257.
Implementations that did not implement MPI_COMM_CREATE on intercommuni-
cators will need to add that functionality. As the standard described the behav-
ior of this operation on intercommunicators, it is believed that most implementa-
tions already provide this functionality. Note also that the C++ binding for both
MPI_COMM_CREATE and MPI_COMM_SPLIT explicitly allow Intercomms.

16. Section 6.4.2 on page 237.
MPI_COMM_CREATE is extended to allow several disjoint subgroups as input if comm
is an intracommunicator. If comm is an intercommunicator it was clarified that all
processes in the same local group of comm must specify the same value for group.

17. Section 7.5.4 on page 296.
New functions for a scalable distributed graph topology interface has been added.
In this section, the functions MPI_DIST_GRAPH_CREATE_ADJACENT and
MPI_DIST_GRAPH_CREATE, the constants MPI_UNWEIGHTED, and the derived C++
class Distgraphcomm were added.

18. Section 7.5.5 on page 302.
For the scalable distributed graph topology interface, the functions
MPI_DIST_GRAPH_NEIGHBORS_COUNT and MPI_DIST_GRAPH_NEIGHBORS and
the constant MPI_DIST_GRAPH were added.

19. Section 7.5.5 on page 302.
Remove ambiguity regarding duplicated neighbors with MPI_GRAPH_NEIGHBORS
and MPI_GRAPH_NEIGHBORS_COUNT.

20. Section 8.1.1 on page 333.
The subversion number changed from 1 to 2.

21. Section 8.3 on page 340, Section 15.2 on page 596, and Annex A.1.3 on page 678.
Changed function pointer typedef names MPI_{Comm,File,Win}_errhandler_fn to
MPI_{Comm,File,Win}_errhandler_function. Deprecated old “_fn” names.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.3. CHANGES FROM VERSION 2.0 TO VERSION 2.1 795

22. Section 8.7.1 on page 361.
Attribute deletion callbacks on MPI_COMM_SELF are now called in LIFO order. Imple-
mentors must now also register all implementation-internal attribute deletion callbacks
on MPI_COMM_SELF before returning from MPI_INIT/MPI_INIT_THREAD.

23. Section 11.3.4 on page 423.
The restriction added in MPI 2.1 that the operation MPI_REPLACE in
MPI_ACCUMULATE can be used only with predefined datatypes has been removed.
MPI_REPLACE can now be used even with derived datatypes, as it was in MPI 2.0.
Also, a clarification has been made that MPI_REPLACE can be used only in
MPI_ACCUMULATE, not in collective operations that do reductions, such as
MPI_REDUCE and others.

24. Section 12.2 on page 473.
Add “*” to the query_fn, free_fn, and cancel_fn arguments to the C++ binding for
MPI::Grequest::Start() for consistency with the rest of MPI functions that take function
pointer arguments.

25. Section 13.7.2 on page 534, and Table 13.2 on page 535.
MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_COMPLEX,
MPI_C_FLOAT_COMPLEX, MPI_C_DOUBLE_COMPLEX,
MPI_C_LONG_DOUBLE_COMPLEX, and MPI_C_BOOL are added as predefined datatypes
in the external32 representation.

26. Section 17.2.7 on page 655.
The description was modified that it only describes how an MPI implementation be-
haves, but not how MPI stores attributes internally. The erroneous MPI-2.1 Example
16.17 was replaced with three new examples 17.13, 17.14, and 17.15 on pages 656-657
explicitly detailing cross-language attribute behavior. Implementations that matched
the behavior of the old example will need to be updated.

27. Annex A.1.1 on page 663.
Removed type MPI::Fint (compare MPI_Fint in Section A.1.2 on page 676).

28. Annex A.1.1 on page 663. Table Named Predefined Datatypes.
Added MPI_(U)INT{8,16,32,64}_T, MPI_AINT, MPI_OFFSET, MPI_C_BOOL,
MPI_C_FLOAT_COMPLEX, MPI_C_COMPLEX, MPI_C_DOUBLE_COMPLEX, and
MPI_C_LONG_DOUBLE_COMPLEX are added as predefined datatypes.

B.3 Changes from Version 2.0 to Version 2.1

1. Section 3.2.2 on page 25, and Annex A.1 on page 663.
In addition, the MPI_LONG_LONG should be added as an optional type; it is a syn-
onym for MPI_LONG_LONG_INT.

2. Section 3.2.2 on page 25, and Annex A.1 on page 663.
MPI_LONG_LONG_INT, MPI_LONG_LONG (as synonym),
MPI_UNSIGNED_LONG_LONG, MPI_SIGNED_CHAR, and MPI_WCHAR are moved
from optional to official and they are therefore defined for all three language bindings.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

796 ANNEX B. CHANGE-LOG

3. Section 3.2.5 on page 30.
MPI_GET_COUNT with zero-length datatypes: The value returned as the
count argument of MPI_GET_COUNT for a datatype of length zero where zero bytes
have been transferred is zero. If the number of bytes transferred is greater than zero,
MPI_UNDEFINED is returned.

4. Section 4.1 on page 83.
General rule about derived datatypes: Most datatype constructors have replication
count or block length arguments. Allowed values are non-negative integers. If the
value is zero, no elements are generated in the type map and there is no effect on
datatype bounds or extent.

5. Section 4.3 on page 137.
MPI_BYTE should be used to send and receive data that is packed using
MPI_PACK_EXTERNAL.

6. Section 5.9.6 on page 187.
If comm is an intercommunicator in MPI_ALLREDUCE, then both groups should pro-
vide count and datatype arguments that specify the same type signature (i.e., it is not
necessary that both groups provide the same count value).

7. Section 6.3.1 on page 228.
MPI_GROUP_TRANSLATE_RANKS and MPI_PROC_NULL: MPI_PROC_NULL is a valid
rank for input to MPI_GROUP_TRANSLATE_RANKS, which returns MPI_PROC_NULL

as the translated rank.

8. Section 6.7 on page 265.
About the attribute caching functions:

Advice to implementors. High-quality implementations should raise an er-
ror when a keyval that was created by a call to MPI_XXX_CREATE_KEYVAL
is used with an object of the wrong type with a call to
MPI_YYY_GET_ATTR, MPI_YYY_SET_ATTR, MPI_YYY_DELETE_ATTR, or
MPI_YYY_FREE_KEYVAL. To do so, it is necessary to maintain, with each key-
val, information on the type of the associated user function. (End of advice to
implementors.)

9. Section 6.8 on page 281.
In MPI_COMM_GET_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_OBJECT_NAME-1. In For-
tran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_OBJECT_NAME.

10. Section 7.4 on page 290.
About MPI_GRAPH_CREATE and MPI_CART_CREATE: All input arguments must
have identical values on all processes of the group of comm_old.

11. Section 7.5.1 on page 292.
In MPI_CART_CREATE: If ndims is zero then a zero-dimensional Cartesian topology
is created. The call is erroneous if it specifies a grid that is larger than the group size
or if ndims is negative.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.3. CHANGES FROM VERSION 2.0 TO VERSION 2.1 797

12. Section 7.5.3 on page 294.
In MPI_GRAPH_CREATE: If the graph is empty, i.e., nnodes == 0, then
MPI_COMM_NULL is returned in all processes.

13. Section 7.5.3 on page 294.
In MPI_GRAPH_CREATE: A single process is allowed to be defined multiple times
in the list of neighbors of a process (i.e., there may be multiple edges between two
processes). A process is also allowed to be a neighbor to itself (i.e., a self loop in the
graph). The adjacency matrix is allowed to be non-symmetric.

Advice to users. Performance implications of using multiple edges or a non-
symmetric adjacency matrix are not defined. The definition of a node-neighbor
edge does not imply a direction of the communication. (End of advice to users.)

14. Section 7.5.5 on page 302.
In MPI_CARTDIM_GET and MPI_CART_GET: If comm is associated with a zero-
dimensional Cartesian topology, MPI_CARTDIM_GET returns ndims=0 and
MPI_CART_GET will keep all output arguments unchanged.

15. Section 7.5.5 on page 302.
In MPI_CART_RANK: If comm is associated with a zero-dimensional Cartesian topol-
ogy, coord is not significant and 0 is returned in rank.

16. Section 7.5.5 on page 302.
In MPI_CART_COORDS: If comm is associated with a zero-dimensional Cartesian
topology, coords will be unchanged.

17. Section 7.5.6 on page 310.
In MPI_CART_SHIFT: It is erroneous to call MPI_CART_SHIFT with a direction that
is either negative or greater than or equal to the number of dimensions in the Cartesian
communicator. This implies that it is erroneous to call MPI_CART_SHIFT with a
comm that is associated with a zero-dimensional Cartesian topology.

18. Section 7.5.7 on page 311.
In MPI_CART_SUB: If all entries in remain_dims are false or comm is already associ-
ated with a zero-dimensional Cartesian topology then newcomm is associated with a
zero-dimensional Cartesian topology.

18.1. Section 8.1.1 on page 333.
The subversion number changed from 0 to 1.

19. Section 8.1.2 on page 334.
In MPI_GET_PROCESSOR_NAME: In C, a null character is additionally stored at
name[resultlen]. resultlen cannot be larger then MPI_MAX_PROCESSOR_NAME-1. In
Fortran, name is padded on the right with blank characters. resultlen cannot be larger
then MPI_MAX_PROCESSOR_NAME.

20. Section 8.3 on page 340.
MPI_{COMM,WIN,FILE}_GET_ERRHANDLER behave as if a new error handler object
is created. That is, once the error handler is no longer needed,
MPI_ERRHANDLER_FREE should be called with the error handler returned from

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

798 ANNEX B. CHANGE-LOG

MPI_ERRHANDLER_GET or MPI_{COMM,WIN,FILE}_GET_ERRHANDLER to mark
the error handler for deallocation. This provides behavior similar to that of
MPI_COMM_GROUP and MPI_GROUP_FREE.

21. Section 8.7 on page 355, see explanations to MPI_FINALIZE.
MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is col-
lective over the union of all processes that have been and continue to be connected,
as explained in Section 10.5.4 on page 397.

22. Section 8.7 on page 355.
About MPI_ABORT:

Advice to users. Whether the errorcode is returned from the executable or from
the MPI process startup mechanism (e.g., mpiexec), is an aspect of quality of the
MPI library but not mandatory. (End of advice to users.)

Advice to implementors. Where possible, a high-quality implementation will try
to return the errorcode from the MPI process startup mechanism (e.g. mpiexec
or singleton init). (End of advice to implementors.)

23. Section 9 on page 365.
An implementation must support info objects as caches for arbitrary (key, value)
pairs, regardless of whether it recognizes the key. Each function that takes hints in
the form of an MPI_Info must be prepared to ignore any key it does not recognize. This
description of info objects does not attempt to define how a particular function should
react if it recognizes a key but not the associated value. MPI_INFO_GET_NKEYS,
MPI_INFO_GET_NTHKEY, MPI_INFO_GET_VALUELEN, and MPI_INFO_GET must
retain all (key,value) pairs so that layered functionality can also use the Info object.

24. Section 11.3 on page 417.
MPI_PROC_NULL is a valid target rank in the MPI RMA calls MPI_ACCUMULATE,
MPI_GET, and MPI_PUT. The effect is the same as for MPI_PROC_NULL in MPI point-
to-point communication. See also item 25 in this list.

25. Section 11.3 on page 417.
After any RMA operation with rank MPI_PROC_NULL, it is still necessary to finish
the RMA epoch with the synchronization method that started the epoch. See also
item 24 in this list.

26. Section 11.3.4 on page 423.
MPI_REPLACE in MPI_ACCUMULATE, like the other predefined operations, is defined
only for the predefined MPI datatypes.

27. Section 13.2.8 on page 498.
About MPI_FILE_SET_VIEW and MPI_FILE_SET_INFO: When an info object that
specifies a subset of valid hints is passed to MPI_FILE_SET_VIEW or
MPI_FILE_SET_INFO, there will be no effect on previously set or defaulted hints that
the info does not specify.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

B.3. CHANGES FROM VERSION 2.0 TO VERSION 2.1 799

28. Section 13.2.8 on page 498.
About MPI_FILE_GET_INFO: If no hint exists for the file associated with fh, a handle
to a newly created info object is returned that contains no key/value pair.

29. Section 13.3 on page 501.
If a file does not have the mode MPI_MODE_SEQUENTIAL, then
MPI_DISPLACEMENT_CURRENT is invalid as disp in MPI_FILE_SET_VIEW.

30. Section 13.7.2 on page 534.
The bias of 16 byte doubles was defined with 10383. The correct value is 16383.

31. MPI-2.2, Section 16.1.4 (Section was removed in MPI-3.0).
In the example in this section, the buffer should be declared as const void* buf.

32. Section 17.1.9 on page 617.
About MPI_TYPE_CREATE_F90_XXX:

Advice to implementors. An application may often repeat a call to
MPI_TYPE_CREATE_F90_XXX with the same combination of (XXX,p,r). The
application is not allowed to free the returned predefined, unnamed datatype
handles. To prevent the creation of a potentially huge amount of handles, the
MPI implementation should return the same datatype handle for the same (
REAL/COMPLEX/INTEGER,p,r) combination. Checking for the combination (
p,r) in the preceding call to MPI_TYPE_CREATE_F90_XXX and using a hash-
table to find formerly generated handles should limit the overhead of finding
a previously generated datatype with same combination of (XXX,p,r). (End of
advice to implementors.)

