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Chapter 13

I/O

13.1 Introduction

POSIX provides a model of a widely portable file system, but the portability and optimiza-
tion needed for parallel I/O cannot be achieved with the POSIX interface.

The significant optimizations required for efficiency (e.g., grouping [7], collective buffer-
ing [1, 2, 8, 9, 10], and disk-directed I/O [6]) can only be implemented if the parallel I/O
system provides a high-level interface supporting partitioning of file data among processes
and a collective interface supporting complete transfers of global data structures between
process memories and files. In addition, further efficiencies can be gained via support for
asynchronous I/O, strided accesses, and control over physical file layout on storage devices
(disks). The I/O environment described in this chapter provides these facilities.

Instead of defining I/O access modes to express the common patterns for accessing a
shared file (broadcast, reduction, scatter, gather), we chose another approach in which data
partitioning is expressed using derived datatypes. Compared to a limited set of predefined
access patterns, this approach has the advantage of added flexibility and expressiveness.

13.1.1 Definitions

file An MPI file is an ordered collection of typed data items. MPI supports random or
sequential access to any integral set of these items. A file is opened collectively by a
group of processes. All collective I/O calls on a file are collective over this group.

displacement A file displacement is an absolute byte position relative to the beginning of
a file. The displacement defines the location where a view begins. Note that a “file
displacement” is distinct from a “typemap displacement.”

etype An etype (elementary datatype) is the unit of data access and positioning. It can
be any MPI predefined or derived datatype. Derived etypes can be constructed using
any of the MPI datatype constructor routines, provided all resulting typemap displace-
ments are non-negative and monotonically nondecreasing. Data access is performed in
etype units, reading or writing whole data items of type etype. Offsets are expressed
as a count of etypes; file pointers point to the beginning of etypes. Depending on
context, the term “etype” is used to describe one of three aspects of an elementary
datatype: a particular MPI type, a data item of that type, or the extent of that type.
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2 CHAPTER 13. I/O

filetype A filetype is the basis for partitioning a file among processes and defines a template
for accessing the file. A filetype is either a single etype or a derived MPI datatype
constructed from multiple instances of the same etype. In addition, the extent of any
hole in the filetype must be a multiple of the etype’s extent. The displacements in the
typemap of the filetype are not required to be distinct, but they must be non-negative
and monotonically nondecreasing.

view A view defines the current set of data visible and accessible from an open file as an
ordered set of etypes. Each process has its own view of the file, defined by three
quantities: a displacement, an etype, and a filetype. The pattern described by a
filetype is repeated, beginning at the displacement, to define the view. The pattern
of repetition is defined to be the same pattern that MPI_TYPE_CONTIGUOUS would
produce if it were passed the filetype and an arbitrarily large count. Figure 13.1 shows
how the tiling works; note that the filetype in this example must have explicit lower
and upper bounds set in order for the initial and final holes to be repeated in the
view. Views can be changed by the user during program execution. The default view
is a linear byte stream (displacement is zero, etype and filetype equal to MPI_BYTE).

...

etype

filetype

displacement

holes

tiling a file with the filetype:

accessible data

Figure 13.1: Etypes and filetypes

A group of processes can use complementary views to achieve a global data distribution
such as a scatter/gather pattern (see Figure 13.2).
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tiling a file with the filetypes:

Figure 13.2: Partitioning a file among parallel processes

offset An offset is a position in the file relative to the current view, expressed as a count of
etypes. Holes in the view’s filetype are skipped when calculating this position. Offset 0
is the location of the first etype visible in the view (after skipping the displacement and
any initial holes in the view). For example, an offset of 2 for process 1 in Figure 13.2 is
the position of the eighth etype in the file after the displacement. An “explicit offset”
is an offset that is used as an argument in explicit data access routines.
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13.2. FILE MANIPULATION 3

file size and end of file The size of an MPI file is measured in bytes from the beginning
of the file. A newly created file has a size of zero bytes. Using the size as an absolute
displacement gives the position of the byte immediately following the last byte in the
file. For any given view, the end of file is the offset of the first etype accessible in the
current view starting after the last byte in the file.

file pointer A file pointer is an implicit offset maintained by MPI. “Individual file pointers”
are file pointers that are local to each process that opened the file. A “shared file
pointer” is a file pointer that is shared by the group of processes that opened the file.

file handle A file handle is an opaque object created by MPI_FILE_OPEN and freed by
MPI_FILE_CLOSE. All operations on an open file reference the file through the file
handle.

13.2 File Manipulation

13.2.1 Opening a File

MPI_FILE_OPEN(comm, filename, amode, info, fh)

IN comm communicator (handle)

IN filename name of file to open (string)

IN amode file access mode (integer)

IN info info object (handle)

OUT fh new file handle (handle)

int MPI_File_open(MPI_Comm comm, const char *filename, int amode,

MPI_Info info, MPI_File *fh)

MPI_File_open(comm, filename, amode, info, fh, ierror)

TYPE(MPI_Comm), INTENT(IN) :: comm

CHARACTER(LEN=*), INTENT(IN) :: filename

INTEGER, INTENT(IN) :: amode

TYPE(MPI_Info), INTENT(IN) :: info

TYPE(MPI_File), INTENT(OUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_OPEN(COMM, FILENAME, AMODE, INFO, FH, IERROR)

CHARACTER*(*) FILENAME

INTEGER COMM, AMODE, INFO, FH, IERROR

MPI_FILE_OPEN opens the file identified by the file name filename on all processes in
the comm communicator group. MPI_FILE_OPEN is a collective routine: all processes must
provide the same value for amode, and all processes must provide filenames that reference the
same file. (Values for info may vary.) comm must be an intracommunicator; it is erroneous to
pass an intercommunicator to MPI_FILE_OPEN. Errors in MPI_FILE_OPEN are raised using
the default file error handler (see Section 13.9). A process can open a file independently of
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4 CHAPTER 13. I/O

other processes by using the MPI_COMM_SELF communicator. The file handle returned, fh,
can be subsequently used to access the file until the file is closed using MPI_FILE_CLOSE.
Before calling MPI_FINALIZE, the user is required to close (via MPI_FILE_CLOSE) all files
that were opened with MPI_FILE_OPEN. Note that the communicator comm is unaffected
by MPI_FILE_OPEN and continues to be usable in all MPI routines (e.g., MPI_SEND).
Furthermore, the use of comm will not interfere with I/O behavior.

The format for specifying the file name in the filename argument is implementation
dependent and must be documented by the implementation.

Advice to implementors. An implementation may require that filename include a
string or strings specifying additional information about the file. Examples include
the type of filesystem (e.g., a prefix of ufs:), a remote hostname (e.g., a prefix of
machine.univ.edu:), or a file password (e.g., a suffix of /PASSWORD=SECRET). (End
of advice to implementors.)

Advice to users. On some implementations of MPI, the file namespace may not be
identical from all processes of all applications. For example, “/tmp/foo” may denote
different files on different processes, or a single file may have many names, dependent
on process location. The user is responsible for ensuring that a single file is referenced
by the filename argument, as it may be impossible for an implementation to detect
this type of namespace error. (End of advice to users.)

Initially, all processes view the file as a linear byte stream, and each process views data
in its own native representation (no data representation conversion is performed). (POSIX
files are linear byte streams in the native representation.) The file view can be changed via
the MPI_FILE_SET_VIEW routine.

The following access modes are supported (specified in amode, a bit vector OR of the
following integer constants):

• MPI_MODE_RDONLY — read only,

• MPI_MODE_RDWR — reading and writing,

• MPI_MODE_WRONLY — write only,

• MPI_MODE_CREATE — create the file if it does not exist,

• MPI_MODE_EXCL — error if creating file that already exists,

• MPI_MODE_DELETE_ON_CLOSE — delete file on close,

• MPI_MODE_UNIQUE_OPEN — file will not be concurrently opened elsewhere,

• MPI_MODE_SEQUENTIAL — file will only be accessed sequentially,

• MPI_MODE_APPEND — set initial position of all file pointers to end of file.

Advice to users. C users can use bit vector OR (|) to combine these constants; Fortran
90 users can use the bit vector IOR intrinsic. Fortran 77 users can use (nonportably)
bit vector IOR on systems that support it. Alternatively, Fortran users can portably
use integer addition to OR the constants (each constant should appear at most once
in the addition.). (End of advice to users.)
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13.2. FILE MANIPULATION 5

Advice to implementors. The values of these constants must be defined such that
the bitwise OR and the sum of any distinct set of these constants is equivalent. (End
of advice to implementors.)

The modes MPI_MODE_RDONLY, MPI_MODE_RDWR, MPI_MODE_WRONLY,
MPI_MODE_CREATE, and MPI_MODE_EXCL have identical semantics to their POSIX counter-
parts [5]. Exactly one of MPI_MODE_RDONLY, MPI_MODE_RDWR, or MPI_MODE_WRONLY,
must be specified. It is erroneous to specify MPI_MODE_CREATE or MPI_MODE_EXCL in
conjunction with MPI_MODE_RDONLY; it is erroneous to specify MPI_MODE_SEQUENTIAL

together with MPI_MODE_RDWR.
The MPI_MODE_DELETE_ON_CLOSE mode causes the file to be deleted (equivalent to

performing an MPI_FILE_DELETE) when the file is closed.
The MPI_MODE_UNIQUE_OPEN mode allows an implementation to optimize access by

eliminating the overhead of file locking. It is erroneous to open a file in this mode unless
the file will not be concurrently opened elsewhere.

Advice to users. For MPI_MODE_UNIQUE_OPEN, not opened elsewhere includes both
inside and outside the MPI environment. In particular, one needs to be aware of
potential external events which may open files (e.g., automated backup facilities).
When MPI_MODE_UNIQUE_OPEN is specified, the user is responsible for ensuring that
no such external events take place. (End of advice to users.)

The MPI_MODE_SEQUENTIAL mode allows an implementation to optimize access to
some sequential devices (tapes and network streams). It is erroneous to attempt nonse-
quential access to a file that has been opened in this mode.