33. Section A.1.1 on page 663.
MPI_BOTTOM is defined as void * const MPI::BOTTOM.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

800 ANNEX B. CHANGE-LOG

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] V. Bala and S. Kipnis. Process groups: a mechanism for the coordination of and com-
munication among processes in the Venus collective communication library. Technical
report, IBM T. J. Watson Research Center, October 1992. Preprint. 1.2

[2] V. Bala, S. Kipnis, L. Rudolph, and Marc Snir. Designing efficient, scalable, and
portable collective communication libraries. Technical report, IBM T. J. Watson Re-
search Center, October 1992. Preprint. 1.2

[3] Purushotham V. Bangalore, Nathan E. Doss, and Anthony Skjellum. MPI++: Issues
and Features. In OON-SKI ’94, page in press, 1994. 6.1

[4] A. Beguelin, J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Visualization and
debugging in a heterogeneous environment. IEEE Computer, 26(6):88–95, June 1993.
1.2

[5] Luc Bomans and Rolf Hempel. The Argonne/GMD macros in FORTRAN for portable
parallel programming and their implementation on the Intel iPSC/2. Parallel Com-
puting, 15:119–132, 1990. 1.2

[6] Dan Bonachea and Jason Duell. Problems with using MPI 1.1 and 2.0 as compilation
targets for parallel language implementations. IJHPCN, 1(1/2/3):91–99, 2004. 11.7

[7] Rajesh Bordawekar, Juan Miguel del Rosario, and Alok Choudhary. Design and eval-
uation of primitives for parallel I/O. In Proceedings of Supercomputing ’93, pages
452–461, 1993. 13.1

[8] R. Butler and E. Lusk. User’s guide to the p4 programming system. Technical Report
TM-ANL–92/17, Argonne National Laboratory, 1992. 1.2

[9] Ralph Butler and Ewing Lusk. Monitors, messages, and clusters: The p4 parallel
programming system. Parallel Computing, 20(4):547–564, April 1994. Also Argonne
National Laboratory Mathematics and Computer Science Division preprint P362-0493.
1.2

[10] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior. Portable
programming with the PARMACS message-passing library. Parallel Computing,
20(4):615–632, April 1994. 1.2

[11] S. Chittor and R. J. Enbody. Performance evaluation of mesh-connected wormhole-
routed networks for interprocessor communication in multicomputers. In Proceedings
of the 1990 Supercomputing Conference, pages 647–656, 1990. 7.1

801

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

802 BIBLIOGRAPHY

[12] S. Chittor and R. J. Enbody. Predicting the effect of mapping on the communica-
tion performance of large multicomputers. In Proceedings of the 1991 International
Conference on Parallel Processing, vol. II (Software), pages II–1 – II–4, 1991. 7.1

[13] Parasoft Corporation. Express version 1.0: A communication environment for parallel
computers, 1988. 1.2, 7.4

[14] Yiannis Cotronis, Anthony Danalis, Dimitrios S. Nikolopoulos, and Jack Dongarra,
editors. Recent Advances in the Message Passing Interface - 18th European MPI Users’
Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings,
volume 6960 of Lecture Notes in Computer Science. Springer, 2011. 16, 36

[15] Juan Miguel del Rosario, Rajesh Bordawekar, and Alok Choudhary. Improved parallel
I/O via a two-phase run-time access strategy. In IPPS ’93 Workshop on Input/Output
in Parallel Computer Systems, pages 56–70, 1993. Also published in Computer Archi-
tecture News 21(5), December 1993, pages 31–38. 13.1

[16] James Dinan, Sriram Krishnamoorthy, Pavan Balaji, Jeff R. Hammond, Manojkumar
Krishnan, Vinod Tipparaju, and Abhinav Vishnu. Noncollective communicator cre-
ation in MPI. In Cotronis et al. [14], pages 282–291. 6.4.2

[17] J. Dongarra, A. Geist, R. Manchek, and V. Sunderam. Integrated PVM framework
supports heterogeneous network computing. Computers in Physics, 7(2):166–75, April
1993. 1.2

[18] J. J. Dongarra, R. Hempel, A. J. G. Hey, and D. W. Walker. A proposal for a user-
level, message passing interface in a distributed memory environment. Technical Report
TM-12231, Oak Ridge National Laboratory, February 1993. 1.2

[19] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Concepts,
June 1991. 1.2

[20] Edinburgh Parallel Computing Centre, University of Edinburgh. CHIMP Version 1.0
Interface, May 1992. 1.2

[21] D. Feitelson. Communicators: Object-based multiparty interactions for parallel pro-
gramming. Technical Report 91-12, Dept. Computer Science, The Hebrew University
of Jerusalem, November 1991. 6.1.2

[22] Message Passing Interface Forum. MPI: A Message-Passing Interface standard. The In-
ternational Journal of Supercomputer Applications and High Performance Computing,
8, 1994. 1.3

[23] Message Passing Interface Forum. MPI: A Message-Passing Interface standard (version
1.1). Technical report, 1995. http://www.mpi-forum.org. 1.3

[24] Al Geist, Adam Beguelin, Jack Dongarra, Weicheng Jiang, Bob Manchek, and Vaidy
Sunderam. PVM: Parallel Virtual Machine—A User’s Guide and Tutorial for Network
Parallel Computing. MIT Press, 1994. 10.1

[25] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. PICL: A portable in-
strumented communications library, C reference manual. Technical Report TM-11130,
Oak Ridge National Laboratory, Oak Ridge, TN, July 1990. 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

BIBLIOGRAPHY 803

[26] D. Gregor, T. Hoefler, B. Barrett, and A. Lumsdaine. Fixing probe for multi-threaded
MPI applications. Technical Report 674, Indiana University, Jan. 2009. 3.8.2

[27] William D. Gropp and Barry Smith. Chameleon parallel programming tools users
manual. Technical Report ANL-93/23, Argonne National Laboratory, March 1993. 1.2

[28] Michael Hennecke. A Fortran 90 interface to MPI version 1.1. Technical
Report Internal Report 63/96, Rechenzentrum, Universität Karlsruhe, D-
76128 Karlsruhe, Germany, June 1996. Available via world wide web from
http://www.uni-karlsruhe.de/~Michael.Hennecke/Publications/#MPI_F90.
17.1.3

[29] T. Hoefler, G. Bronevetsky, B. Barrett, B. R. de Supinski, and A. Lumsdaine. Efficient
MPI support for advanced hybrid programming models. In Recent Advances in the
Message Passing Interface (EuroMPI’10), volume LNCS 6305, pages 50–61. Springer,
Sep. 2010. 3.8.1, 3.8.2

[30] T. Hoefler, P. Gottschling, A. Lumsdaine, and W. Rehm. Optimizing a conjugate
gradient solver with non-blocking collective operations. Elsevier Journal of Parallel
Computing (PARCO), 33(9):624–633, Sep. 2007. 5.12

[31] T. Hoefler, F. Lorenzen, and A. Lumsdaine. Sparse non-blocking collectives in quantum
mechanical calculations. In Recent Advances in Parallel Virtual Machine and Message
Passing Interface, 15th European PVM/MPI Users’ Group Meeting, volume LNCS
5205, pages 55–63. Springer, Sep. 2008. 7.6

[32] T. Hoefler and A. Lumsdaine. Message progression in parallel computing — to thread
or not to thread? In Proceedings of the 2008 IEEE International Conference on Cluster
Computing. IEEE Computer Society, Oct. 2008. 5.12

[33] T. Hoefler, A. Lumsdaine, and W. Rehm. Implementation and performance analysis
of non-blocking collective operations for MPI. In Proceedings of the 2007 International
Conference on High Performance Computing, Networking, Storage and Analysis, SC07.
IEEE Computer Society/ACM, Nov. 2007. 5.12

[34] T. Hoefler, M. Schellmann, S. Gorlatch, and A. Lumsdaine. Communication optimiza-
tion for medical image reconstruction algorithms. In Recent Advances in Parallel Vir-
tual Machine and Message Passing Interface, 15th European PVM/MPI Users’ Group
Meeting, volume LNCS 5205, pages 75–83. Springer, Sep. 2008. 5.12

[35] T. Hoefler and J. L. Traeff. Sparse collective operations for MPI. In Proceedings of
the 23rd IEEE International Parallel & Distributed Processing Symposium, HIPS’09
Workshop, May 2009. 7.6

[36] Torsten Hoefler and Marc Snir. Writing parallel libraries with MPI — common practice,
issues, and extensions. In Cotronis et al. [14], pages 345–355. 6.4.2

[37] Institute of Electrical and Electronics Engineers, New York. IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985, 1985. 13.7.2

[38] International Organization for Standardization, Geneva, ISO 8859-1:1987. Information
processing — 8-bit single-byte coded graphic character sets — Part 1: Latin alphabet
No. 1, 1987. 13.7.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

804 BIBLIOGRAPHY

[39] International Organization for Standardization, Geneva, ISO/IEC 9945-1:1996(E). In-
formation technology — Portable Operating System Interface (POSIX) — Part 1: Sys-
tem Application Program Interface (API) [C Language], December 1996. 12.4, 13.2.1

[40] International Organization for Standardization, Geneva, ISO/IEC 1539-1:2010. In-
formation technology – Programming languages – Fortran – Part 1: Base language,
November 2010. 17.1.1, 17.1.2

[41] International Organization for Standardization, ISO/IEC/SC22/WG5
(Fortran), Geneva, TS 29113. TS on further interoperability with C,
2012. http://www.nag.co.uk/sc22wg5/, successfully balloted DTS at
ftp://ftp.nag.co.uk/sc22wg5/N1901-N1950/N1917.pdf. 17.1.1, 17.1.1, 17.1.2, 17.1.7,
28

[42] Charles H. Koelbel, David B. Loveman, Robert S. Schreiber, Guy L. Steele Jr., and
Mary E. Zosel. The High Performance Fortran Handbook. MIT Press, 1993. 4.1.4

[43] David Kotz. Disk-directed I/O for MIMD multiprocessors. In Proceedings of the 1994
Symposium on Operating Systems Design and Implementation, pages 61–74, November
1994. Updated as Dartmouth TR PCS-TR94-226 on November 8, 1994. 13.1

[44] O. Krämer and H. Mühlenbein. Mapping strategies in message-based multiprocessor
systems. Parallel Computing, 9:213–225, 1989. 7.1

[45] S. J. Lefflet, R. S. Fabry, W. N. Joy, P. Lapsley, S. Miller, and C. Torek. An advanced
4.4BSD interprocess communication tutorial, Unix programmer’s supplementary docu-
ments (PSD) 21. Technical report, Computer Systems Research Group, Depertment of
Electrical Engineering and Computer Science, University of California, Berkeley, 1993.
Also available at http://www.netbsd.org/Documentation/lite2/psd/. 10.5.5

[46] nCUBE Corporation. nCUBE 2 Programmers Guide, r2.0, December 1990. 1.2

[47] Bill Nitzberg. Performance of the iPSC/860 Concurrent File System. Technical Report
RND-92-020, NAS Systems Division, NASA Ames, December 1992. 13.1

[48] William J. Nitzberg. Collective Parallel I/O. PhD thesis, Department of Computer
and Information Science, University of Oregon, December 1995. 13.1

[49] 4.4BSD Programmer’s Supplementary Documents (PSD). O’Reilly and Associates,
1994. 10.5.5

[50] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Conference on
Hypercube Concurrent Computers and Applications, pages 384–390. ACM Press, 1988.
1.2

[51] Martin Schulz and Bronis R. de Supinski. PNMPI tools: A whole lot greater than
the sum of their parts. In ACM/IEEE Supercomputing Conference (SC), pages 1–10.
ACM, 2007. 14.2.8

[52] K. E. Seamons, Y. Chen, P. Jones, J. Jozwiak, and M. Winslett. Server-directed
collective I/O in Panda. In Proceedings of Supercomputing ’95, December 1995. 13.1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

BIBLIOGRAPHY 805

[53] A. Skjellum and A. Leung. Zipcode: a portable multicomputer communication library
atop the reactive kernel. In D. W. Walker and Q. F. Stout, editors, Proceedings of the
Fifth Distributed Memory Concurrent Computing Conference, pages 767–776. IEEE
Press, 1990. 1.2, 6.1.2

[54] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message passing
system. Technical report, Lawrence Livermore National Laboratory, September 1992.
1.2

[55] Anthony Skjellum, Nathan E. Doss, and Purushotham V. Bangalore. Writing Libraries
in MPI. In Anthony Skjellum and Donna S. Reese, editors, Proceedings of the Scalable
Parallel Libraries Conference, pages 166–173. IEEE Computer Society Press, October
1993. 6.1

[56] Anthony Skjellum, Nathan E. Doss, and Kishore Viswanathan. Inter-communicator
extensions to MPI in the MPIX (MPI eXtension) Library. Technical Report MSU-
940722, Mississippi State University — Dept. of Computer Science, April 1994.
http://www.erc.msstate.edu/mpi/mpix.html. 5.2.2

[57] Anthony Skjellum, Steven G. Smith, Nathan E. Doss, Alvin P. Leung, and Manfred
Morari. The Design and Evolution of Zipcode. Parallel Computing, 20(4):565–596,
April 1994. 6.1.2, 6.5.6

[58] Rajeev Thakur and Alok Choudhary. An extended two-phase method for accessing
sections of out-of-core arrays. Scientific Programming, 5(4):301–317, Winter 1996.
13.1

[59] The Unicode Standard, Version 2.0. Addison-Wesley, 1996. ISBN 0-201-48345-9. 13.7.2

[60] D. Walker. Standards for message passing in a distributed memory environment. Tech-
nical Report TM-12147, Oak Ridge National Laboratory, August 1992. 1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Examples Index

This index lists code examples throughout the text. Some examples are referred to by content;
others are listed by the major MPI function that they are demonstrating. MPI functions listed in all
capital letter are Fortran examples; MPI functions listed in mixed case are C examples.

ASYNCHRONOUS, 643, 645
Attributes between languages, 656

Basic tool using performance variables in the
MPI tool information interface, 584

C/Fortran handle conversion, 649
Cartesian virtual topologies, 329
Client-server code, 62, 63

with blocking probe, 66
with blocking probe, wrong, 66

Datatype
3D array, 121
absolute addresses, 127
array of structures, 124
elaborate example, 134, 136
matching type, 111
matrix transpose, 123
union, 128

Datatypes
matching, 33
not matching, 34
untyped, 34

Deadlock
if not buffered, 43
with MPI_Bcast, 214, 215
wrong message exchange, 43

False matching of collective operations, 218
Fortran 90 copying and sequence problem, 627,

629
Fortran 90 derived types, 631
Fortran 90 heterogeneous communication, 624
Fortran 90 invalid KIND, 620
Fortran 90 MPI_TYPE_MATCH_SIZE

implementation, 623
Fortran 90 overlapping communication and

computation, 643, 644, 646
Fortran 90 register optimization, 634–636

Independence of nonblocking operations, 221

Intercommunicator, 241, 245
Interlanguage communication, 660
Intertwined matching pairs, 41

Message exchange, 42
Mixing blocking and nonblocking collective

operations, 217
Mixing collective and point-to-point requests,

220
MPI_ACCUMULATE, 425
MPI_Accumulate, 467, 469
MPI_Aint, 124
MPI_Allgather, 167
MPI_ALLOC_MEM, 339
MPI_Alloc_mem, 339, 469
MPI_ALLREDUCE, 188
MPI_Alltoall, 219
MPI_Barrier, 358, 457–460, 466–468
MPI_Bcast, 149, 214–218
MPI_BSEND, 41
MPI_Buffer_attach, 45, 358
MPI_Buffer_detach, 45
MPI_BYTE, 34
MPI_Cancel, 358
MPI_CART_COORDS, 311
MPI_CART_GET, 329
MPI_CART_RANK, 311
MPI_CART_SHIFT, 311, 329
MPI_CART_SUB, 312
MPI_CHARACTER, 35
MPI_Comm_create, 241, 251, 252, 255
MPI_Comm_create_keyval, 279
MPI_Comm_dup, 254
MPI_Comm_get_attr, 279
MPI_Comm_group, 241, 255, 279
MPI_Comm_remote_size, 245
MPI_Comm_set_attr, 279
MPI_COMM_SPAWN, 376
MPI_Comm_spawn, 376
MPI_COMM_SPAWN_MULTIPLE, 382
MPI_Comm_spawn_multiple, 382

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

806

Examples Index 807

MPI_Comm_split, 245, 263, 264
MPI_Compare_and_swap, 468, 469
MPI_DIMS_CREATE, 293, 329
MPI_DIST_GRAPH_CREATE, 300
MPI_Dist_graph_create, 301
MPI_DIST_GRAPH_CREATE_ADJACENT,

300
MPI_FILE_CLOSE, 512, 515
MPI_FILE_GET_AMODE, 497
MPI_FILE_IREAD, 515
MPI_FILE_OPEN, 512, 515
MPI_FILE_READ, 512
MPI_FILE_SET_ATOMICITY, 546
MPI_FILE_SET_VIEW, 512, 515
MPI_FILE_SYNC, 546
MPI_Finalize, 358, 359
MPI_FREE_MEM, 339
MPI_Free_mem, 469
MPI_Gather, 136, 152, 153, 157
MPI_Gatherv, 136, 154–157
MPI_GET, 421, 422
MPI_Get, 457–459, 464–466
MPI_Get_accumulate, 467, 469
MPI_GET_ADDRESS, 102, 631, 632, 653
MPI_Get_address, 124, 127, 128, 134
MPI_GET_COUNT, 113
MPI_GET_ELEMENTS, 113
MPI_GRAPH_CREATE, 294, 307
MPI_GRAPH_NEIGHBORS, 307
MPI_GRAPH_NEIGHBORS_COUNT, 307
MPI_Grequest_complete, 477
MPI_Grequest_start, 477
MPI_Group_excl, 251
MPI_Group_free, 241, 251, 252
MPI_Group_incl, 241, 252, 255
MPI_Iallreduce, 220
MPI_Ialltoall, 219
MPI_Ibarrier, 217–220
MPI_Ibcast, 199, 220, 221
MPI_INFO_ENV, 357
MPI_Intercomm_create, 263, 264
MPI_Iprobe, 358
MPI_IRECV, 54–56, 62, 63
MPI_Irecv, 220
MPI_ISEND, 54–56, 62, 63
MPI_Op_create, 186, 187, 195
MPI_Pack, 134, 136
MPI_Pack_size, 136
MPI_PROBE, 66
MPI_Put, 442, 448, 458, 460, 464, 465
MPI_RECV, 33–35, 41–43, 56, 66, 111
MPI_Recv, 219
MPI_REDUCE, 177, 178, 181
MPI_Reduce, 180, 182, 186, 187

MPI_REQUEST_FREE, 55
MPI_Request_free, 358
MPI_Rget, 468
MPI_Rput, 468
MPI_Scan, 195
MPI_Scatter, 162
MPI_Scatterv, 162, 163
MPI_SEND, 33–35, 42, 43, 56, 66, 111
MPI_Send, 124, 127, 128, 134, 219, 220
MPI_SENDRECV, 121–123
MPI_SENDRECV_REPLACE, 311
MPI_SSEND, 41, 56
MPI_Test_cancelled, 358
MPI_TYPE_COMMIT, 109, 121–123, 421,

631, 632
MPI_Type_commit, 124, 127, 128, 134,

153–157, 163, 195
MPI_TYPE_CONTIGUOUS, 86, 104, 111, 113
MPI_Type_contiguous, 153
MPI_TYPE_CREATE_DARRAY, 101
MPI_TYPE_CREATE_HVECTOR, 121, 123
MPI_Type_create_hvector, 124, 127
MPI_TYPE_CREATE_INDEXED_BLOCK,

421
MPI_TYPE_CREATE_RESIZED, 631, 632
MPI_TYPE_CREATE_STRUCT, 93, 104,

123, 631, 632
MPI_Type_create_struct, 124, 127, 128, 134,

156, 157, 195
MPI_TYPE_CREATE_SUBARRAY, 554
MPI_TYPE_EXTENT, 421
MPI_TYPE_FREE, 421
MPI_Type_get_contents, 129
MPI_Type_get_envelope, 129
MPI_TYPE_GET_EXTENT, 121, 123, 422,

425
MPI_Type_get_extent, 124
MPI_TYPE_INDEXED, 89, 122
MPI_Type_indexed, 124, 127
MPI_TYPE_VECTOR, 86, 87, 121, 123
MPI_Type_vector, 154, 155, 157, 163
MPI_Unpack, 134, 136
MPI_User_function, 187
MPI_WAIT, 54–56, 62, 63, 515
MPI_Wait, 217–220
MPI_Waitall, 220, 468
MPI_WAITANY, 62
MPI_Waitany, 468
MPI_WAITSOME, 63
MPI_Win_attach, 469
MPI_Win_complete, 442, 459, 460, 465, 466
MPI_WIN_CREATE, 421, 422, 425
MPI_Win_create_dynamic, 469
MPI_Win_detach, 469

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

808 Examples Index

MPI_WIN_FENCE, 421, 422, 425
MPI_Win_fence, 464
MPI_Win_flush, 458, 467–469
MPI_Win_flush_all, 467
MPI_Win_flush_local, 457
MPI_WIN_FREE, 422, 425
MPI_Win_lock, 448, 457–460
MPI_Win_lock_all, 468, 469
MPI_Win_post, 459, 460, 465, 466
MPI_Win_start, 442, 459, 460, 465, 466
MPI_Win_sync, 457, 458, 467, 468
MPI_Win_unlock, 448, 457–460
MPI_Win_unlock_all, 468, 469
MPI_Win_wait, 459, 460, 465, 466
mpiexec, 357, 363

Neighborhood collective communication, 329
No Matching of Blocking and Nonblocking

collective operations, 219
Non-deterministic program with MPI_Bcast,

216
Non-overtaking messages, 41
Nonblocking operations, 54, 55

message ordering, 56
progress, 56

Overlapping Communicators, 220

Pipelining nonblocking collective operations,
220

Profiling interface, 558
Progression of nonblocking collective

operations, 219

Reading the value of a control variable in the
MPI tool information interface, 573

Threads and MPI, 483
Topologies, 329
Typemap, 85–87, 89, 93, 101

Using MPI_T_CVAR_GET_INFO to list all
names of control variables., 570

Virtual topologies, 329

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Constant and Predefined
Handle Index

This index lists predefined MPI constants and handles.

MPI::_LONG_LONG, 788
MPI::BOOL, 787
MPI::COMPLEX, 787
MPI::DOUBLE_COMPLEX, 787
MPI::F_COMPLEX16, 788
MPI::F_COMPLEX32, 788
MPI::F_COMPLEX4, 788
MPI::F_COMPLEX8, 788
MPI::INTEGER16, 788
MPI::LONG_DOUBLE_COMPLEX, 787
MPI::LONG_LONG, 788
MPI::REAL16, 788
MPI_2DOUBLE_PRECISION, 180, 669
MPI_2INT, 180, 669
MPI_2INTEGER, 180, 669
MPI_2REAL, 180, 669
MPI_ADDRESS_KIND, 15, 16, 16, 26, 266,

626, 655, 666
MPI_AINT, 25, 27, 177, 411, 667, 668, 793–795
MPI_ANY_SOURCE, 28, 29, 41, 51, 52, 64,

65, 67–69, 76, 79, 80, 287, 335, 665
MPI_ANY_TAG, 15, 28, 29, 31, 51, 52, 64, 65,

67–71, 76, 79–81, 665, 790
MPI_APPNUM, 396, 397, 672
MPI_ARGV_NULL, 16, 376, 377, 626, 674
MPI_ARGVS_NULL, 16, 381, 626, 674
MPI_ASYNC_PROTECTS_NONBLOCKING,

15, 600, 601, 603, 605, 608, 615, 617,
636, 666, 792

MPI_BAND, 176, 177, 670
MPI_BOR, 176, 177, 670
MPI_BOTTOM, 10, 16, 32, 101, 114, 115, 145,

298, 300, 378, 411, 415, 602, 604, 611,
626, 630, 633–635, 637–639, 641, 653,
654, 660, 665, 799

MPI_BSEND_OVERHEAD, 46, 665
MPI_BXOR, 176, 177, 670
MPI_BYTE, 25, 26, 33, 34, 36, 137, 177, 490,

531, 532, 544, 660, 667, 668, 796
MPI_C_BOOL, 26, 177, 667, 788, 793–795

MPI_C_COMPLEX, 26, 177, 667, 787,
793–795

MPI_C_DOUBLE_COMPLEX, 26, 177, 667,
793–795

MPI_C_FLOAT_COMPLEX, 177, 667,
793–795

MPI_C_LONG_DOUBLE_COMPLEX, 26,
177, 667, 793–795

MPI_CART, 302, 671
MPI_CHAR, 26, 36, 93, 178, 179, 565, 566,

667, 793
MPI_CHARACTER, 25, 34–36, 178, 179, 668
MPI_COMBINER_CONTIGUOUS, 116, 119,

673
MPI_COMBINER_DARRAY, 116, 121, 673
MPI_COMBINER_DUP, 116, 119, 673
MPI_COMBINER_F90_COMPLEX, 116, 121,

673
MPI_COMBINER_F90_INTEGER, 116, 121,

673
MPI_COMBINER_F90_REAL, 116, 121, 673
MPI_COMBINER_HINDEXED, 18, 116, 120,

673
MPI_COMBINER_HINDEXED_BLOCK, 116,

120, 673, 789
MPI_COMBINER_HINDEXED_INTEGER,

18, 598, 788
MPI_COMBINER_HVECTOR, 18, 116, 119,

673
MPI_COMBINER_HVECTOR_INTEGER,

18, 598, 788
MPI_COMBINER_INDEXED, 116, 120, 673
MPI_COMBINER_INDEXED_BLOCK, 116,

120, 673
MPI_COMBINER_NAMED, 116, 119, 673
MPI_COMBINER_RESIZED, 116, 121, 673
MPI_COMBINER_STRUCT, 18, 116, 120, 673
MPI_COMBINER_STRUCT_INTEGER, 18,

598, 788
MPI_COMBINER_SUBARRAY, 116, 120, 673

809

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

810 MPI Constant and Predefined Handle Index

MPI_COMBINER_VECTOR, 116, 119, 673
MPI_COMM_DUP_FN, 18, 269, 671, 792
MPI_COMM_NULL, 227, 240, 241, 243–245,

247, 248, 283, 292, 294, 379, 398–400,
670, 797

MPI_COMM_NULL_COPY_FN, 18, 269, 602,
654, 671, 792

MPI_COMM_NULL_DELETE_FN, 18, 269,
671

MPI_COMM_PARENT, 283
MPI_COMM_SELF, 227, 243, 266, 283, 361,

398, 492, 669, 795
MPI_COMM_TYPE_SHARED, 248, 669, 790
MPI_COMM_WORLD, 15, 22, 27, 28, 227,

229, 236, 237, 252, 261, 283, 293,
334–336, 340, 342, 351, 357, 359, 360,
362, 371, 372, 374, 375, 379, 381,
395–398, 486, 530, 549, 550, 572, 580,
648, 659, 669, 798

MPI_COMPLEX, 25, 177, 534, 618, 668
MPI_COMPLEX16, 177, 668
MPI_COMPLEX32, 177, 668
MPI_COMPLEX4, 177, 668
MPI_COMPLEX8, 177, 668
MPI_CONGRUENT, 237, 259, 669
MPI_CONVERSION_FN_NULL, 539, 671
MPI_COUNT, 25, 27, 177, 565, 667, 668, 789
MPI_COUNT_KIND, 15, 26, 666
MPI_CXX_BOOL, 27, 177, 668, 787
MPI_CXX_DOUBLE_COMPLEX, 27, 177,

668, 787
MPI_CXX_FLOAT_COMPLEX, 27, 177, 668,

787
MPI_CXX_LONG_DOUBLE_COMPLEX, 27,

177, 668, 787
MPI_DATATYPE_NULL, 110, 670
MPI_DISPLACEMENT_CURRENT, 502,

674, 799
MPI_DIST_GRAPH, 302, 671, 794
MPI_DISTRIBUTE_BLOCK, 98, 674
MPI_DISTRIBUTE_CYCLIC, 98, 674
MPI_DISTRIBUTE_DFLT_DARG, 98, 674
MPI_DISTRIBUTE_NONE, 98, 674
MPI_DOUBLE, 26, 176, 565, 574–576, 617,

667
MPI_DOUBLE_COMPLEX, 25, 177, 534, 618,

668
MPI_DOUBLE_INT, 180, 669
MPI_DOUBLE_PRECISION, 25, 176, 618,

668
MPI_DUP_FN, 18, 269, 594, 672
MPI_ERR_ACCESS, 349, 495, 551, 664
MPI_ERR_AMODE, 349, 493, 551, 664
MPI_ERR_ARG, 348, 663

MPI_ERR_ASSERT, 348, 452, 664
MPI_ERR_BAD_FILE, 349, 551, 664
MPI_ERR_BASE, 338, 348, 452, 664
MPI_ERR_BUFFER, 348, 663
MPI_ERR_COMM, 348, 663
MPI_ERR_CONVERSION, 349, 539, 551, 664
MPI_ERR_COUNT, 348, 663
MPI_ERR_DIMS, 348, 663
MPI_ERR_DISP, 348, 452, 664
MPI_ERR_DUP_DATAREP, 349, 537, 551,

664
MPI_ERR_FILE, 349, 551, 664
MPI_ERR_FILE_EXISTS, 349, 551, 664
MPI_ERR_FILE_IN_USE, 349, 495, 551, 664
MPI_ERR_GROUP, 348, 663
MPI_ERR_IN_STATUS, 30, 32, 53, 59, 61,

342, 348, 477, 507, 664
MPI_ERR_INFO, 348, 664
MPI_ERR_INFO_KEY, 348, 366, 664
MPI_ERR_INFO_NOKEY, 348, 367, 664
MPI_ERR_INFO_VALUE, 348, 366, 664
MPI_ERR_INTERN, 348, 663
MPI_ERR_IO, 349, 551, 664
MPI_ERR_KEYVAL, 279, 348, 664
MPI_ERR_LASTCODE, 347, 349, 351, 352,

590, 665
MPI_ERR_LOCKTYPE, 348, 452, 664
MPI_ERR_NAME, 348, 392, 664
MPI_ERR_NO_MEM, 338, 348, 664
MPI_ERR_NO_SPACE, 349, 551, 664
MPI_ERR_NO_SUCH_FILE, 349, 494, 551,