Specifying MPI_MODE_APPEND only guarantees that all shared and individual file
pointers are positioned at the initial end of file when MPI_FILE_OPEN returns. Subsequent
positioning of file pointers is application dependent. In particular, the implementation does
not ensure that all writes are appended.

Errors related to the access mode are raised in the class MPI_ERR_AMODE.
The info argument is used to provide information regarding file access patterns and file

system specifics (see Section 13.2.8). The constant MPI_INFO_NULL can be used when no
info needs to be specified.

Advice to users. Some file attributes are inherently implementation dependent (e.g.,
file permissions). These attributes must be set using either the info argument or
facilities outside the scope of MPI. (End of advice to users.)

Files are opened by default using nonatomic mode file consistency semantics (see Sec-
tion 13.8.1). The more stringent atomic mode consistency semantics, required for atomicity
of conflicting accesses, can be set using MPI_FILE_SET_ATOMICITY.

13.2.2 Closing a File

MPI_FILE_CLOSE(fh)

INOUT fh file handle (handle)
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6 CHAPTER 13. I/O

int MPI_File_close(MPI_File *fh)

MPI_File_close(fh, ierror)

TYPE(MPI_File), INTENT(INOUT) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_CLOSE(FH, IERROR)

INTEGER FH, IERROR

MPI_FILE_CLOSE first synchronizes file state (equivalent to performing an
MPI_FILE_SYNC), then closes the file associated with fh. The file is deleted if it was
opened with access mode MPI_MODE_DELETE_ON_CLOSE (equivalent to performing an
MPI_FILE_DELETE). MPI_FILE_CLOSE is a collective routine.

Advice to users. If the file is deleted on close, and there are other processes currently
accessing the file, the status of the file and the behavior of future accesses by these
processes are implementation dependent. (End of advice to users.)

The user is responsible for ensuring that all outstanding nonblocking requests and
split collective operations associated with fh made by a process have completed before that
process calls MPI_FILE_CLOSE.

The MPI_FILE_CLOSE routine deallocates the file handle object and sets fh to
MPI_FILE_NULL.

13.2.3 Deleting a File

MPI_FILE_DELETE(filename, info)

IN filename name of file to delete (string)

IN info info object (handle)

int MPI_File_delete(const char *filename, MPI_Info info)

MPI_File_delete(filename, info, ierror)

CHARACTER(LEN=*), INTENT(IN) :: filename

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_DELETE(FILENAME, INFO, IERROR)

CHARACTER*(*) FILENAME

INTEGER INFO, IERROR

MPI_FILE_DELETE deletes the file identified by the file name filename. If the file does
not exist, MPI_FILE_DELETE raises an error in the class MPI_ERR_NO_SUCH_FILE.

The info argument can be used to provide information regarding file system specifics
(see Section 13.2.8). The constant MPI_INFO_NULL refers to the null info, and can be used
when no info needs to be specified.

If a process currently has the file open, the behavior of any access to the file (as well
as the behavior of any outstanding accesses) is implementation dependent. In addition,
whether an open file is deleted or not is also implementation dependent. If the file is not
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13.2. FILE MANIPULATION 7

deleted, an error in the class MPI_ERR_FILE_IN_USE or MPI_ERR_ACCESS will be raised.
Errors are raised using the default error handler (see Section 13.9).

13.2.4 Resizing a File

MPI_FILE_SET_SIZE(fh, size)

INOUT fh file handle (handle)

IN size size to truncate or expand file (integer)

int MPI_File_set_size(MPI_File fh, MPI_Offset size)

MPI_File_set_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_SET_SIZE resizes the file associated with the file handle fh. size is measured
in bytes from the beginning of the file. MPI_FILE_SET_SIZE is collective; all processes in
the group must pass identical values for size.

If size is smaller than the current file size, the file is truncated at the position defined
by size. The implementation is free to deallocate file blocks located beyond this position.

If size is larger than the current file size, the file size becomes size. Regions of the file
that have been previously written are unaffected. The values of data in the new regions in
the file (those locations with displacements between old file size and size) are undefined. It
is implementation dependent whether the MPI_FILE_SET_SIZE routine allocates file space
— use MPI_FILE_PREALLOCATE to force file space to be reserved.

MPI_FILE_SET_SIZE does not affect the individual file pointers or the shared file
pointer. If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is
erroneous to call this routine.

Advice to users. It is possible for the file pointers to point beyond the end of file
after a MPI_FILE_SET_SIZE operation truncates a file. This is valid, and equivalent
to seeking beyond the current end of file. (End of advice to users.)

All nonblocking requests and split collective operations on fh must be completed before
calling MPI_FILE_SET_SIZE. Otherwise, calling MPI_FILE_SET_SIZE is erroneous. As far
as consistency semantics are concerned, MPI_FILE_SET_SIZE is a write operation that
conflicts with operations that access bytes at displacements between the old and new file
sizes (see Section 13.8.1).
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8 CHAPTER 13. I/O

13.2.5 Preallocating Space for a File

MPI_FILE_PREALLOCATE(fh, size)

INOUT fh file handle (handle)

IN size size to preallocate file (integer)

int MPI_File_preallocate(MPI_File fh, MPI_Offset size)

MPI_File_preallocate(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_PREALLOCATE(FH, SIZE, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_PREALLOCATE ensures that storage space is allocated for the first size bytes
of the file associated with fh. MPI_FILE_PREALLOCATE is collective; all processes in the
group must pass identical values for size. Regions of the file that have previously been
written are unaffected. For newly allocated regions of the file, MPI_FILE_PREALLOCATE
has the same effect as writing undefined data. If size is larger than the current file size, the
file size increases to size. If size is less than or equal to the current file size, the file size is
unchanged.

The treatment of file pointers, pending nonblocking accesses, and file consistency is the
same as with MPI_FILE_SET_SIZE. If MPI_MODE_SEQUENTIAL mode was specified when
the file was opened, it is erroneous to call this routine.

Advice to users. In some implementations, file preallocation may be expensive. (End
of advice to users.)

13.2.6 Querying the Size of a File

MPI_FILE_GET_SIZE(fh, size)

IN fh file handle (handle)

OUT size size of the file in bytes (integer)

int MPI_File_get_size(MPI_File fh, MPI_Offset *size)

MPI_File_get_size(fh, size, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: size

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_SIZE(FH, SIZE, IERROR)

INTEGER FH, IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



13.2. FILE MANIPULATION 9

INTEGER(KIND=MPI_OFFSET_KIND) SIZE

MPI_FILE_GET_SIZE returns, in size, the current size in bytes of the file associated with
the file handle fh. As far as consistency semantics are concerned, MPI_FILE_GET_SIZE is a
data access operation (see Section 13.8.1).

13.2.7 Querying File Parameters

MPI_FILE_GET_GROUP(fh, group)

IN fh file handle (handle)

OUT group group which opened the file (handle)

int MPI_File_get_group(MPI_File fh, MPI_Group *group)

MPI_File_get_group(fh, group, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Group), INTENT(OUT) :: group

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_GROUP(FH, GROUP, IERROR)

INTEGER FH, GROUP, IERROR

MPI_FILE_GET_GROUP returns a duplicate of the group of the communicator used to
open the file associated with fh. The group is returned in group. The user is responsible for
freeing group.

MPI_FILE_GET_AMODE(fh, amode)

IN fh file handle (handle)

OUT amode file access mode used to open the file (integer)

int MPI_File_get_amode(MPI_File fh, int *amode)

MPI_File_get_amode(fh, amode, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, INTENT(OUT) :: amode

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_AMODE(FH, AMODE, IERROR)

INTEGER FH, AMODE, IERROR

MPI_FILE_GET_AMODE returns, in amode, the access mode of the file associated with
fh.

Example 13.1 In Fortran 77, decoding an amode bit vector will require a routine such as
the following:
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10 CHAPTER 13. I/O

SUBROUTINE BIT_QUERY(TEST_BIT, MAX_BIT, AMODE, BIT_FOUND)

!

! TEST IF THE INPUT TEST_BIT IS SET IN THE INPUT AMODE

! IF SET, RETURN 1 IN BIT_FOUND, 0 OTHERWISE

!

INTEGER TEST_BIT, AMODE, BIT_FOUND, CP_AMODE, HIFOUND

BIT_FOUND = 0

CP_AMODE = AMODE

100 CONTINUE

LBIT = 0

HIFOUND = 0

DO 20 L = MAX_BIT, 0, -1

MATCHER = 2**L

IF (CP_AMODE .GE. MATCHER .AND. HIFOUND .EQ. 0) THEN

HIFOUND = 1

LBIT = MATCHER

CP_AMODE = CP_AMODE - MATCHER

END IF

20 CONTINUE

IF (HIFOUND .EQ. 1 .AND. LBIT .EQ. TEST_BIT) BIT_FOUND = 1

IF (BIT_FOUND .EQ. 0 .AND. HIFOUND .EQ. 1 .AND. &

CP_AMODE .GT. 0) GO TO 100

END

This routine could be called successively to decode amode, one bit at a time. For
example, the following code fragment would check for MPI_MODE_RDONLY.

CALL BIT_QUERY(MPI_MODE_RDONLY, 30, AMODE, BIT_FOUND)

IF (BIT_FOUND .EQ. 1) THEN

PRINT *, ’ FOUND READ-ONLY BIT IN AMODE=’, AMODE

ELSE

PRINT *, ’ READ-ONLY BIT NOT FOUND IN AMODE=’, AMODE

END IF

13.2.8 File Info

Hints specified via info (see Chapter 9) allow a user to provide information such as file
access patterns and file system specifics to direct optimization. Providing hints may enable
an implementation to deliver increased I/O performance or minimize the use of system
resources. However, hints do not change the semantics of any of the I/O interfaces. In other
words, an implementation is free to ignore all hints. Hints are specified on a per file basis, in
MPI_FILE_OPEN, MPI_FILE_DELETE, MPI_FILE_SET_VIEW, and MPI_FILE_SET_INFO,
via the opaque info object. When an info object that specifies a subset of valid hints is passed
to MPI_FILE_SET_VIEW or MPI_FILE_SET_INFO, there will be no effect on previously set
or defaulted hints that the info does not specify.

Advice to implementors. It may happen that a program is coded with hints for one
system, and later executes on another system that does not support these hints. In
general, unsupported hints should simply be ignored. Needless to say, no hint can be
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13.2. FILE MANIPULATION 11

mandatory. However, for each hint used by a specific implementation, a default value
must be provided when the user does not specify a value for this hint. (End of advice
to implementors.)

MPI_FILE_SET_INFO(fh, info)

INOUT fh file handle (handle)

IN info info object (handle)

int MPI_File_set_info(MPI_File fh, MPI_Info info)

MPI_File_set_info(fh, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_INFO(FH, INFO, IERROR)

INTEGER FH, INFO, IERROR

MPI_FILE_SET_INFO sets new values for the hints of the file associated with fh.
MPI_FILE_SET_INFO is a collective routine. The info object may be different on each pro-
cess, but any info entries that an implementation requires to be the same on all processes
must appear with the same value in each process’s info object.

Advice to users. Many info items that an implementation can use when it creates or
opens a file cannot easily be changed once the file has been created or opened. Thus,
an implementation may ignore hints issued in this call that it would have accepted in
an open call. (End of advice to users.)

MPI_FILE_GET_INFO(fh, info_used)

IN fh file handle (handle)

OUT info_used new info object (handle)

int MPI_File_get_info(MPI_File fh, MPI_Info *info_used)

MPI_File_get_info(fh, info_used, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Info), INTENT(OUT) :: info_used

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_INFO(FH, INFO_USED, IERROR)

INTEGER FH, INFO_USED, IERROR

MPI_FILE_GET_INFO returns a new info object containing the hints of the file associ-
ated with fh. The current setting of all hints actually used by the system related to this
open file is returned in info_used. If no such hints exist, a handle to a newly created info
object is returned that contains no key/value pairs. The user is responsible for freeing
info_used via MPI_INFO_FREE.
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12 CHAPTER 13. I/O

Advice to users. The info object returned in info_used will contain all hints currently
active for this file. This set of hints may be greater or smaller than the set of hints
passed in to MPI_FILE_OPEN, MPI_FILE_SET_VIEW, or MPI_FILE_SET_INFO, as
the system may not recognize some hints set by the user, and may recognize other
hints that the user has not set. (End of advice to users.)

Reserved File Hints

Some potentially useful hints (info key values) are outlined below. The following key values
are reserved. An implementation is not required to interpret these key values, but if it does
interpret the key value, it must provide the functionality described. (For more details on
“info,” see Chapter 9.)

These hints mainly affect access patterns and the layout of data on parallel I/O devices.
For each hint name introduced, we describe the purpose of the hint, and the type of the hint
value. The “[SAME]” annotation specifies that the hint values provided by all participating
processes must be identical; otherwise the program is erroneous. In addition, some hints are
context dependent, and are only used by an implementation at specific times (e.g., file_perm

is only useful during file creation).

access_style (comma separated list of strings): This hint specifies the manner in which
the file will be accessed until the file is closed or until the access_style key value is
altered. The hint value is a comma separated list of the following: read_once, write_once,
read_mostly, write_mostly, sequential, reverse_sequential, and random.

collective_buffering (boolean) [SAME]: This hint specifies whether the application may
benefit from collective buffering. Collective buffering is an optimization performed
on collective accesses. Accesses to the file are performed on behalf of all processes in
the group by a number of target nodes. These target nodes coalesce small requests
into large disk accesses. Valid values for this key are true and false. Collective buffering
parameters are further directed via additional hints: cb_block_size, cb_buffer_size, and
cb_nodes.

cb_block_size (integer) [SAME]: This hint specifies the block size to be used for collective
buffering file access. Target nodes access data in chunks of this size. The chunks are
distributed among target nodes in a round-robin (cyclic) pattern.

cb_buffer_size (integer) [SAME]: This hint specifies the total buffer space that can be used
for collective buffering on each target node, usually a multiple of cb_block_size.

cb_nodes (integer) [SAME]: This hint specifies the number of target nodes to be used for
collective buffering.

chunked (comma separated list of integers) [SAME]: This hint specifies that the file
consists of a multidimentional array that is often accessed by subarrays. The value
for this hint is a comma separated list of array dimensions, starting from the most
significant one (for an array stored in row-major order, as in C, the most significant
dimension is the first one; for an array stored in column-major order, as in Fortran, the
most significant dimension is the last one, and array dimensions should be reversed).

chunked_item (comma separated list of integers) [SAME]: This hint specifies the size
of each array entry, in bytes.
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13.3. FILE VIEWS 13

chunked_size (comma separated list of integers) [SAME]: This hint specifies the di-
mensions of the subarrays. This is a comma separated list of array dimensions, starting
from the most significant one.

filename (string): This hint specifies the file name used when the file was opened. If the
implementation is capable of returning the file name of an open file, it will be returned
using this key by MPI_FILE_GET_INFO. This key is ignored when passed to
MPI_FILE_OPEN, MPI_FILE_SET_VIEW, MPI_FILE_SET_INFO, and
MPI_FILE_DELETE.

file_perm (string) [SAME]: This hint specifies the file permissions to use for file creation.
Setting this hint is only useful when passed to MPI_FILE_OPEN with an amode that
includes MPI_MODE_CREATE. The set of valid values for this key is implementation
dependent.

io_node_list (comma separated list of strings) [SAME]: This hint specifies the list of
I/O devices that should be used to store the file. This hint is most relevant when the
file is created.

nb_proc (integer) [SAME]: This hint specifies the number of parallel processes that will
typically be assigned to run programs that access this file. This hint is most relevant
when the file is created.

num_io_nodes (integer) [SAME]: This hint specifies the number of I/O devices in the
system. This hint is most relevant when the file is created.

striping_factor (integer) [SAME]: This hint specifies the number of I/O devices that the
file should be striped across, and is relevant only when the file is created.

striping_unit (integer) [SAME]: This hint specifies the suggested striping unit to be used
for this file. The striping unit is the amount of consecutive data assigned to one I/O
device before progressing to the next device, when striping across a number of devices.
It is expressed in bytes. This hint is relevant only when the file is created.

13.3 File Views

MPI_FILE_SET_VIEW(fh, disp, etype, filetype, datarep, info)

INOUT fh file handle (handle)

IN disp displacement (integer)

IN etype elementary datatype (handle)

IN filetype filetype (handle)

IN datarep data representation (string)

IN info info object (handle)

int MPI_File_set_view(MPI_File fh, MPI_Offset disp, MPI_Datatype etype,

MPI_Datatype filetype, const char *datarep, MPI_Info info)
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14 CHAPTER 13. I/O

MPI_File_set_view(fh, disp, etype, filetype, datarep, info, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: disp

TYPE(MPI_Datatype), INTENT(IN) :: etype, filetype

CHARACTER(LEN=*), INTENT(IN) :: datarep

TYPE(MPI_Info), INTENT(IN) :: info

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, INFO, IERROR)

INTEGER FH, ETYPE, FILETYPE, INFO, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

The MPI_FILE_SET_VIEW routine changes the process’s view of the data in the file.
The start of the view is set to disp; the type of data is set to etype; the distribution of data
to processes is set to filetype; and the representation of data in the file is set to datarep.
In addition, MPI_FILE_SET_VIEW resets the individual file pointers and the shared file
pointer to zero. MPI_FILE_SET_VIEW is collective; the values for datarep and the extents
of etype in the file data representation must be identical on all processes in the group; values
for disp, filetype, and info may vary. The datatypes passed in etype and filetype must be
committed.

The etype always specifies the data layout in the file. If etype is a portable datatype (see
Section 2.4), the extent of etype is computed by scaling any displacements in the datatype
to match the file data representation. If etype is not a portable datatype, no scaling is done
when computing the extent of etype. The user must be careful when using nonportable
etypes in heterogeneous environments; see Section 13.7.1 for further details.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, the special
displacement MPI_DISPLACEMENT_CURRENT must be passed in disp. This sets the displace-
ment to the current position of the shared file pointer. MPI_DISPLACEMENT_CURRENT is
invalid unless the amode for the file has MPI_MODE_SEQUENTIAL set.

Rationale. For some sequential files, such as those corresponding to magnetic tapes
or streaming network connections, the displacement may not be meaningful.
MPI_DISPLACEMENT_CURRENT allows the view to be changed for these types of files.
(End of rationale.)

Advice to implementors. It is expected that a call to MPI_FILE_SET_VIEW will
immediately follow MPI_FILE_OPEN in numerous instances. A high-quality imple-
mentation will ensure that this behavior is efficient. (End of advice to implementors.)

The disp displacement argument specifies the position (absolute offset in bytes from
the beginning of the file) where the view begins.

Advice to users. disp can be used to skip headers or when the file includes a sequence
of data segments that are to be accessed in different patterns (see Figure 13.3). Sep-
arate views, each using a different displacement and filetype, can be used to access
each segment.

(End of advice to users.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only



13.3. FILE VIEWS 15

second view

first view

header ...
���
���
���

���
���
���

���
���
���

���
���
���

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

file structure:

first displacement second displacement

Figure 13.3: Displacements

An etype (elementary datatype) is the unit of data access and positioning. It can be
any MPI predefined or derived datatype. Derived etypes can be constructed by using any
of the MPI datatype constructor routines, provided all resulting typemap displacements are
non-negative and monotonically nondecreasing. Data access is performed in etype units,
reading or writing whole data items of type etype. Offsets are expressed as a count of
etypes; file pointers point to the beginning of etypes.

Advice to users. In order to ensure interoperability in a heterogeneous environment,
additional restrictions must be observed when constructing the
etype (see Section 13.6). (End of advice to users.)