664
MPI_ERR_NOT_SAME, 349, 551, 664
MPI_ERR_OP, 348, 452, 663
MPI_ERR_OTHER, 347, 348, 663
MPI_ERR_PENDING, 59, 348, 663
MPI_ERR_PORT, 348, 389, 664
MPI_ERR_QUOTA, 349, 551, 664
MPI_ERR_RANK, 348, 452, 663
MPI_ERR_READ_ONLY, 349, 551, 664
MPI_ERR_REQUEST, 348, 663
MPI_ERR_RMA_ATTACH, 349, 452, 664
MPI_ERR_RMA_CONFLICT, 348, 452, 664
MPI_ERR_RMA_FLAVOR, 349, 409, 452, 664
MPI_ERR_RMA_RANGE, 349, 452, 664
MPI_ERR_RMA_SHARED, 349, 452, 664
MPI_ERR_RMA_SYNC, 348, 452, 664
MPI_ERR_ROOT, 348, 663
MPI_ERR_SERVICE, 348, 391, 664
MPI_ERR_SIZE, 348, 452, 664
MPI_ERR_SPAWN, 348, 377, 378, 664
MPI_ERR_TAG, 348, 663
MPI_ERR_TOPOLOGY, 348, 663
MPI_ERR_TRUNCATE, 348, 663

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Constant and Predefined Handle Index 811

MPI_ERR_TYPE, 348, 663
MPI_ERR_UNKNOWN, 347, 348, 663
MPI_ERR_UNSUPPORTED_DATAREP, 349,

551, 664
MPI_ERR_UNSUPPORTED_OPERATION,

349, 551, 664
MPI_ERR_WIN, 348, 452, 664
MPI_ERRCODES_IGNORE, 16, 378, 626, 674
MPI_ERRHANDLER_NULL, 346, 670
MPI_ERROR, 30, 53, 197, 430, 666, 791
MPI_ERRORS_ARE_FATAL, 340, 341, 353,

452, 549, 666
MPI_ERRORS_RETURN, 340, 341, 354, 550,

659, 666
MPI_F08_STATUS_IGNORE, 651, 675, 791
MPI_F08_STATUSES_IGNORE, 651, 675, 791
MPI_F_STATUS_IGNORE, 650, 675
MPI_F_STATUSES_IGNORE, 650, 675
MPI_FILE_NULL, 494, 550, 670
MPI_FLOAT, 26, 93, 174, 176, 533, 667
MPI_FLOAT_INT, 12, 180, 669
MPI_GRAPH, 302, 671
MPI_GROUP_EMPTY, 226, 232, 240, 241,

243, 670
MPI_GROUP_NULL, 226, 235, 670
MPI_HOST, 335, 669
MPI_IDENT, 229, 237, 669
MPI_IN_PLACE, 16, 144, 171, 605, 626, 665
MPI_INFO_ENV, 356, 357, 669, 790
MPI_INFO_NULL, 300, 370, 378, 387, 493,

494, 503, 670
MPI_INT, 12, 26, 84, 176, 533, 534, 565, 566,

569, 574, 578, 617, 659, 661, 667
MPI_INT16_T, 26, 176, 667, 793–795
MPI_INT32_T, 26, 176, 667, 793–795
MPI_INT64_T, 26, 176, 667, 793–795
MPI_INT8_T, 26, 176, 667, 793–795
MPI_INTEGER, 25, 33, 176, 617, 618, 661,

668
MPI_INTEGER1, 25, 176, 668
MPI_INTEGER16, 176, 668
MPI_INTEGER2, 25, 176, 534, 668
MPI_INTEGER4, 25, 176, 668
MPI_INTEGER8, 176, 621, 668
MPI_INTEGER_KIND, 15, 666
MPI_IO, 335, 669
MPI_KEYVAL_INVALID, 270, 271, 665
MPI_LAND, 176, 177, 670
MPI_LASTUSEDCODE, 351, 672
MPI_LB, 18, 598, 788
MPI_LOCK_EXCLUSIVE, 445, 665
MPI_LOCK_SHARED, 445, 446, 665
MPI_LOGICAL, 25, 177, 668
MPI_LONG, 26, 176, 667

MPI_LONG_DOUBLE, 26, 176, 667
MPI_LONG_DOUBLE_INT, 180, 669
MPI_LONG_INT, 180, 669
MPI_LONG_LONG, 26, 176, 667, 795
MPI_LONG_LONG_INT, 26, 176, 667, 795
MPI_LOR, 176, 177, 670
MPI_LXOR, 176, 177, 670
MPI_MAX, 174, 176, 177, 194, 670
MPI_MAX_DATAREP_STRING, 15, 504,

537, 666
MPI_MAX_ERROR_STRING, 15, 347, 352,

666
MPI_MAX_INFO_KEY, 15, 348, 365, 368, 666
MPI_MAX_INFO_VAL, 15, 348, 365, 666
MPI_MAX_LIBRARY_VERSION_STRING,

15, 334, 666, 788
MPI_MAX_OBJECT_NAME, 15, 282–284,

666, 790, 796
MPI_MAX_PORT_NAME, 15, 387, 666
MPI_MAX_PROCESSOR_NAME, 15, 336,

337, 666, 797
MPI_MAXLOC, 176, 179, 180, 183, 670
MPI_MESSAGE_NO_PROC, 68, 70, 71, 665,

789
MPI_MESSAGE_NULL, 68, 70, 71, 670, 789
MPI_MIN, 176, 177, 670
MPI_MINLOC, 176, 179, 180, 183, 670
MPI_MODE_APPEND, 492, 493, 673
MPI_MODE_CREATE, 492, 493, 501, 673
MPI_MODE_DELETE_ON_CLOSE, 492–494,

673
MPI_MODE_EXCL, 492, 493, 673
MPI_MODE_NOCHECK, 446, 450, 451, 673
MPI_MODE_NOPRECEDE, 441, 450, 451,

673
MPI_MODE_NOPUT, 450, 451, 673
MPI_MODE_NOSTORE, 450, 451, 673
MPI_MODE_NOSUCCEED, 450, 451, 673
MPI_MODE_RDONLY, 492, 493, 498, 673
MPI_MODE_RDWR, 492, 493, 673
MPI_MODE_SEQUENTIAL, 492, 493, 495,

496, 502, 507, 511, 522, 543, 673, 799
MPI_MODE_UNIQUE_OPEN, 492, 493, 673
MPI_MODE_WRONLY, 492, 493, 673
MPI_NO_OP, 427, 428, 670
MPI_NULL_COPY_FN, 18, 269, 594, 672
MPI_NULL_DELETE_FN, 18, 269, 594, 672
MPI_OFFSET, 25, 177, 667, 668, 793–795
MPI_OFFSET_KIND, 15, 16, 26, 544, 626, 666
MPI_OP_NULL, 186, 670
MPI_ORDER_C, 14, 95, 98, 99, 674
MPI_ORDER_FORTRAN, 14, 95, 98, 674
MPI_PACKED, 12, 25, 26, 33, 131, 133, 137,

534, 660, 667, 668

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

812 MPI Constant and Predefined Handle Index

MPI_PROC_NULL, 24, 27, 29, 30, 65, 68–71,
80, 81, 146, 148, 150, 152, 160, 162,
175, 229, 310, 314, 335, 409, 417, 665,
789, 796, 798

MPI_PROD, 176, 177, 670
MPI_REAL, 25, 33, 176, 534, 617, 618, 624,

668
MPI_REAL16, 177, 668
MPI_REAL2, 25, 177, 668
MPI_REAL4, 25, 177, 617, 621, 668
MPI_REAL8, 25, 177, 617, 668, 793
MPI_REPLACE, 425–428, 468, 670, 795, 798
MPI_REQUEST_NULL, 52–55, 57–61, 476,

670
MPI_ROOT, 146, 665
MPI_SEEK_CUR, 516, 522, 674
MPI_SEEK_END, 516, 522, 674
MPI_SEEK_SET, 516, 517, 522, 674
MPI_SHORT, 26, 176, 667
MPI_SHORT_INT, 180, 669
MPI_SIGNED_CHAR, 26, 176, 178, 179, 667,

795
MPI_SIMILAR, 229, 237, 259, 669
MPI_SOURCE, 30, 197, 666, 791
MPI_STATUS_IGNORE, 10, 16, 32, 475, 507,

604, 626, 650, 651, 660, 674, 675, 789
MPI_STATUS_SIZE, 15, 30, 606, 666, 791
MPI_STATUSES_IGNORE, 14, 16, 32, 475,

477, 626, 650, 651, 674, 675
MPI_SUBARRAYS_SUPPORTED, 15, 600,

601, 604–608, 612–615, 627–629, 666,
791

MPI_SUBVERSION, 15, 334, 675
MPI_SUCCESS, 19, 52, 59, 61, 269, 271–274,

276, 277, 347, 348, 350, 353, 354, 378,
539, 561, 570, 578, 581, 583, 588, 590,
591, 594, 663

MPI_SUM, 176, 177, 659, 670
MPI_T_BIND_MPI_COMM, 563, 676
MPI_T_BIND_MPI_DATATYPE, 563, 676
MPI_T_BIND_MPI_ERRHANDLER, 563,

676
MPI_T_BIND_MPI_FILE, 563, 676
MPI_T_BIND_MPI_GROUP, 563, 676
MPI_T_BIND_MPI_INFO, 563, 676
MPI_T_BIND_MPI_MESSAGE, 563, 676
MPI_T_BIND_MPI_OP, 563, 676
MPI_T_BIND_MPI_REQUEST, 563, 676
MPI_T_BIND_MPI_WIN, 563, 676
MPI_T_BIND_NO_OBJECT, 563, 569, 571,

578, 580, 676
MPI_T_CVAR_HANDLE_NULL, 572, 675
MPI_T_CVAR_READ, WRITE, 591
MPI_T_ENUM_NULL, 569, 578, 675

MPI_T_ERR_CANNOT_INIT, 591, 665
MPI_T_ERR_CVAR_SET_NEVER, 573, 591,

665
MPI_T_ERR_CVAR_SET_NOT_NOW, 573,

591, 665
MPI_T_ERR_INVALID, 591, 665
MPI_T_ERR_INVALID_HANDLE, 580, 591,

665
MPI_T_ERR_INVALID_INDEX, 591, 665
MPI_T_ERR_INVALID_ITEM, 591, 665
MPI_T_ERR_INVALID_NAME, 570, 578,

588, 591
MPI_T_ERR_INVALID_SESSION, 591, 665
MPI_T_ERR_MEMORY, 591, 665
MPI_T_ERR_NOT_INITIALIZED, 591, 665
MPI_T_ERR_OUT_OF_HANDLES, 591, 665
MPI_T_ERR_OUT_OF_SESSIONS, 591, 665
MPI_T_ERR_PVAR_NO_ATOMIC, 583, 591,

665
MPI_T_ERR_PVAR_NO_STARTSTOP, 581,

591, 665
MPI_T_ERR_PVAR_NO_WRITE, 582, 583,

591, 665
MPI_T_PVAR_ALL_HANDLES, 581–584, 676
MPI_T_PVAR_CLASS_AGGREGATE, 575,

576, 676
MPI_T_PVAR_CLASS_COUNTER, 575, 676
MPI_T_PVAR_CLASS_GENERIC, 576, 676
MPI_T_PVAR_CLASS_HIGHWATERMARK,

575, 676
MPI_T_PVAR_CLASS_LEVEL, 574, 676
MPI_T_PVAR_CLASS_LOWWATERMARK,

575, 676
MPI_T_PVAR_CLASS_PERCENTAGE, 575,

676
MPI_T_PVAR_CLASS_SIZE, 575, 676
MPI_T_PVAR_CLASS_STATE, 574, 676
MPI_T_PVAR_CLASS_TIMER, 576, 676
MPI_T_PVAR_HANDLE_NULL, 581, 675
MPI_T_PVAR_SESSION_NULL, 579, 675
MPI_T_SCOPE_ALL, 569, 676
MPI_T_SCOPE_ALL_EQ, 569, 573, 676
MPI_T_SCOPE_CONSTANT, 569, 676
MPI_T_SCOPE_GROUP, 569, 676
MPI_T_SCOPE_GROUP_EQ, 569, 573, 676
MPI_T_SCOPE_LOCAL, 569, 676
MPI_T_SCOPE_READONLY, 569, 676
MPI_T_VERBOSITY_MPIDEV_ALL, 562,

675
MPI_T_VERBOSITY_MPIDEV_BASIC, 562,

675
MPI_T_VERBOSITY_MPIDEV_DETAIL,

562, 675
MPI_T_VERBOSITY_TUNER_ALL, 562, 675

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Constant and Predefined Handle Index 813

MPI_T_VERBOSITY_TUNER_BASIC, 562,
675

MPI_T_VERBOSITY_TUNER_DETAIL, 562,
675

MPI_T_VERBOSITY_USER_ALL, 562, 675
MPI_T_VERBOSITY_USER_BASIC, 562,

675
MPI_T_VERBOSITY_USER_DETAIL, 562,

675
MPI_TAG, 30, 197, 666, 791
MPI_TAG_UB, 27, 335, 655, 658, 669
MPI_THREAD_FUNNELED, 485, 486, 673
MPI_THREAD_MULTIPLE, 485, 486, 488,

673
MPI_THREAD_SERIALIZED, 485, 486, 673
MPI_THREAD_SINGLE, 485–487, 673
MPI_TYPE_DUP_FN, 276, 671
MPI_TYPE_NULL_COPY_FN, 276, 671
MPI_TYPE_NULL_DELETE_FN, 276, 671,

792
MPI_TYPECLASS_COMPLEX, 623, 674
MPI_TYPECLASS_INTEGER, 623, 674
MPI_TYPECLASS_REAL, 623, 674
MPI_UB, 4, 18, 598, 788
MPI_UINT16_T, 26, 176, 667, 793–795
MPI_UINT32_T, 26, 176, 667, 793–795
MPI_UINT64_T, 26, 176, 667, 793–795
MPI_UINT8_T, 26, 176, 667, 793–795
MPI_UNDEFINED, 31, 58, 61, 62, 103, 106,

108, 113, 134, 228, 229, 244, 245, 302,
312, 313, 619, 665, 789, 796

MPI_UNEQUAL, 229, 237, 259, 669
MPI_UNIVERSE_SIZE, 374, 395, 396, 672
MPI_UNSIGNED, 26, 176, 565, 574–576, 667
MPI_UNSIGNED_CHAR, 26, 176, 178, 179,

667
MPI_UNSIGNED_LONG, 26, 176, 565,

574–576, 667
MPI_UNSIGNED_LONG_LONG, 26, 176,

565, 574–576, 667, 795
MPI_UNSIGNED_SHORT, 26, 176, 667
MPI_UNWEIGHTED, 16, 297, 298, 300, 301,

308, 309, 626, 674, 788, 794
MPI_VAL, 12, 648
MPI_VERSION, 15, 334, 675
MPI_WCHAR, 26, 178, 179, 284, 534, 667, 795
MPI_WEIGHTS_EMPTY, 297, 298, 300, 626,

674, 788
MPI_WIN_BASE, 414, 659, 672
MPI_WIN_CREATE_FLAVOR, 414, 672
MPI_WIN_DISP_UNIT, 414, 672
MPI_WIN_DUP_FN, 273, 671
MPI_WIN_FLAVOR_ALLOCATE, 414, 672
MPI_WIN_FLAVOR_CREATE, 414, 672

MPI_WIN_FLAVOR_DYNAMIC, 414, 672
MPI_WIN_FLAVOR_SHARED, 415, 672
MPI_WIN_MODEL, 414, 436, 672
MPI_WIN_NULL, 413, 670
MPI_WIN_NULL_COPY_FN, 273, 671
MPI_WIN_NULL_DELETE_FN, 273, 671
MPI_WIN_SEPARATE, 415, 436, 454, 672
MPI_WIN_SIZE, 414, 672
MPI_WIN_UNIFIED, 415, 436, 455, 463, 672
MPI_WTIME_IS_GLOBAL, 335, 336, 355,

655, 669

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Declarations Index

This index refers to declarations needed in C, such as address kind integers, handles, etc. The
underlined page numbers is the “main” reference (sometimes there are more than one when key
concepts are discussed in multiple areas).