A filetype is either a single etype or a derived MPI datatype constructed from multiple
instances of the same etype. In addition, the extent of any hole in the filetype must be
a multiple of the etype’s extent. These displacements are not required to be distinct, but
they cannot be negative, and they must be monotonically nondecreasing.

If the file is opened for writing, neither the etype nor the filetype is permitted to
contain overlapping regions. This restriction is equivalent to the “datatype used in a receive
cannot specify overlapping regions” restriction for communication. Note that filetypes from
different processes may still overlap each other.

If a filetype has holes in it, then the data in the holes is inaccessible to the calling
process. However, the disp, etype, and filetype arguments can be changed via future calls to
MPI_FILE_SET_VIEW to access a different part of the file.

It is erroneous to use absolute addresses in the construction of the etype and filetype.
The info argument is used to provide information regarding file access patterns and file

system specifics to direct optimization (see Section 13.2.8). The constant MPI_INFO_NULL

refers to the null info and can be used when no info needs to be specified.
The datarep argument is a string that specifies the representation of data in the file.

See the file interoperability section (Section 13.6) for details and a discussion of valid values.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SET_VIEW — otherwise,
the call to MPI_FILE_SET_VIEW is erroneous.
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16 CHAPTER 13. I/O

MPI_FILE_GET_VIEW(fh, disp, etype, filetype, datarep)

IN fh file handle (handle)

OUT disp displacement (integer)

OUT etype elementary datatype (handle)

OUT filetype filetype (handle)

OUT datarep data representation (string)

int MPI_File_get_view(MPI_File fh, MPI_Offset *disp, MPI_Datatype *etype,

MPI_Datatype *filetype, char *datarep)

MPI_File_get_view(fh, disp, etype, filetype, datarep, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

TYPE(MPI_Datatype), INTENT(OUT) :: etype, filetype

CHARACTER(LEN=*), INTENT(OUT) :: datarep

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_VIEW(FH, DISP, ETYPE, FILETYPE, DATAREP, IERROR)

INTEGER FH, ETYPE, FILETYPE, IERROR

CHARACTER*(*) DATAREP

INTEGER(KIND=MPI_OFFSET_KIND) DISP

MPI_FILE_GET_VIEW returns the process’s view of the data in the file. The current
value of the displacement is returned in disp. The etype and filetype are new datatypes with
typemaps equal to the typemaps of the current etype and filetype, respectively.

The data representation is returned in datarep. The user is responsible for ensuring
that datarep is large enough to hold the returned data representation string. The length of
a data representation string is limited to the value of MPI_MAX_DATAREP_STRING.

In addition, if a portable datatype was used to set the current view, then the corre-
sponding datatype returned by MPI_FILE_GET_VIEW is also a portable datatype. If etype
or filetype are derived datatypes, the user is responsible for freeing them. The etype and
filetype returned are both in a committed state.

13.4 Data Access

13.4.1 Data Access Routines

Data is moved between files and processes by issuing read and write calls. There are
three orthogonal aspects to data access: positioning (explicit offset vs. implicit file pointer),
synchronism (blocking vs. nonblocking and split collective), and coordination (noncollective
vs. collective). The following combinations of these data access routines, including two
types of file pointers (individual and shared) are provided in Table 13.1.

POSIX read()/fread() and write()/fwrite() are blocking, noncollective operations
and use individual file pointers. The MPI equivalents are MPI_FILE_READ and
MPI_FILE_WRITE.

Implementations of data access routines may buffer data to improve performance. This
does not affect reads, as the data is always available in the user’s buffer after a read operation
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13.5. 17

positioning synchronism coordination
noncollective collective

explicit blocking MPI_FILE_READ_AT MPI_FILE_READ_AT_ALL
offsets MPI_FILE_WRITE_AT MPI_FILE_WRITE_AT_ALL

nonblocking MPI_FILE_IREAD_AT MPI_FILE_IREAD_AT_ALL
MPI_FILE_IWRITE_AT MPI_FILE_IWRITE_AT_ALL

split collective N/A MPI_FILE_READ_AT_ALL_BEGIN
MPI_FILE_READ_AT_ALL_END
MPI_FILE_WRITE_AT_ALL_BEGIN
MPI_FILE_WRITE_AT_ALL_END

individual blocking MPI_FILE_READ MPI_FILE_READ_ALL
file pointers MPI_FILE_WRITE MPI_FILE_WRITE_ALL

nonblocking MPI_FILE_IREAD MPI_FILE_IREAD_ALL
MPI_FILE_IWRITE MPI_FILE_IWRITE_ALL

split collective N/A MPI_FILE_READ_ALL_BEGIN
MPI_FILE_READ_ALL_END
MPI_FILE_WRITE_ALL_BEGIN
MPI_FILE_WRITE_ALL_END

shared blocking MPI_FILE_READ_SHARED MPI_FILE_READ_ORDERED
file pointer MPI_FILE_WRITE_SHARED MPI_FILE_WRITE_ORDERED

nonblocking MPI_FILE_IREAD_SHARED N/A
MPI_FILE_IWRITE_SHARED

split collective N/A MPI_FILE_READ_ORDERED_BEGIN
MPI_FILE_READ_ORDERED_END
MPI_FILE_WRITE_ORDERED_BEGIN
MPI_FILE_WRITE_ORDERED_END

Table 13.1: Data access routines

completes. For writes, however, the MPI_FILE_SYNC routine provides the only guarantee
that data has been transferred to the storage device.

Positioning

MPI provides three types of positioning for data access routines: explicit offsets, individual
file pointers, and shared file pointers. The different positioning methods may be mixed
within the same program and do not affect each other.

The data access routines that accept explicit offsets contain _AT in their name (e.g.,
MPI_FILE_WRITE_AT). Explicit offset operations perform data access at the file position
given directly as an argument — no file pointer is used nor updated. Note that this is not
equivalent to an atomic seek-and-read or seek-and-write operation, as no “seek” is issued.
Operations with explicit offsets are described in Section 13.5.1.

The names of the individual file pointer routines contain no positional qualifier (e.g.,
MPI_FILE_WRITE). Operations with individual file pointers are described in Section 13.5.2.
The data access routines that use shared file pointers contain _SHARED or _ORDERED
in their name (e.g., MPI_FILE_WRITE_SHARED). Operations with shared file pointers are
described in

13.5

13.5.3.
The main semantic issues with MPI-maintained file pointers are how and when they are

updated by I/O operations. In general, each I/O operation leaves the file pointer pointing to
the next data item after the last one that is accessed by the operation. In a nonblocking or
split collective operation, the pointer is updated by the call that initiates the I/O, possibly
before the access completes.

More formally,

new_file_offset = old_file_offset +
elements(datatype)

elements(etype)
× count
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18 CHAPTER 13. I/O

where count is the number of datatype items to be accessed, elements(X) is the number of
predefined datatypes in the typemap of X, and old_file_offset is the value of the implicit
offset before the call. The file position, new_file_offset, is in terms of a count of etypes
relative to the current view.

Synchronism

MPI supports blocking and nonblocking I/O routines.
A blocking I/O call will not return until the I/O request is completed.
A nonblocking I/O call initiates an I/O operation, but does not wait for it to complete.

Given suitable hardware, this allows the transfer of data out of and into the user’s buffer
to proceed concurrently with computation. A separate request complete call (MPI_WAIT,
MPI_TEST, or any of their variants) is needed to complete the I/O request, i.e., to confirm
that the data has been read or written and that it is safe for the user to reuse the buffer.
The nonblocking versions of the routines are named MPI_FILE_IXXX, where the I stands
for immediate.

It is erroneous to access the local buffer of a nonblocking data access operation, or to
use that buffer as the source or target of other communications, between the initiation and
completion of the operation.

The split collective routines support a restricted form of “nonblocking” operations for
collective data access (see Section 13.5.4).

Coordination

Every noncollective data access routine MPI_FILE_XXX has a collective counterpart. For
most routines, this counterpart is MPI_FILE_XXX_ALL or a pair of MPI_FILE_XXX_BEGIN
and MPI_FILE_XXX_END. The counterparts to the MPI_FILE_XXX_SHARED routines are
MPI_FILE_XXX_ORDERED.

The completion of a noncollective call only depends on the activity of the calling pro-
cess. However, the completion of a collective call (which must be called by all members of
the process group) may depend on the activity of the other processes participating in the
collective call. See Section 13.8.4 for rules on semantics of collective calls.

Collective operations may perform much better than their noncollective counterparts,
as global data accesses have significant potential for automatic optimization.

Data Access Conventions

Data is moved between files and processes by calling read and write routines. Read routines
move data from a file into memory. Write routines move data from memory into a file. The
file is designated by a file handle, fh. The location of the file data is specified by an offset
into the current view. The data in memory is specified by a triple: buf, count, and datatype.
Upon completion, the amount of data accessed by the calling process is returned in a status.

An offset designates the starting position in the file for an access. The offset is always in
etype units relative to the current view. Explicit offset routines pass offset as an argument
(negative values are erroneous). The file pointer routines use implicit offsets maintained by
MPI.

A data access routine attempts to transfer (read or write) count data items of type
datatype between the user’s buffer buf and the file. The datatype passed to the routine
must be a committed datatype. The layout of data in memory corresponding to buf, count,
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13.5. 19

datatype is interpreted the same way as in MPI communication functions; see Section 3.2.2
and Section 4.1.11. The data is accessed from those parts of the file specified by the current
view (Section 13.3). The type signature of datatype must match the type signature of some
number of contiguous copies of the etype of the current view. As in a receive, it is erroneous
to specify a datatype for reading that contains overlapping regions (areas of memory which
would be stored into more than once).

The nonblocking data access routines indicate that MPI can start a data access and
associate a request handle, request, with the I/O operation. Nonblocking operations are
completed via MPI_TEST, MPI_WAIT, or any of their variants.

Data access operations, when completed, return the amount of data accessed in status.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–??.
(End of advice to users.)

For blocking routines, status is returned directly. For nonblocking routines and split
collective routines, status is returned when the operation is completed. The number of
datatype entries and predefined elements accessed by the calling process can be extracted
from status by using MPI_GET_COUNT and MPI_GET_ELEMENTS (or
MPI_GET_ELEMENTS_X), respectively. The interpretation of the MPI_ERROR field is the
same as for other operations — normally undefined, but meaningful if an MPI routine
returns MPI_ERR_IN_STATUS. The user can pass (in C and Fortran) MPI_STATUS_IGNORE

in the status argument if the return value of this argument is not needed. The status can be
passed to MPI_TEST_CANCELLED to determine if the operation was cancelled. All other
fields of status are undefined.

When reading, a program can detect the end of file by noting that the amount of data
read is less than the amount requested. Writing past the end of file increases the file size.
The amount of data accessed will be the amount requested, unless an error is raised (or a
read reaches the end of file).

13.5.1 Data Access with Explicit Offsets

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous to
call the routines in this section.

MPI_FILE_READ_AT(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



20 CHAPTER 13. I/O

MPI_File_read_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT reads a file beginning at the position specified by offset.

MPI_FILE_READ_AT_ALL(fh, offset, buf, count, datatype, status)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL is a collective version of the blocking MPI_FILE_READ_AT
interface.
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MPI_FILE_WRITE_AT(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT writes a file beginning at the position specified by offset.

MPI_FILE_WRITE_AT_ALL(fh, offset, buf, count, datatype, status)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_at_all(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_at_all(fh, offset, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status
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22 CHAPTER 13. I/O

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL is a collective version of the blocking
MPI_FILE_WRITE_AT interface.

MPI_FILE_IREAD_AT(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_at(MPI_File fh, MPI_Offset offset, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_AT is a nonblocking version of the MPI_FILE_READ_AT interface.

MPI_FILE_IREAD_AT_ALL(fh, offset, buf, count, datatype, request)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)
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int MPI_File_iread_at_all(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_at_all(fh, offset, buf, count, datatype, request, ierror)

BIND(C)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IREAD_AT_ALL is a nonblocking version of MPI_FILE_READ_AT_ALL. See
Section 13.8.5, page 58 for semantics of nonblocking collective file operations.

MPI_FILE_IWRITE_AT(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_at(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_at(fh, offset, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_AT(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_AT is a nonblocking version of the MPI_FILE_WRITE_AT interface.
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24 CHAPTER 13. I/O

MPI_FILE_IWRITE_AT_ALL(fh, offset, buf, count, datatype, request)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_at_all(MPI_File fh, MPI_Offset offset, const void *buf,

int count, MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_at_all(fh, offset, buf, count, datatype, request, ierror)

BIND(C)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_AT_ALL(FH, OFFSET, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_IWRITE_AT_ALL is a nonblocking version of MPI_FILE_WRITE_AT_ALL.

13.5.2 Data Access with Individual File Pointers

MPI maintains one individual file pointer per process per file handle. The current value
of this pointer implicitly specifies the offset in the data access routines described in this
section. These routines only use and update the individual file pointers maintained by MPI.
The shared file pointer is not used nor updated.

The individual file pointer routines have the same semantics as the data access with
explicit offset routines described in Section 13.5.1, with the following modification:

• the offset is defined to be the current value of the MPI-maintained individual file
pointer.

After an individual file pointer operation is initiated, the individual file pointer is updated
to point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the routines in this section, with the exception of MPI_FILE_GET_BYTE_OFFSET.
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MPI_FILE_READ(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read(MPI_File fh, void *buf, int count, MPI_Datatype datatype,

MPI_Status *status)

MPI_File_read(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ reads a file using the individual file pointer.

Example 13.2 The following Fortran code fragment is an example of reading a file until
the end of file is reached:

! Read a preexisting input file until all data has been read.

! Call routine "process_input" if all requested data is read.

! The Fortran 90 "exit" statement exits the loop.

integer bufsize, numread, totprocessed, status(MPI_STATUS_SIZE)

parameter (bufsize=100)

real localbuffer(bufsize)

integer (kind=MPI_OFFSET_KIND) zero

zero = 0

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, zero, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

totprocessed = 0

do

call MPI_FILE_READ( myfh, localbuffer, bufsize, MPI_REAL, &

status, ierr )

call MPI_GET_COUNT( status, MPI_REAL, numread, ierr )

call process_input( localbuffer, numread )
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26 CHAPTER 13. I/O

totprocessed = totprocessed + numread

if ( numread < bufsize ) exit

enddo

write(6,1001) numread, bufsize, totprocessed

1001 format( "No more data: read", I3, "and expected", I3, &

"Processed total of", I6, "before terminating job." )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_READ_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL is a collective version of the blocking MPI_FILE_READ interface.

MPI_FILE_WRITE(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)
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MPI_File_write(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE writes a file using the individual file pointer.

MPI_FILE_WRITE_ALL(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_all(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_all(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ALL is a collective version of the blocking MPI_FILE_WRITE inter-
face.
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28 CHAPTER 13. I/O

MPI_FILE_IREAD(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD is a nonblocking version of the MPI_FILE_READ interface.

Example 13.3 The following Fortran code fragment illustrates file pointer update seman-
tics:

! Read the first twenty real words in a file into two local

! buffers. Note that when the first MPI_FILE_IREAD returns,

! the file pointer has been updated to point to the

! eleventh real word in the file.

integer bufsize, req1, req2

integer, dimension(MPI_STATUS_SIZE) :: status1, status2

parameter (bufsize=10)

real buf1(bufsize), buf2(bufsize)

integer (kind=MPI_OFFSET_KIND) zero

zero = 0

call MPI_FILE_OPEN( MPI_COMM_WORLD, ’myoldfile’, &

MPI_MODE_RDONLY, MPI_INFO_NULL, myfh, ierr )

call MPI_FILE_SET_VIEW( myfh, zero, MPI_REAL, MPI_REAL, ’native’, &

MPI_INFO_NULL, ierr )

call MPI_FILE_IREAD( myfh, buf1, bufsize, MPI_REAL, &

req1, ierr )

call MPI_FILE_IREAD( myfh, buf2, bufsize, MPI_REAL, &

req2, ierr )
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call MPI_WAIT( req1, status1, ierr )

call MPI_WAIT( req2, status2, ierr )

call MPI_FILE_CLOSE( myfh, ierr )

MPI_FILE_IREAD_ALL(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_all(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_all(fh, buf, count, datatype, request, ierror) BIND(C)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_ALL is a nonblocking version of MPI_FILE_READ_ALL.

MPI_FILE_IWRITE(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype
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30 CHAPTER 13. I/O

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE is a nonblocking version of the MPI_FILE_WRITE interface.

MPI_FILE_IWRITE_ALL(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_all(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_all(fh, buf, count, datatype, request, ierror) BIND(C)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_ALL(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IWRITE_ALL is a nonblocking version of MPI_FILE_WRITE_ALL.

MPI_FILE_SEEK(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek(MPI_File fh, MPI_Offset offset, int whence)

MPI_File_seek(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SEEK(FH, OFFSET, WHENCE, IERROR)
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INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK updates the individual file pointer according to whence, which has the
following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION(fh, offset)

IN fh file handle (handle)

OUT offset offset of individual pointer (integer)

int MPI_File_get_position(MPI_File fh, MPI_Offset *offset)

MPI_File_get_position(fh, offset, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_POSITION(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION returns, in offset, the current position of the individual file
pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK using
whence = MPI_SEEK_SET to return to the current position. To set the displacement to
the current file pointer position, first convert offset into an absolute byte position using
MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with the resulting
displacement. (End of advice to users.)

MPI_FILE_GET_BYTE_OFFSET(fh, offset, disp)

IN fh file handle (handle)

IN offset offset (integer)

OUT disp absolute byte position of offset (integer)

int MPI_File_get_byte_offset(MPI_File fh, MPI_Offset offset,

MPI_Offset *disp)

MPI_File_get_byte_offset(fh, offset, disp, ierror)
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32 CHAPTER 13. I/O

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: disp

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_BYTE_OFFSET(FH, OFFSET, DISP, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET, DISP

MPI_FILE_GET_BYTE_OFFSET converts a view-relative offset into an absolute byte
position. The absolute byte position (from the beginning of the file) of offset relative to the
current view of fh is returned in disp.

13.5.3 Data Access with Shared File Pointers

MPI maintains exactly one shared file pointer per collective MPI_FILE_OPEN (shared among
processes in the communicator group). The current value of this pointer implicitly specifies
the offset in the data access routines described in this section. These routines only use and
update the shared file pointer maintained by MPI. The individual file pointers are not used
nor updated.

The shared file pointer routines have the same semantics as the data access with explicit
offset routines described in Section 13.5.1, with the following modifications:

• the offset is defined to be the current value of the MPI-maintained shared file pointer,

• the effect of multiple calls to shared file pointer routines is defined to behave as if the
calls were serialized, and

• the use of shared file pointer routines is erroneous unless all processes use the same
file view.

For the noncollective shared file pointer routines, the serialization ordering is not determin-
istic. The user needs to use other synchronization means to enforce a specific order.

After a shared file pointer operation is initiated, the shared file pointer is updated to
point to the next etype after the last one that will be accessed. The file pointer is updated
relative to the current view of the file.

Noncollective Operations

MPI_FILE_READ_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)
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int MPI_File_read_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_SHARED reads a file using the shared file pointer.

MPI_FILE_WRITE_SHARED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_shared(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_SHARED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_SHARED writes a file using the shared file pointer.
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34 CHAPTER 13. I/O

MPI_FILE_IREAD_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iread_shared(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iread_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IREAD_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR

MPI_FILE_IREAD_SHARED is a nonblocking version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_IWRITE_SHARED(fh, buf, count, datatype, request)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT request request object (handle)

int MPI_File_iwrite_shared(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Request *request)

MPI_File_iwrite_shared(fh, buf, count, datatype, request, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Request), INTENT(OUT) :: request

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_IWRITE_SHARED(FH, BUF, COUNT, DATATYPE, REQUEST, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, REQUEST, IERROR
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13.5. 35

MPI_FILE_IWRITE_SHARED is a nonblocking version of the
MPI_FILE_WRITE_SHARED interface.