MPI_Aint, 16, 16, 17, 19, 25, 85, 85, 87, 90, 93,
101, 105–107, 117, 138, 139, 403, 405,
407, 410, 411, 418, 420, 424, 426,
428–432, 434, 533, 537, 626, 655, 677

MPI_Comm, 12, 24, 230, 235–240, 242, 244,
247, 248, 249, 259–262, 268, 270–272,
669, 670, 677

MPI_Count, 17, 17, 25, 677, 789
MPI_Datatype, 85, 635, 667–670, 677
MPI_ERR_. . . , 347
MPI_Errhandler, 341, 342–346, 649, 666, 670,

677
MPI_F08_status, 651, 675, 677, 791
MPI_File, 345, 346, 353, 491, 493, 495–497,

499, 501, 504, 507–511, 513–523,
525–530, 533, 541, 542, 649, 670, 677

MPI_Fint, 648, 648, 675, 677, 795
MPI_Group, 228, 228, 229–235, 240, 260, 415,

441, 443, 497, 648, 649, 670, 677
MPI_Info, 337, 365, 365, 366–369, 374, 377,

380, 386, 388–392, 416, 491, 494, 499,
501, 649, 669, 670, 677, 798

MPI_Message, 68, 649, 665, 670, 677, 789
MPI_Offset, 16, 16, 17, 19, 25, 495, 496, 501,

504, 507–510, 516, 517, 522, 523, 525,
526, 537, 544, 544, 647, 677

MPI_Op, 174, 183, 185, 187, 189–191, 193,
194, 209–214, 424, 426, 428, 432, 434,
649, 670, 677

MPI_Request, 49–51, 53, 54, 55, 57–61, 64, 71,
74–77, 474, 477, 510, 514, 515, 519,
520, 628, 649, 670, 677

MPI_Status, 28, 30–32, 53, 54, 57–61, 64, 65,
68–70, 72, 79, 80, 112, 474, 480, 481,
507–509, 511, 513, 514, 518, 519, 521,
525–530, 603, 650–652, 674, 677, 789,
791

MPI_T_cvar_handle, 571, 571, 572, 573, 675
MPI_T_enum, 566, 566, 567, 568, 577, 675
MPI_T_pvar_handle, 579, 579, 580–583, 675

MPI_T_pvar_session, 579, 579, 580–583, 675
MPI_Win, 273–275, 284, 285, 344, 353, 403,

405, 407, 410, 413, 415, 416, 418, 420,
424, 426, 428–432, 434, 440–450, 649,
670, 677

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

814

MPI Callback Function Prototype
Index

This index lists the C typedef names for callback routines, such as those used with attribute caching
or user-defined reduction operations. Fortran example prototypes are given near the text of the C
name.

MPI_Comm_copy_attr_function, 18, 19, 268,
602, 671, 678

MPI_Comm_delete_attr_function, 18, 268,
671, 678

MPI_Comm_errhandler_fn, 596, 794
MPI_Comm_errhandler_function, 18, 342, 596,

598, 678, 794
MPI_Copy_function, 18, 593, 672, 683
MPI_Datarep_conversion_function, 537, 671,

678
MPI_Datarep_extent_function, 537, 678
MPI_Delete_function, 18, 594, 672, 683
MPI_File_errhandler_fn, 596, 794
MPI_File_errhandler_function, 345, 596, 678,

794
MPI_Grequest_cancel_function, 476, 678
MPI_Grequest_free_function, 475, 678
MPI_Grequest_query_function, 475, 678
MPI_Handler_function, 18, 598, 788
MPI_Type_copy_attr_function, 276, 671, 678
MPI_Type_delete_attr_function, 276, 671,

678, 792
MPI_User_function, 183, 187, 678
MPI_Win_copy_attr_function, 273, 671, 678
MPI_Win_delete_attr_function, 273, 671, 678
MPI_Win_errhandler_fn, 596, 794
MPI_Win_errhandler_function, 344, 596, 678,

794

815

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Function Index

The underlined page numbers refer to the function definitions.

MPI_ABORT, 184, 340, 357, 360, 398, 565,
648, 798

MPI_ACCUMULATE, 401, 417, 424, 425, 427,
433, 437, 461, 467, 468, 795, 798

MPI_ADD_ERROR_CLASS, 350, 351
MPI_ADD_ERROR_CODE, 351
MPI_ADD_ERROR_STRING, 352, 352
MPI_ADDRESS, 18, 597, 611, 788
MPI_ALLGATHER, 141, 145, 146, 165, 165,

166–168, 204
MPI_ALLGATHERV, 141, 145, 146, 166, 167,

205
MPI_ALLOC_MEM, 337, 338, 339, 348,

404–409, 412, 419, 447, 612–614, 626,
792

MPI_ALLOC_MEM_CPTR, 338
MPI_ALLREDUCE, 141, 144–146, 176, 183,

187, 188, 210, 796
MPI_ALLTOALL, 141, 145, 146, 168, 168,

169–171, 206, 793
MPI_ALLTOALLV, 141, 145, 146, 170, 170,

171, 173, 207, 793
MPI_ALLTOALLW, 141, 145, 146, 172, 173,

209, 793
MPI_ATTR_DELETE, 18, 279, 594, 595
MPI_ATTR_GET, 18, 279, 595, 655, 656
MPI_ATTR_PUT, 18, 279, 595, 655, 656, 658,

659
MPI_BARRIER, 141, 145, 147, 147, 148, 198,

457–459, 546
MPI_BCAST, 141, 145, 148, 148, 149, 175,

199, 218
MPI_BSEND, 38, 46
MPI_BSEND_INIT, 74, 77
MPI_BUFFER_ATTACH, 44, 53
MPI_BUFFER_DETACH, 45, 791
MPI_CANCEL, 41, 53, 64, 71, 71, 72, 73, 197,

358, 430, 473, 476, 477
MPI_CART_COORDS, 291, 305, 305, 797
MPI_CART_CREATE, 258, 290–292, 292,

293, 294, 304, 312–314, 627, 796
MPI_CART_GET, 291, 304, 304, 797

MPI_CART_MAP, 291, 312, 313, 790
MPI_CART_RANK, 291, 305, 305, 797
MPI_CART_SHIFT, 291, 310, 310, 311, 314,

797
MPI_CART_SUB, 291, 311, 312, 313, 797
MPI_CARTDIM_GET, 291, 304, 304, 797
MPI_CLOSE_PORT, 387, 387, 391
MPI_COMM_ACCEPT, 386, 388, 388, 389,

396, 397
MPI_COMM_C2F, 648
MPI_COMM_CALL_ERRHANDLER, 352,

354
MPI_COMM_COMPARE, 237, 259
MPI_COMM_CONNECT, 348, 389, 389, 396,

397
MPI_COMM_CREATE, 235, 237, 240, 240,

241–245, 291, 794
MPI_COMM_CREATE_ERRHANDLER, 18,

341, 341, 343, 597, 680, 682, 792
MPI_COMM_CREATE_GROUP, 237, 242,

243, 244, 790
MPI_COMM_CREATE_KEYVAL, 18, 266,

267, 269, 270, 279, 593, 654, 655, 679,
681, 792, 796

MPI_COMM_DELETE_ATTR, 18, 266,
269–271, 272, 279, 595

MPI_COMM_DISCONNECT, 279, 379, 397,
398, 398

MPI_COMM_DUP, 230, 235, 237, 238, 238,
239, 241, 248, 249, 260, 262, 266, 269,
272, 279, 286, 593, 790

MPI_COMM_DUP_FN, 18, 269, 269, 270,
607, 671, 792

MPI_COMM_DUP_WITH_INFO, 237, 238,
239, 248, 789

MPI_COMM_F2C, 648
MPI_COMM_FREE, 235, 238, 248, 248, 260,

262, 269, 270, 272, 279, 357, 361, 379,
397, 398, 594

MPI_COMM_FREE_KEYVAL, 18, 266, 270,
279, 594

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

816

MPI Function Index 817

MPI_COMM_GET_ATTR, 18, 266, 271, 271,
279, 334, 595, 608, 655, 656, 658

MPI_COMM_GET_ERRHANDLER, 18, 341,
343, 597, 797

MPI_COMM_GET_INFO, 249, 250, 790
MPI_COMM_GET_NAME, 282, 282, 283, 796
MPI_COMM_GET_PARENT, 283, 375, 378,

378, 379
MPI_COMM_GROUP, 14, 227, 230, 230, 235,

236, 259, 341, 798
MPI_COMM_IDUP, 235, 237, 239, 239, 248,

249, 257, 266, 269, 272, 279, 790
MPI_COMM_JOIN, 399, 399, 400
MPI_COMM_NULL_COPY_FN, 18, 269, 269,

270, 602, 654, 671, 792
MPI_COMM_NULL_DELETE_FN, 18, 269,

269, 270, 671
MPI_COMM_RANK, 236, 236, 259, 609
MPI_COMM_RANK_F08, 609
MPI_COMM_REMOTE_GROUP, 260
MPI_COMM_REMOTE_SIZE, 260, 260
MPI_COMM_SET_ATTR, 18, 266, 269, 270,

279, 594, 608, 655, 656, 659
MPI_COMM_SET_ERRHANDLER, 18, 341,

342, 597
MPI_COMM_SET_INFO, 248, 249, 249, 789
MPI_COMM_SET_NAME, 281, 281, 282
MPI_COMM_SIZE, 235, 236, 259
MPI_COMM_SPAWN, 356, 362, 363, 372–374,

374, 375, 377–379, 381–383, 395–397
MPI_COMM_SPAWN_MULTIPLE, 356, 363,

372, 373, 378, 380, 381, 396, 397
MPI_COMM_SPLIT, 237, 240, 241, 244, 244,

245, 246, 286, 291, 292, 294, 312–314,
794

MPI_COMM_SPLIT_TYPE, 247, 248, 790
MPI_COMM_TEST_INTER, 258, 259
MPI_COMM_WORLD, 487
MPI_COMPARE_AND_SWAP, 401, 417, 429,

467
MPI_CONVERSION_FN_NULL, 539, 671
MPI_CWIN_GET_ATTR, 608
MPI_DIMS_CREATE, 291, 293, 293
MPI_DIST_GRAPH_CREATE, 248, 290, 291,

296, 298, 299, 301, 309, 310, 314, 794
MPI_DIST_GRAPH_CREATE_ADJACENT,

248, 290, 291, 296, 296, 297, 301, 309,
314, 790, 794

MPI_DIST_GRAPH_NEIGHBOR_COUNT,
310

MPI_DIST_GRAPH_NEIGHBORS, 291, 308,
309, 309, 314, 790, 794

MPI_DIST_GRAPH_NEIGHBORS_COUNT,
291, 308, 308, 309, 788, 794

MPI_DUP_FN, 18, 269, 594, 672
MPI_ERRHANDLER_C2F, 649
MPI_ERRHANDLER_CREATE, 18, 597, 788,

792
MPI_ERRHANDLER_F2C, 649
MPI_ERRHANDLER_FREE, 341, 346, 357,

797
MPI_ERRHANDLER_GET, 18, 597, 788, 798
MPI_ERRHANDLER_SET, 18, 597, 788
MPI_ERROR_CLASS, 347, 350, 350, 590
MPI_ERROR_STRING, 347, 347, 350, 352
MPI_EXSCAN, 142, 145, 176, 183, 194, 194,

214, 794
MPI_F_SYNC_REG, 102, 600, 616, 616, 617,

636–639, 641, 792
MPI_FETCH_AND_OP, 401, 417, 425, 427,

428, 428
MPI_FILE_C2F, 649
MPI_FILE_CALL_ERRHANDLER, 353, 354
MPI_FILE_CLOSE, 398, 491, 492, 493, 494
MPI_FILE_CREATE_ERRHANDLER, 341,

345, 346, 680, 682, 792
MPI_FILE_DELETE, 493, 494, 494, 498, 501,

550
MPI_FILE_F2C, 649
MPI_FILE_GET_AMODE, 497, 497
MPI_FILE_GET_ATOMICITY, 542, 542
MPI_FILE_GET_BYTE_OFFSET, 511, 517,

517, 523
MPI_FILE_GET_ERRHANDLER, 341, 346,

550, 797
MPI_FILE_GET_GROUP, 497, 497
MPI_FILE_GET_INFO, 499, 499, 501, 799
MPI_FILE_GET_POSITION, 516, 517
MPI_FILE_GET_POSITION_SHARED, 522,

523, 523, 543
MPI_FILE_GET_SIZE, 496, 497, 545
MPI_FILE_GET_TYPE_EXTENT, 532, 533,

533, 539
MPI_FILE_GET_VIEW, 504, 504
MPI_FILE_IXXX, 506
MPI_FILE_IREAD, 505, 514, 515, 523, 540
MPI_FILE_IREAD_AT, 505, 510, 510
MPI_FILE_IREAD_SHARED, 505, 519, 520
MPI_FILE_IWRITE, 505, 515, 516
MPI_FILE_IWRITE_AT, 505, 510, 511
MPI_FILE_IWRITE_SHARED, 505, 520, 520
MPI_FILE_OPEN, 349, 484, 491, 491, 492,