Collective Operations

The semantics of a collective access using a shared file pointer is that the accesses to the
file will be in the order determined by the ranks of the processes within the group. For each
process, the location in the file at which data is accessed is the position at which the shared
file pointer would be after all processes whose ranks within the group less than that of this
process had accessed their data. In addition, in order to prevent subsequent shared offset
accesses by the same processes from interfering with this collective access, the call might
return only after all the processes within the group have initiated their accesses. When the
call returns, the shared file pointer points to the next etype accessible, according to the file
view used by all processes, after the last etype requested.

Advice to users. There may be some programs in which all processes in the group
need to access the file using the shared file pointer, but the program may not re-
quire that data be accessed in order of process rank. In such programs, using the
shared ordered routines (e.g., MPI_FILE_WRITE_ORDERED rather than
MPI_FILE_WRITE_SHARED) may enable an implementation to optimize access, im-
proving performance. (End of advice to users.)

Advice to implementors. Accesses to the data requested by all processes do not have
to be serialized. Once all processes have issued their requests, locations within the file
for all accesses can be computed, and accesses can proceed independently from each
other, possibly in parallel. (End of advice to implementors.)

MPI_FILE_READ_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_read_ordered(MPI_File fh, void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_read_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)
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36 CHAPTER 13. I/O

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ORDERED is a collective version of the MPI_FILE_READ_SHARED
interface.

MPI_FILE_WRITE_ORDERED(fh, buf, count, datatype, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

OUT status status object (Status)

int MPI_File_write_ordered(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype, MPI_Status *status)

MPI_File_write_ordered(fh, buf, count, datatype, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN) :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED(FH, BUF, COUNT, DATATYPE, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED is a collective version of the MPI_FILE_WRITE_SHARED
interface.

Seek

If MPI_MODE_SEQUENTIAL mode was specified when the file was opened, it is erroneous
to call the following two routines (MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED).

MPI_FILE_SEEK_SHARED(fh, offset, whence)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN whence update mode (state)

int MPI_File_seek_shared(MPI_File fh, MPI_Offset offset, int whence)

MPI_File_seek_shared(fh, offset, whence, ierror)

TYPE(MPI_File), INTENT(IN) :: fh
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13.5. 37

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

INTEGER, INTENT(IN) :: whence

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SEEK_SHARED(FH, OFFSET, WHENCE, IERROR)

INTEGER FH, WHENCE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_SEEK_SHARED updates the shared file pointer according to whence, which
has the following possible values:

• MPI_SEEK_SET: the pointer is set to offset

• MPI_SEEK_CUR: the pointer is set to the current pointer position plus offset

• MPI_SEEK_END: the pointer is set to the end of file plus offset

MPI_FILE_SEEK_SHARED is collective; all the processes in the communicator group
associated with the file handle fh must call MPI_FILE_SEEK_SHARED with the same values
for offset and whence.

The offset can be negative, which allows seeking backwards. It is erroneous to seek to
a negative position in the view.

MPI_FILE_GET_POSITION_SHARED(fh, offset)

IN fh file handle (handle)

OUT offset offset of shared pointer (integer)

int MPI_File_get_position_shared(MPI_File fh, MPI_Offset *offset)

MPI_File_get_position_shared(fh, offset, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(OUT) :: offset

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_POSITION_SHARED(FH, OFFSET, IERROR)

INTEGER FH, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_GET_POSITION_SHARED returns, in offset, the current position of the
shared file pointer in etype units relative to the current view.

Advice to users. The offset can be used in a future call to MPI_FILE_SEEK_SHARED
using whence = MPI_SEEK_SET to return to the current position. To set the displace-
ment to the current file pointer position, first convert offset into an absolute byte
position using MPI_FILE_GET_BYTE_OFFSET, then call MPI_FILE_SET_VIEW with
the resulting displacement. (End of advice to users.)

13.5.4 Split Collective Data Access Routines

MPI provides a restricted form of “nonblocking collective” I/O operations for all data ac-
cesses using split collective data access routines. These routines are referred to as “split”
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38 CHAPTER 13. I/O

collective routines because a single collective operation is split in two: a begin routine and
an end routine. The begin routine begins the operation, much like a nonblocking data access
(e.g., MPI_FILE_IREAD). The end routine completes the operation, much like the matching
test or wait (e.g., MPI_WAIT). As with nonblocking data access operations, the user must
not use the buffer passed to a begin routine while the routine is outstanding; the operation
must be completed with an end routine before it is safe to free buffers, etc.

Split collective data access operations on a file handle fh are subject to the semantic
rules given below.

• On any MPI process, each file handle may have at most one active split collective
operation at any time.

• Begin calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls.

• End calls are collective over the group of processes that participated in the collective
open and follow the ordering rules for collective calls. Each end call matches the
preceding begin call for the same collective operation. When an “end” call is made,
exactly one unmatched “begin” call for the same operation must precede it.

• An implementation is free to implement any split collective data access routine using
the corresponding blocking collective routine when either the begin call (e.g.,
MPI_FILE_READ_ALL_BEGIN) or the end call (e.g., MPI_FILE_READ_ALL_END) is
issued. The begin and end calls are provided to allow the user and MPI implementation
to optimize the collective operation.

• Split collective operations do not match the corresponding regular collective opera-
tion. For example, in a single collective read operation, an MPI_FILE_READ_ALL
on one process does not match an MPI_FILE_READ_ALL_BEGIN/
MPI_FILE_READ_ALL_END pair on another process.

• Split collective routines must specify a buffer in both the begin and end routines.
By specifying the buffer that receives data in the end routine, we can avoid the
problems described in “A Problem with Code Movements and Register Optimization,”
Section 17.1.17, but not all of the problems described in Section ??.

• No collective I/O operations are permitted on a file handle concurrently with a split
collective access on that file handle (i.e., between the begin and end of the access).
That is

MPI_File_read_all_begin(fh, ...);

...

MPI_File_read_all(fh, ...);

...

MPI_File_read_all_end(fh, ...);

is erroneous.

• In a multithreaded implementation, any split collective begin and end operation called
by a process must be called from the same thread. This restriction is made to simplify
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13.5. 39

the implementation in the multithreaded case. (Note that we have already disallowed
having two threads begin a split collective operation on the same file handle since only
one split collective operation can be active on a file handle at any time.)

The arguments for these routines have the same meaning as for the equivalent collective
versions (e.g., the argument definitions for MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END are equivalent to the arguments for MPI_FILE_READ_ALL).
The begin routine (e.g., MPI_FILE_READ_ALL_BEGIN) begins a split collective operation
that, when completed with the matching end routine (i.e., MPI_FILE_READ_ALL_END)
produces the result as defined for the equivalent collective routine (i.e.,
MPI_FILE_READ_ALL).

For the purpose of consistency semantics (Section 13.8.1), a matched pair of split
collective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access.

MPI_FILE_READ_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

IN fh file handle (handle)

IN offset file offset (integer)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_at_all_begin(MPI_File fh, MPI_Offset offset, void *buf,

int count, MPI_Datatype datatype)

MPI_File_read_at_all_begin(fh, offset, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_READ_AT_ALL_END(fh, buf, status)

IN fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_at_all_end(MPI_File fh, void *buf, MPI_Status *status)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



40 CHAPTER 13. I/O

MPI_File_read_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_AT_ALL_BEGIN(fh, offset, buf, count, datatype)

INOUT fh file handle (handle)

IN offset file offset (integer)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_at_all_begin(MPI_File fh, MPI_Offset offset, const

void *buf, int count, MPI_Datatype datatype)

MPI_File_write_at_all_begin(fh, offset, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER(KIND=MPI_OFFSET_KIND), INTENT(IN) :: offset

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL_BEGIN(FH, OFFSET, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) OFFSET

MPI_FILE_WRITE_AT_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_at_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_at_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
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13.5. 41

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_AT_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_READ_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_all_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_File_read_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_all_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
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42 CHAPTER 13. I/O

MPI_FILE_WRITE_ALL_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_write_all_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

MPI_File_write_all_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ALL_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_all_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_all_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ALL_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR
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MPI_FILE_READ_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

int MPI_File_read_ordered_begin(MPI_File fh, void *buf, int count,

MPI_Datatype datatype)

MPI_File_read_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_READ_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

OUT buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_read_ordered_end(MPI_File fh, void *buf, MPI_Status *status)

MPI_File_read_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_READ_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

MPI_FILE_WRITE_ORDERED_BEGIN(fh, buf, count, datatype)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

IN count number of elements in buffer (integer)

IN datatype datatype of each buffer element (handle)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48



44 CHAPTER 13. I/O

int MPI_File_write_ordered_begin(MPI_File fh, const void *buf, int count,

MPI_Datatype datatype)

MPI_File_write_ordered_begin(fh, buf, count, datatype, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

INTEGER, INTENT(IN) :: count

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED_BEGIN(FH, BUF, COUNT, DATATYPE, IERROR)

<type> BUF(*)

INTEGER FH, COUNT, DATATYPE, IERROR

MPI_FILE_WRITE_ORDERED_END(fh, buf, status)

INOUT fh file handle (handle)

IN buf initial address of buffer (choice)

OUT status status object (Status)

int MPI_File_write_ordered_end(MPI_File fh, const void *buf,

MPI_Status *status)

MPI_File_write_ordered_end(fh, buf, status, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf

TYPE(MPI_Status) :: status

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_WRITE_ORDERED_END(FH, BUF, STATUS, IERROR)

<type> BUF(*)

INTEGER FH, STATUS(MPI_STATUS_SIZE), IERROR

13.6 File Interoperability

At the most basic level, file interoperability is the ability to read the information previously
written to a file — not just the bits of data, but the actual information the bits represent.
MPI guarantees full interoperability within a single MPI environment, and supports in-
creased interoperability outside that environment through the external data representation
(Section 13.7.2) as well as the data conversion functions (Section 13.7.3).