493, 498, 500–502, 517, 544, 545, 550,
551

MPI_FILE_PREALLOCATE, 495, 496, 496,
541, 545

MPI_FILE_READ, 504, 505, 511, 512, 513,
515, 544, 545

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

818 MPI Function Index

MPI_FILE_READ_ALL, 505, 513, 513, 524
MPI_FILE_READ_ALL_BEGIN, 505, 524,

527, 540, 640
MPI_FILE_READ_ALL_END, 505, 524, 527,

540, 640
MPI_FILE_READ_AT, 505, 507, 508, 510
MPI_FILE_READ_AT_ALL, 505, 508, 508
MPI_FILE_READ_AT_ALL_BEGIN, 505,

525, 640
MPI_FILE_READ_AT_ALL_END, 505, 525,

640
MPI_FILE_READ_ORDERED, 505, 521, 521
MPI_FILE_READ_ORDERED_BEGIN, 505,

528, 640
MPI_FILE_READ_ORDERED_END, 505,

529, 640
MPI_FILE_READ_SHARED, 505, 518, 518,

520, 521
MPI_FILE_SEEK, 516, 516, 517
MPI_FILE_SEEK_SHARED, 522, 522, 523,

543
MPI_FILE_SET_ATOMICITY, 493, 541, 541,

542
MPI_FILE_SET_ERRHANDLER, 341, 345,

550
MPI_FILE_SET_INFO, 498, 499, 499, 500,

501, 798
MPI_FILE_SET_SIZE, 495, 495, 496, 541,

543, 545
MPI_FILE_SET_VIEW, 96, 349, 492, 498,

500, 501, 501, 502, 503, 517, 523, 531,
536, 544, 551, 798, 799

MPI_FILE_SYNC, 494, 505, 540, 541, 542,
543, 548

MPI_FILE_WRITE, 504, 505, 513, 514, 516,
544

MPI_FILE_WRITE_ALL, 505, 514, 514
MPI_FILE_WRITE_ALL_BEGIN, 505, 527,

628, 640
MPI_FILE_WRITE_ALL_END, 505, 528, 640
MPI_FILE_WRITE_AT, 505, 509, 509, 510,

511
MPI_FILE_WRITE_AT_ALL, 505, 509, 510
MPI_FILE_WRITE_AT_ALL_BEGIN, 505,

526, 640
MPI_FILE_WRITE_AT_ALL_END, 505, 526,

640
MPI_FILE_WRITE_ORDERED, 505, 520,

521, 522
MPI_FILE_WRITE_ORDERED_BEGIN,

505, 529, 640
MPI_FILE_WRITE_ORDERED_END, 505,

530, 640

MPI_FILE_WRITE_SHARED, 505, 519, 519,
520, 522

MPI_FINALIZE, 15, 21, 334, 335, 357, 357,
358–362, 398, 483, 492, 561, 571, 584,
586, 648, 650, 651, 790, 798

MPI_FINALIZED, 356, 359, 361, 361, 362,
482, 488, 648

MPI_FREE_MEM, 338, 338, 339, 348, 406,
407

MPI_GATHER, 141, 144–146, 149, 151, 152,
159, 160, 165, 175, 201

MPI_GATHERV, 141, 145, 146, 151, 151, 152,
153, 161, 167, 202

MPI_GET, 401, 417, 420, 421, 427, 432, 437,
457, 460, 638, 798

MPI_GET_ACCUMULATE, 401, 417, 425,
426, 427, 428, 435, 461, 467

MPI_GET_ADDRESS, 18, 85, 101, 101, 102,
114, 411, 597, 611, 630, 635, 653, 654

MPI_GET_COUNT, 31, 31, 32, 52, 113, 430,
481, 507, 789, 796

MPI_GET_ELEMENTS, 52, 112, 112, 113,
481, 482, 507, 789

MPI_GET_ELEMENTS_X, 52, 112, 112, 113,
481, 507, 789

MPI_GET_LIBRARY_VERSION, 334, 334,
356, 359, 482, 788

MPI_GET_PROCESSOR_NAME, 336, 336,
337, 797

MPI_GET_VERSION, 333, 334, 356, 359, 482,
488, 615

MPI_GRAPH_CREATE, 290, 291, 294, 294,
296, 300, 303, 306, 307, 313, 314, 796,
797

MPI_GRAPH_GET, 291, 303, 303
MPI_GRAPH_MAP, 291, 313, 314
MPI_GRAPH_NEIGHBORS, 291, 306, 306,

307, 314, 794
MPI_GRAPH_NEIGHBORS_COUNT, 291,

306, 306, 307, 794
MPI_GRAPHDIMS_GET, 291, 303, 303
MPI_GREQUEST_COMPLETE, 474–477, 477
MPI_GREQUEST_START, 474, 474, 680, 682,

795
MPI_GROUP_C2F, 649
MPI_GROUP_COMPARE, 229, 232
MPI_GROUP_DIFFERENCE, 231
MPI_GROUP_EXCL, 232, 233, 234
MPI_GROUP_F2C, 649
MPI_GROUP_FREE, 235, 235, 236, 341, 357,

798
MPI_GROUP_INCL, 232, 232, 234
MPI_GROUP_INTERSECTION, 231
MPI_GROUP_RANGE_EXCL, 234, 234

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Function Index 819

MPI_GROUP_RANGE_INCL, 233, 234
MPI_GROUP_RANK, 228, 236
MPI_GROUP_SIZE, 228, 236
MPI_GROUP_TRANSLATE_RANKS, 229,

229, 796
MPI_GROUP_UNION, 230
MPI_IALLGATHER, 141, 145, 146, 204
MPI_IALLGATHERV, 141, 145, 146, 205
MPI_IALLREDUCE, 141, 145, 146, 210
MPI_IALLTOALL, 141, 145, 146, 206
MPI_IALLTOALLV, 141, 145, 146, 207
MPI_IALLTOALLW, 141, 145, 146, 208
MPI_IBARRIER, 141, 145, 197, 198, 198, 199,

218
MPI_IBCAST, 141, 145, 199, 199, 222
MPI_IBSEND, 49, 53, 77
MPI_IEXSCAN, 142, 145, 214
MPI_IGATHER, 141, 145, 146, 200
MPI_IGATHERV, 141, 145, 146, 201
MPI_IMPROBE, 64, 67, 68, 68, 69, 71, 484,

789
MPI_IMRECV, 67–69, 71, 71, 789
MPI_INEIGHBOR_ALLGATHER, 292, 324,

790
MPI_INEIGHBOR_ALLGATHERV, 292, 325,

790
MPI_INEIGHBOR_ALLTOALL, 292, 326, 790
MPI_INEIGHBOR_ALLTOALLV, 292, 327,

790
MPI_INEIGHBOR_ALLTOALLW, 292, 328,

790
MPI_INFO_C2F, 649
MPI_INFO_CREATE, 366, 366
MPI_INFO_DELETE, 348, 367, 367, 369
MPI_INFO_DUP, 369, 369
MPI_INFO_F2C, 649
MPI_INFO_FREE, 250, 357, 369, 416, 499
MPI_INFO_GET, 365, 367, 798
MPI_INFO_GET_NKEYS, 365, 368, 368, 369,

798
MPI_INFO_GET_NTHKEY, 365, 369, 798
MPI_INFO_GET_VALUELEN, 365, 368, 798
MPI_INFO_SET, 366, 366, 367, 369
MPI_INIT, 15, 21, 227, 334, 335, 355, 355,

359–361, 375–377, 379, 395, 396, 485,
486, 488, 557, 561, 564–566, 571, 584,
590, 647, 648, 650, 651, 789, 790, 793,
795

MPI_INIT_THREAD, 227, 355, 361, 485,
486–488, 564, 590, 647, 789, 790, 795

MPI_INITIALIZED, 356, 359, 359, 360–362,
482, 488, 648

MPI_INTERCOMM_CREATE, 237, 243, 260,
261, 261, 262, 790

MPI_INTERCOMM_MERGE, 237, 243, 258,
260–262, 262, 792

MPI_IPROBE, 31, 64, 64, 65–69, 71, 484, 789
MPI_IRECV, 51, 71, 629, 630, 632, 634
MPI_IREDUCE, 141, 145, 146, 209, 209
MPI_IREDUCE_SCATTER, 141, 145, 146,

212
MPI_IREDUCE_SCATTER_BLOCK, 141,

145, 146, 211
MPI_IRSEND, 51
MPI_IS_THREAD_MAIN, 482, 485, 487
MPI_ISCAN, 142, 145, 213
MPI_ISCATTER, 141, 145, 146, 202
MPI_ISCATTERV, 141, 145, 146, 203
MPI_ISEND, 11, 49, 77, 607, 608, 611, 628,

629, 634
MPI_ISSEND, 50
MPI_KEYVAL_CREATE, 18, 593, 595, 683
MPI_KEYVAL_FREE, 18, 279, 594
MPI_LOOKUP_NAME, 348, 386, 390, 392,

392
MPI_MESSAGE_C2F, 649, 789
MPI_MESSAGE_F2C, 649, 789
MPI_MPROBE, 64, 67–69, 69, 71, 484, 789
MPI_MRECV, 67–70, 70, 71, 789
MPI_NEIGHBOR_ALLGATHER, 291, 315,

316, 318, 324, 790
MPI_NEIGHBOR_ALLGATHERV, 291, 317,

325, 790
MPI_NEIGHBOR_ALLTOALL, 291, 318, 319,

326, 790
MPI_NEIGHBOR_ALLTOALLV, 292, 320,

327, 790
MPI_NEIGHBOR_ALLTOALLW, 292, 321,

322, 329, 790
MPI_NULL_COPY_FN, 18, 19, 269, 594, 672
MPI_NULL_DELETE_FN, 18, 269, 594, 672
MPI_OP_C2F, 649
MPI_OP_COMMUTATIVE, 189, 794
MPI_OP_CREATE, 183, 183, 185, 607, 678,

681, 792
MPI_OP_F2C, 649
MPI_OP_FREE, 185, 357
MPI_OPEN_PORT, 386, 386, 388, 389, 391,

392
MPI_PACK, 46, 131, 134, 137, 534, 538
MPI_PACK_EXTERNAL, 7, 137, 138, 621,

796
MPI_PACK_EXTERNAL_SIZE, 139
MPI_PACK_SIZE, 46, 134, 134, 789
MPI_PCONTROL, 556, 557, 557
MPI_PROBE, 29, 31, 32, 64, 65, 65, 66, 67, 69,

71, 484, 789

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

820 MPI Function Index

MPI_PUBLISH_NAME, 386, 390, 390, 391,
392

MPI_PUT, 401, 417, 418, 420, 424, 425, 431,
437, 442, 451, 454, 458, 459, 628, 638,
798

MPI_QUERY_THREAD, 482, 487, 488
MPI_RACCUMULATE, 401, 417, 425, 427,

432, 433
MPI_RECV, 24, 28, 30–32, 65, 67, 68, 84, 111,

112, 132, 142, 150, 219, 482, 546, 584,
635, 638, 639

MPI_RECV_INIT, 76, 76
MPI_REDUCE, 141, 145, 146, 174, 174, 175,

176, 183–185, 188, 191–194, 209, 424,
425, 427, 428, 795

MPI_REDUCE_LOCAL, 175, 176, 183, 189,
792, 794

MPI_REDUCE_SCATTER, 141, 145, 146,
176, 183, 191, 191, 192, 212

MPI_REDUCE_SCATTER_BLOCK, 141,
145, 146, 176, 183, 190, 190, 191, 211,
794

MPI_REGISTER_DATAREP, 349, 536, 536,
537–539, 551, 680, 683

MPI_REQUEST_C2F, 649
MPI_REQUEST_F2C, 649
MPI_REQUEST_FREE, 55, 55, 72, 77, 197,

357, 430, 476, 477, 793
MPI_REQUEST_GET_STATUS, 32, 64, 64,

475, 793
MPI_RGET, 401, 417, 431, 432
MPI_RGET_ACCUMULATE, 401, 417, 425,

427, 434, 435
MPI_RPUT, 401, 417, 430, 431
MPI_RSEND, 39
MPI_RSEND_INIT, 75
MPI_SCAN, 142, 145, 176, 183, 193, 193, 195,

213
MPI_SCATTER, 141, 145, 146, 159, 159, 161,

162, 191, 202
MPI_SCATTERV, 141, 145, 146, 161, 161,

162, 192, 203
MPI_SEND, 23, 24, 25, 32, 34, 84, 110, 111,

131, 219, 492, 546, 558, 635, 636, 638
MPI_SEND_INIT, 74, 77
MPI_SENDRECV, 79, 310
MPI_SENDRECV_REPLACE, 80
MPI_SIZEOF, 600, 622, 623
MPI_SSEND, 39
MPI_SSEND_INIT, 75
MPI_START, 76, 77, 77, 78
MPI_STARTALL, 77, 77
MPI_STATUS_C2F, 650
MPI_STATUS_C2F08, 651, 791

MPI_STATUS_F082C, 651, 791
MPI_STATUS_F082F, 652, 791
MPI_STATUS_F2C, 650
MPI_STATUS_F2F08, 652, 791
MPI_STATUS_SET_CANCELLED, 481
MPI_STATUS_SET_ELEMENTS, 480, 481
MPI_STATUS_SET_ELEMENTS_X, 480,

481, 789
MPI_T_CATEGORY_CHANGED, 589
MPI_T_CATEGORY_GET_CATEGORIES,

589, 589, 590, 591
MPI_T_CATEGORY_GET_CVARS, 588, 588,

590, 591
MPI_T_CATEGORY_GET_INDEX, 588, 588,

591
MPI_T_CATEGORY_GET_INFO, 587, 587,

590, 591
MPI_T_CATEGORY_GET_NUM, 587
MPI_T_CATEGORY_GET_PVARS, 589, 589,

590, 591
MPI_T_CVAR_GET_INDEX, 570, 570, 591
MPI_T_CVAR_GET_INFO, 566, 568, 568,

569, 571–573, 590, 591
MPI_T_CVAR_GET_NUM, 568, 572
MPI_T_CVAR_HANDLE_ALLOC, 566, 571,

572, 573, 591
MPI_T_CVAR_HANDLE_FREE, 572, 572,

591
MPI_T_CVAR_READ, 572
MPI_T_CVAR_WRITE, 573
MPI_T_ENUM_GET_INFO, 566, 566, 591
MPI_T_ENUM_GET_ITEM, 566, 567, 591
MPI_T_FINALIZE, 565, 565
MPI_T_INIT_THREAD, 564, 564, 565
MPI_T_PVAR_GET_INDEX, 578, 578, 591
MPI_T_PVAR_GET_INFO, 566, 576, 577,

577, 580, 582, 583, 590, 591
MPI_T_PVAR_GET_NUM, 576, 580
MPI_T_PVAR_HANDLE_ALLOC, 566, 580,

580, 582, 591
MPI_T_PVAR_HANDLE_FREE, 580, 581,

591
MPI_T_PVAR_READ, 582, 582, 583, 591
MPI_T_PVAR_READRESET, 578, 583, 583,

591
MPI_T_PVAR_RESET, 583, 583, 591
MPI_T_PVAR_SESSION_CREATE, 579, 591
MPI_T_PVAR_SESSION_FREE, 579, 591
MPI_T_PVAR_START, 581, 591
MPI_T_PVAR_STOP, 581, 591
MPI_T_PVAR_WRITE, 582, 582, 591
MPI_TEST, 11, 32, 52–54, 54, 55, 57, 58, 72,