Interoperability within a single MPI environment (which could be considered “oper-
ability”) ensures that file data written by one MPI process can be read by any other MPI
process, subject to the consistency constraints (see Section 13.8.1), provided that it would
have been possible to start the two processes simultaneously and have them reside in a
single MPI_COMM_WORLD. Furthermore, both processes must see the same data values at
every absolute byte offset in the file for which data was written.
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13.6. FILE INTEROPERABILITY 45

This single environment file interoperability implies that file data is accessible regardless
of the number of processes.

There are three aspects to file interoperability:

• transferring the bits,

• converting between different file structures, and

• converting between different machine representations.

The first two aspects of file interoperability are beyond the scope of this standard,
as both are highly machine dependent. However, transferring the bits of a file into and
out of the MPI environment (e.g., by writing a file to tape) is required to be supported
by all MPI implementations. In particular, an implementation must specify how familiar
operations similar to POSIX cp, rm, and mv can be performed on the file. Furthermore, it
is expected that the facility provided maintains the correspondence between absolute byte
offsets (e.g., after possible file structure conversion, the data bits at byte offset 102 in the
MPI environment are at byte offset 102 outside the MPI environment). As an example,
a simple off-line conversion utility that transfers and converts files between the native file
system and the MPI environment would suffice, provided it maintained the offset coherence
mentioned above. In a high-quality implementation of MPI, users will be able to manipulate
MPI files using the same or similar tools that the native file system offers for manipulating
its files.

The remaining aspect of file interoperability, converting between different machine
representations, is supported by the typing information specified in the etype and filetype.
This facility allows the information in files to be shared between any two applications,
regardless of whether they use MPI, and regardless of the machine architectures on which
they run.

MPI supports multiple data representations: “native,” “internal,” and “external32.”
An implementation may support additional data representations. MPI also supports user-
defined data representations (see Section 13.7.3). The “native” and “internal” data repre-
sentations are implementation dependent, while the “external32” representation is common
to all MPI implementations and facilitates file interoperability. The data representation is
specified in the datarep argument to MPI_FILE_SET_VIEW.

Advice to users. MPI is not guaranteed to retain knowledge of what data representa-
tion was used when a file is written. Therefore, to correctly retrieve file data, an MPI
application is responsible for specifying the same data representation as was used to
create the file. (End of advice to users.)

“native” Data in this representation is stored in a file exactly as it is in memory. The ad-
vantage of this data representation is that data precision and I/O performance are not
lost in type conversions with a purely homogeneous environment. The disadvantage
is the loss of transparent interoperability within a heterogeneous MPI environment.

Advice to users. This data representation should only be used in a homogeneous
MPI environment, or when the MPI application is capable of performing the data
type conversions itself. (End of advice to users.)
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46 CHAPTER 13. I/O

Advice to implementors. When implementing read and write operations on
top of MPI message-passing, the message data should be typed as MPI_BYTE
to ensure that the message routines do not perform any type conversions on the
data. (End of advice to implementors.)

“internal” This data representation can be used for I/O operations in a homogeneous
or heterogeneous environment; the implementation will perform type conversions if
necessary. The implementation is free to store data in any format of its choice, with
the restriction that it will maintain constant extents for all predefined datatypes in any
one file. The environment in which the resulting file can be reused is implementation-
defined and must be documented by the implementation.

Rationale. This data representation allows the implementation to perform I/O
efficiently in a heterogeneous environment, though with implementation-defined
restrictions on how the file can be reused. (End of rationale.)

Advice to implementors. Since “external32” is a superset of the functionality
provided by “internal,” an implementation may choose to implement “internal”
as “external32.” (End of advice to implementors.)

“external32” This data representation states that read and write operations convert all
data from and to the “external32” representation defined in

13.7

13.7.2. The data conversion rules for communication also apply to these conversions
(see Section 3.3.2). The data on the storage medium is always in this canonical
representation, and the data in memory is always in the local process’s native repre-
sentation.

This data representation has several advantages. First, all processes reading the file
in a heterogeneous MPI environment will automatically have the data converted to
their respective native representations. Second, the file can be exported from one MPI
environment and imported into any other MPI environment with the guarantee that
the second environment will be able to read all the data in the file.

The disadvantage of this data representation is that data precision and I/O perfor-
mance may be lost in data type conversions.

Advice to implementors. When implementing read and write operations on top
of MPI message-passing, the message data should be converted to and from the
“external32” representation in the client, and sent as type MPI_BYTE. This will
avoid possible double data type conversions and the associated further loss of
precision and performance. (End of advice to implementors.)

13.7.1 Datatypes for File Interoperability

If the file data representation is other than “native,” care must be taken in constructing
etypes and filetypes. Any of the datatype constructor functions may be used; however,
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13.7. 47

for those functions that accept displacements in bytes, the displacements must be specified
in terms of their values in the file for the file data representation being used. MPI will
interpret these byte displacements as is; no scaling will be done. The function
MPI_FILE_GET_TYPE_EXTENT can be used to calculate the extents of datatypes in the
file. For etypes and filetypes that are portable datatypes (see Section 2.4), MPI will scale
any displacements in the datatypes to match the file data representation. Datatypes passed
as arguments to read/write routines specify the data layout in memory; therefore, they must
always be constructed using displacements corresponding to displacements in memory.

Advice to users. One can logically think of the file as if it were stored in the memory
of a file server. The etype and filetype are interpreted as if they were defined at this
file server, by the same sequence of calls used to define them at the calling process.
If the data representation is “native”, then this logical file server runs on the same
architecture as the calling process, so that these types define the same data layout
on the file as they would define in the memory of the calling process. If the etype
and filetype are portable datatypes, then the data layout defined in the file is the
same as would be defined in the calling process memory, up to a scaling factor. The
routine MPI_FILE_GET_TYPE_EXTENT can be used to calculate this scaling factor.
Thus, two equivalent, portable datatypes will define the same data layout in the file,
even in a heterogeneous environment with “internal”, “external32”, or user defined
data representations. Otherwise, the etype and filetype must be constructed so that
their typemap and extent are the same on any architecture. This can be achieved
if they have an explicit upper bound and lower bound (defined using
MPI_TYPE_CREATE_RESIZED). This condition must also be fulfilled by any datatype
that is used in the construction of the etype and filetype, if this datatype is replicated
contiguously, either explicitly, by a call to MPI_TYPE_CONTIGUOUS, or implicitly,
by a blocklength argument that is greater than one. If an etype or filetype is not
portable, and has a typemap or extent that is architecture dependent, then the data
layout specified by it on a file is implementation dependent.

File data representations other than “native” may be different from corresponding
data representations in memory. Therefore, for these file data representations, it is
important not to use hardwired byte offsets for file positioning, including the initial
displacement that specifies the view. When a portable datatype (see Section 2.4) is
used in a data access operation, any holes in the datatype are scaled to match the data
representation. However, note that this technique only works when all the processes
that created the file view build their etypes from the same predefined datatypes. For
example, if one process uses an etype built from MPI_INT and another uses an etype
built from MPI_FLOAT, the resulting views may be nonportable because the relative
sizes of these types may differ from one data representation to another. (End of advice
to users.)
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48 CHAPTER 13. I/O

MPI_FILE_GET_TYPE_EXTENT(fh, datatype, extent)

IN fh file handle (handle)

IN datatype datatype (handle)

OUT extent datatype extent (integer)

int MPI_File_get_type_extent(MPI_File fh, MPI_Datatype datatype,

MPI_Aint *extent)

MPI_File_get_type_extent(fh, datatype, extent, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

TYPE(MPI_Datatype), INTENT(IN) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(OUT) :: extent

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_TYPE_EXTENT(FH, DATATYPE, EXTENT, IERROR)

INTEGER FH, DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT

Returns the extent of datatype in the file fh. This extent will be the same for all
processes accessing the file fh. If the current view uses a user-defined data representation
(see Section 13.7.3), MPI uses the dtype_file_extent_fn callback to calculate the extent.

Advice to implementors. In the case of user-defined data representations, the extent
of a derived datatype can be calculated by first determining the extents of the prede-
fined datatypes in this derived datatype using dtype_file_extent_fn (see Section 13.7.3).
(End of advice to implementors.)

13.7.2 External Data Representation: “external32”

All MPI implementations are required to support the data representation defined in this
section. Support of optional datatypes (e.g., MPI_INTEGER2) is not required.

All floating point values are in big-endian IEEE format [3] of the appropriate size.
Floating point values are represented by one of three IEEE formats. These are the IEEE
“Single,” “Double,” and “Double Extended” formats, requiring 4, 8, and 16 bytes of storage,
respectively. For the IEEE “Double Extended” formats, MPI specifies a Format Width of 16
bytes, with 15 exponent bits, bias = +16383, 112 fraction bits, and an encoding analogous
to the “Double” format. All integral values are in two’s complement big-endian format. Big-
endian means most significant byte at lowest address byte. For C _Bool, Fortran LOGICAL,
and C++ bool, 0 implies false and nonzero implies true. C float _Complex, double

_Complex, and long double _Complex, Fortran COMPLEX and DOUBLE COMPLEX, and other
complex types are represented by a pair of floating point format values for the real and
imaginary components. Characters are in ISO 8859-1 format [4]. Wide characters (of type
MPI_WCHAR) are in Unicode format [11].

All signed numerals (e.g., MPI_INT, MPI_REAL) have the sign bit at the most significant
bit. MPI_COMPLEX and MPI_DOUBLE_COMPLEX have the sign bit of the real and imaginary
parts at the most significant bit of each part.