77, 357, 477, 506, 507

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

MPI Function Index 821

MPI_TEST_CANCELLED, 52–54, 72, 73, 475,
481, 507

MPI_TESTALL, 57, 60, 60, 475, 476, 480, 483
MPI_TESTANY, 53, 57, 58, 58, 62, 475, 476,

480, 483
MPI_TESTSOME, 57, 61, 62, 475, 476, 480,

483
MPI_TOPO_TEST, 291, 302, 302
MPI_TYPE_C2F, 648
MPI_TYPE_COMMIT, 109, 109, 649
MPI_TYPE_CONTIGUOUS, 12, 85, 85, 87,

104, 116, 490, 533
MPI_TYPE_CREATE_DARRAY, 12, 31, 97,

97, 116
MPI_TYPE_CREATE_F90_COMPLEX, 12,

116, 118, 177, 534, 600, 619, 621
MPI_TYPE_CREATE_F90_INTEGER, 12,

116, 118, 176, 534, 600, 619, 621
MPI_TYPE_CREATE_F90_REAL, 12, 116,

118, 177, 534, 600, 618, 619–621, 793
MPI_TYPE_CREATE_HINDEXED, 12, 18,

85, 90, 90, 92, 94, 116, 597
MPI_TYPE_CREATE_HINDEXED_BLOCK,

12, 85, 92, 92, 116, 789
MPI_TYPE_CREATE_HVECTOR, 12, 18,

85, 87, 87, 116, 597
MPI_TYPE_CREATE_INDEXED_BLOCK,

12, 91, 92, 116
MPI_TYPE_CREATE_KEYVAL, 266, 276,

279, 655, 679, 682, 796
MPI_TYPE_CREATE_RESIZED, 18, 85, 104,

106, 107, 116, 533, 598, 791
MPI_TYPE_CREATE_STRUCT, 12, 18, 85,

92, 93, 93, 94, 104, 116, 173, 597
MPI_TYPE_CREATE_SUBARRAY, 12, 14,

94, 96, 98, 116
MPI_TYPE_DELETE_ATTR, 266, 278, 279,

792
MPI_TYPE_DUP, 12, 110, 110, 116, 792
MPI_TYPE_DUP_FN, 276, 276, 671
MPI_TYPE_EXTENT, 18, 597, 788
MPI_TYPE_F2C, 648
MPI_TYPE_FREE, 109, 118, 277, 357
MPI_TYPE_FREE_KEYVAL, 266, 277, 279
MPI_TYPE_GET_ATTR, 266, 278, 279, 608,

655, 792
MPI_TYPE_GET_CONTENTS, 115, 116,

117, 118, 119
MPI_TYPE_GET_ENVELOPE, 115, 115,

117, 118, 620
MPI_TYPE_GET_EXTENT, 18, 105, 108,

597, 623, 653
MPI_TYPE_GET_EXTENT_X, 106, 789
MPI_TYPE_GET_NAME, 284, 792

MPI_TYPE_GET_TRUE_EXTENT, 107, 107
MPI_TYPE_GET_TRUE_EXTENT_X, 107,

108, 789
MPI_TYPE_HINDEXED, 18, 597, 788
MPI_TYPE_HVECTOR, 18, 597, 788
MPI_TYPE_INDEXED, 12, 88, 89, 89, 90, 91,

116
MPI_TYPE_LB, 18, 597, 788
MPI_TYPE_MATCH_SIZE, 600, 623, 623, 792
MPI_TYPE_NULL_COPY_FN, 276, 276, 671
MPI_TYPE_NULL_DELETE_FN, 276, 671,

792
MPI_TYPE_SET_ATTR, 266, 278, 279, 608,

655, 659, 792
MPI_TYPE_SET_NAME, 284, 792
MPI_TYPE_SIZE, 103, 103, 558, 789
MPI_TYPE_SIZE_X, 103, 103, 789
MPI_TYPE_STRUCT, 18, 597, 788
MPI_TYPE_UB, 18, 597, 788
MPI_TYPE_VECTOR, 12, 86, 86, 87, 90, 116
MPI_UNPACK, 132, 132, 133, 137, 538
MPI_UNPACK_EXTERNAL, 7, 138, 621
MPI_UNPUBLISH_NAME, 348, 391, 391
MPI_WAIT, 30, 32, 52, 53, 53, 54–56, 58, 59,

72, 77, 197, 219, 357, 473, 477, 483,
506, 507, 523, 540, 542, 628, 634, 638

MPI_WAITALL, 57, 59, 59, 60, 197, 220, 430,
475, 476, 480, 483

MPI_WAITANY, 41, 53, 57, 57, 58, 62, 475,
476, 480, 483

MPI_WAITSOME, 57, 60, 61–63, 475, 476,
480, 483

MPI_WIN_ALLOCATE, 402, 405, 406, 408,
413, 414, 419, 447, 612, 614

MPI_WIN_ALLOCATE_CPTR, 406
MPI_WIN_ALLOCATE_SHARED, 402, 407,

407, 409, 413, 415, 614
MPI_WIN_ALLOCATE_SHARED_CPTR,

408
MPI_WIN_ATTACH, 410, 411, 411, 412, 413,

447
MPI_WIN_C2F, 649
MPI_WIN_CALL_ERRHANDLER, 353, 354
MPI_WIN_COMPLETE, 413, 437, 442, 442,

443–445, 453, 459
MPI_WIN_CREATE, 402, 403, 405, 406, 408,

411–414, 452, 484
MPI_WIN_CREATE_DYNAMIC, 349, 402,

410, 410, 411–415, 452
MPI_WIN_CREATE_ERRHANDLER, 341,

343, 344, 680, 682, 792
MPI_WIN_CREATE_KEYVAL, 266, 272, 279,

655, 679, 681, 796
MPI_WIN_DELETE_ATTR, 266, 275, 279

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

822 MPI Function Index

MPI_WIN_DETACH, 410, 412, 412, 413
MPI_WIN_DUP_FN, 273, 273, 671
MPI_WIN_F2C, 649
MPI_WIN_FENCE, 413, 421, 437, 440, 441,

450, 451, 453, 454, 456, 461, 638
MPI_WIN_FLUSH, 408, 430, 431, 448, 448,

453, 456, 467, 468
MPI_WIN_FLUSH_ALL, 430, 431, 449, 453,

456
MPI_WIN_FLUSH_LOCAL, 430, 449, 453
MPI_WIN_FLUSH_LOCAL_ALL, 430, 449,

450, 453
MPI_WIN_FREE, 274, 357, 398, 413, 413
MPI_WIN_FREE_KEYVAL, 266, 274, 279
MPI_WIN_GET_ATTR, 266, 275, 279, 414,

655, 659
MPI_WIN_GET_ERRHANDLER, 341, 344,

797
MPI_WIN_GET_GROUP, 415, 415
MPI_WIN_GET_INFO, 416, 416, 790
MPI_WIN_GET_NAME, 285
MPI_WIN_LOCK, 404, 438, 445, 446–448,

450, 451, 453, 457, 458
MPI_WIN_LOCK_ALL, 404, 438, 446, 446,

447, 450, 451, 453, 458, 467
MPI_WIN_NULL_COPY_FN, 273, 273, 671
MPI_WIN_NULL_DELETE_FN, 273, 671
MPI_WIN_POST, 413, 437, 442, 443, 443,

444, 445, 447, 450, 451, 453, 459, 461
MPI_WIN_SET_ATTR, 266, 274, 279, 414,

608, 655, 659
MPI_WIN_SET_ERRHANDLER, 341, 344
MPI_WIN_SET_INFO, 415, 416, 416, 790
MPI_WIN_SET_NAME, 284
MPI_WIN_SHARED_QUERY, 407, 409, 614
MPI_WIN_SHARED_QUERY_CPTR, 410
MPI_WIN_START, 437, 441, 442, 443, 445,

450, 451, 460, 466
MPI_WIN_SYNC, 450, 450, 453, 455, 459,

467, 468
MPI_WIN_TEST, 444, 444
MPI_WIN_UNLOCK, 431, 438, 446, 448, 453,

456–458
MPI_WIN_UNLOCK_ALL, 431, 438, 447,

453, 456, 467
MPI_WIN_WAIT, 413, 437, 443, 443, 444,

445, 447, 453, 456, 459, 460
MPI_WTICK, 19, 355, 355
MPI_WTIME, 19, 336, 354, 354, 355, 558, 576
mpiexec, 356, 360, 362, 362, 486
mpirun, 362

PMPI_, 555, 608
PMPI_ISEND, 608, 611

PMPI_WTICK, 19
PMPI_WTIME, 19

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	Abstract
	History
	Contents
	List of Figures
	List of Tables

	Acknowledgments
	1 Introduction to MPI
	1.1 Overview and Goals
	1.2 Background of MPI-1.0
	1.3 Background of MPI-1.1, MPI-1.2, and MPI-2.0
	1.4 Background of MPI-1.3 and MPI-2.1
	1.5 Background of MPI-2.2
	1.6 Background of MPI-3.0
	1.7 Who Should Use This Standard?
	1.8 What Platforms Are Targets For Implementation?
	1.9 What Is Included In The Standard?
	1.10 What Is Not Included In The Standard?
	1.11 Organization of this Document

	2 MPI Terms and Conventions
	2.1 Document Notation
	2.2 Naming Conventions
	2.3 Procedure Specification
	2.4 Semantic Terms
	2.5 Data Types
	2.5.1 Opaque Objects
	2.5.2 Array Arguments
	2.5.3 State
	2.5.4 Named Constants
	2.5.5 Choice
	2.5.6 Addresses
	2.5.7 File Offsets
	2.5.8 Counts

	2.6 Language Binding
	2.6.1 Deprecated and Removed Names and Functions
	2.6.2 Fortran Binding Issues
	2.6.3 C Binding Issues
	2.6.4 Functions and Macros

	2.7 Processes
	2.8 Error Handling
	2.9 Implementation Issues
	2.9.1 Independence of Basic Runtime Routines
	2.9.2 Interaction with Signals

	2.10 Examples

	3 Point-to-Point Communication
	3.1 Introduction
	3.2 Blocking Send and Receive Operations
	3.2.1 Blocking Send
	3.2.2 Message Data
	3.2.3 Message Envelope
	3.2.4 Blocking Receive
	3.2.5 Return Status
	3.2.6 Passing MPI_STATUS_IGNORE for Status

	3.3 Data Type Matching and Data Conversion
	3.3.1 Type Matching Rules
	Type MPI_CHARACTER

	3.3.2 Data Conversion

	3.4 Communication Modes
	3.5 Semantics of Point-to-Point Communication
	3.6 Buffer Allocation and Usage
	3.6.1 Model Implementation of Buffered Mode

	3.7 Nonblocking Communication
	3.7.1 Communication Request Objects
	3.7.2 Communication Initiation
	3.7.3 Communication Completion
	3.7.4 Semantics of Nonblocking Communications
	3.7.5 Multiple Completions
	3.7.6 Non-destructive Test of status

	3.8 Probe and Cancel
	3.8.1 Probe
	3.8.2 Matching Probe
	3.8.3 Matched Receives
	3.8.4 Cancel

	3.9 Persistent Communication Requests
	3.10 Send-Receive
	3.11 Null Processes

	4 Datatypes
	4.1 Derived Datatypes
	4.1.1 Type Constructors with Explicit Addresses
	4.1.2 Datatype Constructors
	4.1.3 Subarray Datatype Constructor
	4.1.4 Distributed Array Datatype Constructor
	4.1.5 Address and Size Functions
	4.1.6 Lower-Bound and Upper-Bound Markers
	4.1.7 Extent and Bounds of Datatypes
	4.1.8 True Extent of Datatypes
	4.1.9 Commit and Free
	4.1.10 Duplicating a Datatype
	4.1.11 Use of General Datatypes in Communication
	4.1.12 Correct Use of Addresses
	4.1.13 Decoding a Datatype
	4.1.14 Examples

	4.2 Pack and Unpack
	4.3 Canonical MPI_PACK and MPI_UNPACK

	5 Collective Communication
	5.1 Introduction and Overview
	5.2 Communicator Argument
	5.2.1 Specifics for Intracommunicator Collective Operations
	5.2.2 Applying Collective Operations to Intercommunicators
	5.2.3 Specifics for Intercommunicator Collective Operations

	5.3 Barrier Synchronization
	5.4 Broadcast
	5.4.1 Example using MPI_BCAST

	5.5 Gather
	5.5.1 Examples using MPI_GATHER, MPI_GATHERV

	5.6 Scatter
	5.6.1 Examples using MPI_SCATTER, MPI_SCATTERV

	5.7 Gather-to-all
	5.7.1 Example using MPI_ALLGATHER

	5.8 All-to-All Scatter/Gather
	5.9 Global Reduction Operations
	5.9.1 Reduce
	5.9.2 Predefined Reduction Operations
	5.9.3 Signed Characters and Reductions
	5.9.4 MINLOC and MAXLOC
	5.9.5 User-Defined Reduction Operations
	Example of User-defined Reduce

	5.9.6 All-Reduce
	5.9.7 Process-Local Reduction

	5.10 Reduce-Scatter
	5.10.1 MPI_REDUCE_SCATTER_BLOCK
	5.10.2 MPI_REDUCE_SCATTER

	5.11 Scan
	5.11.1 Inclusive Scan
	5.11.2 Exclusive Scan
	5.11.3 Example using MPI_SCAN

	5.12 Nonblocking Collective Operations
	5.12.1 Nonblocking Barrier Synchronization
	5.12.2 Nonblocking Broadcast
	Example using MPI_IBCAST

	5.12.3 Nonblocking Gather
	5.12.4 Nonblocking Scatter
	5.12.5 Nonblocking Gather-to-all
	5.12.6 Nonblocking All-to-All Scatter/Gather
	5.12.7 Nonblocking Reduce
	5.12.8 Nonblocking All-Reduce
	5.12.9 Nonblocking Reduce-Scatter with Equal Blocks
	5.12.10 Nonblocking Reduce-Scatter
	5.12.11 Nonblocking Inclusive Scan
	5.12.12 Nonblocking Exclusive Scan

	5.13 Correctness

	6 Groups, Contexts, Communicators, and Caching
	6.1 Introduction
	6.1.1 Features Needed to Support Libraries
	6.1.2 MPI's Support for Libraries

	6.2 Basic Concepts
	6.2.1 Groups
	6.2.2 Contexts
	6.2.3 Intra-Communicators
	6.2.4 Predefined Intra-Communicators

	6.3 Group Management
	6.3.1 Group Accessors
	6.3.2 Group Constructors
	6.3.3 Group Destructors

	6.4 Communicator Management
	6.4.1 Communicator Accessors
	6.4.2 Communicator Constructors
	6.4.3 Communicator Destructors
	6.4.4 Communicator Info

	6.5 Motivating Examples
	6.5.1 Current Practice #1
	6.5.2 Current Practice #2
	6.5.3 (Approximate) Current Practice #3
	6.5.4 Example #4
	6.5.5 Library Example #1
	6.5.6 Library Example #2

	6.6 Inter-Communication
	6.6.1 Inter-communicator Accessors
	6.6.2 Inter-communicator Operations
	6.6.3 Inter-Communication Examples
	Example 1: Three-Group ``Pipeline''
	Example 2: Three-Group ``Ring''

	6.7 Caching
	6.7.1 Functionality
	6.7.2 Communicators
	6.7.3 Windows
	6.7.4 Datatypes
	6.7.5 Error Class for Invalid Keyval
	6.7.6 Attributes Example

	6.8 Naming Objects
	6.9 Formalizing the Loosely Synchronous Model
	6.9.1 Basic Statements
	6.9.2 Models of Execution
	Static Communicator Allocation
	Dynamic Communicator Allocation
	The General Case

	7 Process Topologies
	7.1 Introduction
	7.2 Virtual Topologies
	7.3 Embedding in MPI
	7.4 Overview of the Functions
	7.5 Topology Constructors
	7.5.1 Cartesian Constructor
	7.5.2 Cartesian Convenience Function: MPI_DIMS_CREATE
	7.5.3 Graph Constructor
	7.5.4 Distributed Graph Constructor
	7.5.5 Topology Inquiry Functions
	7.5.6 Cartesian Shift Coordinates
	7.5.7 Partitioning of Cartesian Structures
	7.5.8 Low-Level Topology Functions

	7.6 Neighborhood Collective Communication
	7.6.1 Neighborhood Gather
	7.6.2 Neighbor Alltoall

	7.7 Nonblocking Neighborhood Communication
	7.7.1 Nonblocking Neighborhood Gather
	7.7.2 Nonblocking Neighborhood Alltoall

	7.8 An Application Example

	8 MPI Environmental Management
	8.1 Implementation Information
	8.1.1 Version Inquiries
	8.1.2 Environmental Inquiries
	Tag Values
	Host Rank
	IO Rank
	Clock Synchronization
	Inquire Processor Name

	8.2 Memory Allocation
	8.3 Error Handling
	8.3.1 Error Handlers for Communicators
	8.3.2 Error Handlers for Windows
	8.3.3 Error Handlers for Files
	8.3.4 Freeing Errorhandlers and Retrieving Error Strings

	8.4 Error Codes and Classes
	8.5 Error Classes, Error Codes, and Error Handlers
	8.6 Timers and Synchronization
	8.7 Startup
	8.7.1 Allowing User Functions at Process Termination
	8.7.2 Determining Whether MPI Has Finished

	8.8 Portable MPI Process Startup

	9 The Info Object
	10 Process Creation and Management
	10.1 Introduction
	10.2 The Dynamic Process Model
	10.2.1 Starting Processes
	10.2.2 The Runtime Environment

	10.3 Process Manager Interface
	10.3.1 Processes in MPI
	10.3.2 Starting Processes and Establishing Communication
	10.3.3 Starting Multiple Executables and Establishing Communication
	10.3.4 Reserved Keys
	10.3.5 Spawn Example
	Manager-worker Example Using MPI_COMM_SPAWN

	10.4 Establishing Communication
	10.4.1 Names, Addresses, Ports, and All That
	10.4.2 Server Routines
	10.4.3 Client Routines
	10.4.4 Name Publishing
	10.4.5 Reserved Key Values
	10.4.6 Client/Server Examples
	Simplest Example — Completely Portable.
	Ocean/Atmosphere — Relies on Name Publishing
	Simple Client-Server Example

	10.5 Other Functionality
	10.5.1 Universe Size
	10.5.2 Singleton MPI_INIT
	10.5.3 MPI_APPNUM
	10.5.4 Releasing Connections
	10.5.5 Another Way to Establish MPI Communication

	11 One-Sided Communications
	11.1 Introduction
	11.2 Initialization
	11.2.1 Window Creation
	11.2.2 Window That Allocates Memory
	11.2.3 Window That Allocates Shared Memory
	11.2.4 Window of Dynamically Attached Memory
	11.2.5 Window Destruction
	11.2.6 Window Attributes
	11.2.7 Window Info

	11.3 Communication Calls
	11.3.1 Put
	11.3.2 Get
	11.3.3 Examples for Communication Calls
	11.3.4 Accumulate Functions
	Accumulate Function
	Get Accumulate Function
	Fetch and Op Function
	Compare and Swap Function

	11.3.5 Request-based RMA Communication Operations

	11.4 Memory Model
	11.5 Synchronization Calls
	11.5.1 Fence
	11.5.2 General Active Target Synchronization
	11.5.3 Lock
	11.5.4 Flush and Sync
	11.5.5 Assertions
	11.5.6 Miscellaneous Clarifications

	11.6 Error Handling
	11.6.1 Error Handlers
	11.6.2 Error Classes

	11.7 Semantics and Correctness
	11.7.1 Atomicity
	11.7.2 Ordering
	11.7.3 Progress
	11.7.4 Registers and Compiler Optimizations

	11.8 Examples

	12 External Interfaces
	12.1 Introduction
	12.2 Generalized Requests
	12.2.1 Examples

	12.3 Associating Information with Status
	12.4 MPI and Threads
	12.4.1 General
	12.4.2 Clarifications
	12.4.3 Initialization

	13 I/O
	13.1 Introduction
	13.1.1 Definitions

	13.2 File Manipulation
	13.2.1 Opening a File
	13.2.2 Closing a File
	13.2.3 Deleting a File
	13.2.4 Resizing a File
	13.2.5 Preallocating Space for a File
	13.2.6 Querying the Size of a File
	13.2.7 Querying File Parameters
	13.2.8 File Info
	Reserved File Hints

	13.3 File Views
	13.4 Data Access
	13.4.1 Data Access Routines
	Positioning

	13.5
	Synchronism
	Coordination
	Data Access Conventions

	13.5.1 Data Access with Explicit Offsets
	13.5.2 Data Access with Individual File Pointers
	13.5.3 Data Access with Shared File Pointers
	Noncollective Operations
	Collective Operations
	Seek

	13.5.4 Split Collective Data Access Routines

	13.6 File Interoperability
	13.7
	13.7.1 Datatypes for File Interoperability
	13.7.2 External Data Representation: ``external32''
	13.7.3 User-Defined Data Representations
	Extent Callback
	Datarep Conversion Functions

	13.7.4 Matching Data Representations

	13.8 Consistency and Semantics
	13.8.1 File Consistency
	13.8.2 Random Access vs. Sequential Files
	13.8.3 Progress
	13.8.4 Collective File Operations
	13.8.5 Type Matching
	13.8.6 Miscellaneous Clarifications
	13.8.7 MPI_Offset Type
	13.8.8 Logical vs. Physical File Layout
	13.8.9 File Size
	13.8.10 Examples
	Asynchronous I/O

	13.9 I/O Error Handling
	13.10 I/O Error Classes
	13.11 Examples
	13.11.1 Double Buffering with Split Collective I/O
	13.11.2 Subarray Filetype Constructor

	13.12

	14 Tool Support
	14.1 Introduction
	14.2 Profiling Interface
	14.2.1 Requirements
	14.2.2 Discussion
	14.2.3 Logic of the Design
	14.2.4 Miscellaneous Control of Profiling
	14.2.5 Profiler Implementation Example
	14.2.6 MPI Library Implementation Example
	Systems with Weak Symbols
	Systems Without Weak Symbols

	14.2.7 Complications
	Multiple Counting
	Linker Oddities
	Fortran Support Methods

	14.2.8 Multiple Levels of Interception

	14.3 The MPI Tool Information Interface
	14.3.1 Verbosity Levels
	14.3.2 Binding MPI Tool Information Interface Variables to MPI Objects
	14.3.3 Convention for Returning Strings
	14.3.4 Initialization and Finalization
	14.3.5 Datatype System
	14.3.6 Control Variables
	Control Variable Query Functions
	Example: Printing All Control Variables
	Handle Allocation and Deallocation
	Control Variable Access Functions
	Example: Reading the Value of a Control Variable

	14.3.7 Performance Variables
	Performance Variable Classes
	Performance Variable Query Functions
	Performance Experiment Sessions
	Handle Allocation and Deallocation
	Starting and Stopping of Performance Variables
	Performance Variable Access Functions
	Example: Tool to Detect Receives with Long Unexpected Message Queues

	14.3.8 Variable Categorization
	14.3.9 Return Codes for the MPI Tool Information Interface
	14.3.10 Profiling Interface

	15 Deprecated Functions
	15.1 Deprecated since MPI-2.0
	15.2 Deprecated since MPI-2.2

	16 Removed Interfaces
	16.1 Removed MPI-1 Bindings
	16.1.1 Overview
	16.1.2 Removed MPI-1 Functions
	16.1.3 Removed MPI-1 Datatypes
	16.1.4 Removed MPI-1 Constants
	16.1.5 Removed MPI-1 Callback Prototypes

	16.2 C++ Bindings

	17 Language Bindings
	17.1 Fortran Support
	17.1.1 Overview
	17.1.2 Fortran Support Through the mpi_f08 Module
	17.1.3 Fortran Support Through the mpi Module
	17.1.4 Fortran Support Through the mpif.h Include File
	17.1.5 Interface Specifications, Procedure Names, and the Profiling Interface
	17.1.6 MPI for Different Fortran Standard Versions
	17.1.7 Requirements on Fortran Compilers
	17.1.8 Additional Support for Fortran Register-Memory-Synchronization
	17.1.9 Additional Support for Fortran Numeric Intrinsic Types
	Parameterized Datatypes with Specified Precision and Exponent Range
	Support for Size-specific MPI Datatypes
	Communication With Size-specific Types

	17.1.10 Problems With Fortran Bindings for MPI
	17.1.11 Problems Due to Strong Typing
	17.1.12 Problems Due to Data Copying and Sequence Association with Subscript Triplets
	17.1.13 Problems Due to Data Copying and Sequence Association with Vector Subscripts
	17.1.14 Special Constants
	17.1.15 Fortran Derived Types
	17.1.16 Optimization Problems, an Overview
	17.1.17 Problems with Code Movement and Register Optimization
	Nonblocking Operations
	One-sided Communication
	MPI_BOTTOM and Combining Independent Variables in Datatypes
	Solutions
	The Fortran ASYNCHRONOUS Attribute
	Calling MPI_F_SYNC_REG
	A User Defined Routine Instead of MPI_F_SYNC_REG
	Module Variables and COMMON Blocks
	The (Poorly Performing) Fortran VOLATILE Attribute
	The Fortran TARGET Attribute

	17.1.18 Temporary Data Movement and Temporary Memory Modification
	17.1.19 Permanent Data Movement
	17.1.20 Comparison with C

	17.2 Language Interoperability
	17.2.1 Introduction
	17.2.2 Assumptions
	17.2.3 Initialization
	17.2.4 Transfer of Handles
	17.2.5 Status
	17.2.6 MPI Opaque Objects
	Datatypes
	Callback Functions
	Error Handlers
	Reduce Operations

	17.2.7 Attributes
	17.2.8 Extra-State
	17.2.9 Constants
	17.2.10 Interlanguage Communication

	A Language Bindings Summary
	A.1 Defined Values and Handles
	A.1.1 Defined Constants
	A.1.2 Types
	A.1.3 Prototype Definitions
	C Bindings
	Fortran 2008 Bindings with the mpi_f08 Module
	Fortran Bindings with mpif.h or the mpi Module

	A.1.4 Deprecated Prototype Definitions
	A.1.5 Info Keys
	A.1.6 Info Values

	A.2 C Bindings
	A.2.1 Point-to-Point Communication C Bindings
	A.2.2 Datatypes C Bindings
	A.2.3 Collective Communication C Bindings
	A.2.4 Groups, Contexts, Communicators, and Caching C Bindings
	A.2.5 Process Topologies C Bindings
	A.2.6 MPI Environmental Management C Bindings
	A.2.7 The Info Object C Bindings
	A.2.8 Process Creation and Management C Bindings
	A.2.9 One-Sided Communications C Bindings
	A.2.10 External Interfaces C Bindings
	A.2.11 I/O C Bindings
	A.2.12 Language Bindings C Bindings
	A.2.13 Tools / Profiling Interface C Bindings
	A.2.14 Tools / MPI Tool Information Interface C Bindings
	A.2.15 Deprecated C Bindings

	A.3 Fortran 2008 Bindings with the mpi_f08 Module
	A.3.1 Point-to-Point Communication Fortran 2008 Bindings
	A.3.2 Datatypes Fortran 2008 Bindings
	A.3.3 Collective Communication Fortran 2008 Bindings
	A.3.4 Groups, Contexts, Communicators, and Caching Fortran 2008 Bindings
	A.3.5 Process Topologies Fortran 2008 Bindings
	A.3.6 MPI Environmental Management Fortran 2008 Bindings
	A.3.7 The Info Object Fortran 2008 Bindings
	A.3.8 Process Creation and Management Fortran 2008 Bindings
	A.3.9 One-Sided Communications Fortran 2008 Bindings
	A.3.10 External Interfaces Fortran 2008 Bindings
	A.3.11 I/O Fortran 2008 Bindings
	A.3.12 Language Bindings Fortran 2008 Bindings
	A.3.13 Tools / Profiling Interface Fortran 2008 Bindings

	A.4 Fortran Bindings with mpif.h or the mpi Module
	A.4.1 Point-to-Point Communication Fortran Bindings
	A.4.2 Datatypes Fortran Bindings
	A.4.3 Collective Communication Fortran Bindings
	A.4.4 Groups, Contexts, Communicators, and Caching Fortran Bindings
	A.4.5 Process Topologies Fortran Bindings
	A.4.6 MPI Environmental Management Fortran Bindings
	A.4.7 The Info Object Fortran Bindings
	A.4.8 Process Creation and Management Fortran Bindings
	A.4.9 One-Sided Communications Fortran Bindings
	A.4.10 External Interfaces Fortran Bindings
	A.4.11 I/O Fortran Bindings
	A.4.12 Language Bindings Fortran Bindings
	A.4.13 Tools / Profiling Interface Fortran Bindings
	A.4.14 Deprecated Fortran Bindings

	B Change-Log
	B.1 Changes from Version 2.2 to Version 3.0
	B.1.1 Fixes to Errata in Previous Versions of MPI
	B.1.2 Changes in MPI-3.0

	B.2 Changes from Version 2.1 to Version 2.2
	B.3 Changes from Version 2.0 to Version 2.1

	Bibliography
	Examples Index
	MPI Constant and Predefined Handle Index
	MPI Declarations Index
	MPI Callback Function Prototype Index
	MPI Function Index