According to IEEE specifications [3], the “NaN” (not a number) is system dependent.
It should not be interpreted within MPI as anything other than “NaN.”
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13.7. 49

Advice to implementors. The MPI treatment of “NaN” is similar to the approach used
in XDR (see ftp://ds.internic.net/rfc/rfc1832.txt). (End of advice to implementors.)

All data is byte aligned, regardless of type. All data items are stored contiguously in
the file (if the file view is contiguous).

Advice to implementors. All bytes of LOGICAL and bool must be checked to determine
the value. (End of advice to implementors.)

Advice to users. The type MPI_PACKED is treated as bytes and is not converted.
The user should be aware that MPI_PACK has the option of placing a header in the
beginning of the pack buffer. (End of advice to users.)

The sizes of the predefined datatypes returned from MPI_TYPE_CREATE_F90_REAL,
MPI_TYPE_CREATE_F90_COMPLEX, and MPI_TYPE_CREATE_F90_INTEGER are defined
in Section 17.1.9, page 625.

Advice to implementors. When converting a larger size integer to a smaller size
integer, only the least significant bytes are moved. Care must be taken to preserve
the sign bit value. This allows no conversion errors if the data range is within the
range of the smaller size integer. (End of advice to implementors.)

Table 13.2 specifies the sizes of predefined datatypes in “external32” format.

13.7.3 User-Defined Data Representations

There are two situations that cannot be handled by the required representations:

1. a user wants to write a file in a representation unknown to the implementation, and

2. a user wants to read a file written in a representation unknown to the implementation.

User-defined data representations allow the user to insert a third party converter into
the I/O stream to do the data representation conversion.

MPI_REGISTER_DATAREP(datarep, read_conversion_fn, write_conversion_fn,
dtype_file_extent_fn, extra_state)

IN datarep data representation identifier (string)

IN read_conversion_fn function invoked to convert from file representation to

native representation (function)

IN write_conversion_fn function invoked to convert from native representation

to file representation (function)

IN dtype_file_extent_fn function invoked to get the extent of a datatype as

represented in the file (function)

IN extra_state extra state

int MPI_Register_datarep(const char *datarep,

MPI_Datarep_conversion_function *read_conversion_fn,
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50 CHAPTER 13. I/O

Type Length Optional Type Length

------------------ ------ ------------------ ------

MPI_PACKED 1 MPI_INTEGER1 1

MPI_BYTE 1 MPI_INTEGER2 2

MPI_CHAR 1 MPI_INTEGER4 4

MPI_UNSIGNED_CHAR 1 MPI_INTEGER8 8

MPI_SIGNED_CHAR 1 MPI_INTEGER16 16

MPI_WCHAR 2

MPI_SHORT 2 MPI_REAL2 2

MPI_UNSIGNED_SHORT 2 MPI_REAL4 4

MPI_INT 4 MPI_REAL8 8

MPI_UNSIGNED 4 MPI_REAL16 16

MPI_LONG 4

MPI_UNSIGNED_LONG 4 MPI_COMPLEX4 2*2

MPI_LONG_LONG_INT 8 MPI_COMPLEX8 2*4

MPI_UNSIGNED_LONG_LONG 8 MPI_COMPLEX16 2*8

MPI_FLOAT 4 MPI_COMPLEX32 2*16

MPI_DOUBLE 8

MPI_LONG_DOUBLE 16

MPI_C_BOOL 1

MPI_INT8_T 1 C++ Types Length

MPI_INT16_T 2 ------------------ ------

MPI_INT32_T 4 MPI_CXX_BOOL 1

MPI_INT64_T 8 MPI_CXX_FLOAT_COMPLEX 2*4

MPI_UINT8_T 1 MPI_CXX_DOUBLE_COMPLEX 2*8

MPI_UINT16_T 2 MPI_CXX_LONG_DOUBLE_COMPLEX 2*16

MPI_UINT32_T 4

MPI_UINT64_T 8

MPI_AINT 8

MPI_COUNT 8

MPI_OFFSET 8

MPI_C_COMPLEX 2*4

MPI_C_FLOAT_COMPLEX 2*4

MPI_C_DOUBLE_COMPLEX 2*8

MPI_C_LONG_DOUBLE_COMPLEX 2*16

MPI_CHARACTER 1

MPI_LOGICAL 4

MPI_INTEGER 4

MPI_REAL 4

MPI_DOUBLE_PRECISION 8

MPI_COMPLEX 2*4

MPI_DOUBLE_COMPLEX 2*8

Table 13.2: “external32” sizes of predefined datatypes
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MPI_Datarep_conversion_function *write_conversion_fn,

MPI_Datarep_extent_function *dtype_file_extent_fn,

void *extra_state)

MPI_Register_datarep(datarep, read_conversion_fn, write_conversion_fn,

dtype_file_extent_fn, extra_state, ierror)

CHARACTER(LEN=*), INTENT(IN) :: datarep

PROCEDURE(MPI_Datarep_conversion_function) :: read_conversion_fn

PROCEDURE(MPI_Datarep_conversion_function) :: write_conversion_fn

PROCEDURE(MPI_Datarep_extent_function) :: dtype_file_extent_fn

INTEGER(KIND=MPI_ADDRESS_KIND), INTENT(IN) :: extra_state

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REGISTER_DATAREP(DATAREP, READ_CONVERSION_FN, WRITE_CONVERSION_FN,

DTYPE_FILE_EXTENT_FN, EXTRA_STATE, IERROR)

CHARACTER*(*) DATAREP

EXTERNAL READ_CONVERSION_FN, WRITE_CONVERSION_FN, DTYPE_FILE_EXTENT_FN

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

INTEGER IERROR

The call associates read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn
with the data representation identifier datarep. datarep can then be used as an argument
to MPI_FILE_SET_VIEW, causing subsequent data access operations to call the conver-
sion functions to convert all data items accessed between file data representation and na-
tive representation. MPI_REGISTER_DATAREP is a local operation and only registers the
data representation for the calling MPI process. If datarep is already defined, an error
in the error class MPI_ERR_DUP_DATAREP is raised using the default file error handler
(see Section 13.9). The length of a data representation string is limited to the value of
MPI_MAX_DATAREP_STRING. MPI_MAX_DATAREP_STRING must have a value of at least 64.
No routines are provided to delete data representations and free the associated resources;
it is not expected that an application will generate them in significant numbers.

Extent Callback

typedef int MPI_Datarep_extent_function(MPI_Datatype datatype,

MPI_Aint *file_extent, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_extent_function(datatype, extent, extra_state,

ierror)

TYPE(MPI_Datatype) :: datatype

INTEGER(KIND=MPI_ADDRESS_KIND) :: extent, extra_state

INTEGER :: ierror

SUBROUTINE DATAREP_EXTENT_FUNCTION(DATATYPE, EXTENT, EXTRA_STATE, IERROR)

INTEGER DATATYPE, IERROR

INTEGER(KIND=MPI_ADDRESS_KIND) EXTENT, EXTRA_STATE

The function dtype_file_extent_fn must return, in file_extent, the number of bytes re-
quired to store datatype in the file representation. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. MPI will only call
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this routine with predefined datatypes employed by the user.

Datarep Conversion Functions

typedef int MPI_Datarep_conversion_function(void *userbuf,

MPI_Datatype datatype, int count, void *filebuf,

MPI_Offset position, void *extra_state);

ABSTRACT INTERFACE

SUBROUTINE MPI_Datarep_conversion_function(userbuf, datatype, count,

filebuf, position, extra_state, ierror)

USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR

TYPE(C_PTR), VALUE :: userbuf, filebuf

TYPE(MPI_Datatype) :: datatype

INTEGER :: count, ierror

INTEGER(KIND=MPI_OFFSET_KIND) :: position

INTEGER(KIND=MPI_ADDRESS_KIND) :: extra_state

SUBROUTINE DATAREP_CONVERSION_FUNCTION(USERBUF, DATATYPE, COUNT, FILEBUF,

POSITION, EXTRA_STATE, IERROR)

<TYPE> USERBUF(*), FILEBUF(*)

INTEGER COUNT, DATATYPE, IERROR

INTEGER(KIND=MPI_OFFSET_KIND) POSITION

INTEGER(KIND=MPI_ADDRESS_KIND) EXTRA_STATE

The function read_conversion_fn must convert from file data representation to na-
tive representation. Before calling this routine, MPI allocates and fills filebuf with count
contiguous data items. The type of each data item matches the corresponding entry for the
predefined datatype in the type signature of datatype. The function is passed, in extra_state,
the argument that was passed to the MPI_REGISTER_DATAREP call. The function must
copy all count data items from filebuf to userbuf in the distribution described by datatype,
converting each data item from file representation to native representation. datatype will be
equivalent to the datatype that the user passed to the read function. If the size of datatype
is less than the size of the count data items, the conversion function must treat datatype
as being contiguously tiled over the userbuf. The conversion function must begin storing
converted data at the location in userbuf specified by position into the (tiled) datatype.

Advice to users. Although the conversion functions have similarities to MPI_PACK
and MPI_UNPACK, one should note the differences in the use of the arguments count
and position. In the conversion functions, count is a count of data items (i.e., count
of typemap entries of datatype), and position is an index into this typemap. In
MPI_PACK, incount refers to the number of whole datatypes, and position is a number
of bytes. (End of advice to users.)

Advice to implementors. A converted read operation could be implemented as follows:

1. Get file extent of all data items

2. Allocate a filebuf large enough to hold all count data items

3. Read data from file into filebuf
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13.7. 53

4. Call read_conversion_fn to convert data and place it into userbuf

5. Deallocate filebuf

(End of advice to implementors.)

If MPI cannot allocate a buffer large enough to hold all the data to be converted from
a read operation, it may call the conversion function repeatedly using the same datatype
and userbuf, and reading successive chunks of data to be converted in filebuf. For the first
call (and in the case when all the data to be converted fits into filebuf), MPI will call the
function with position set to zero. Data converted during this call will be stored in the
userbuf according to the first count data items in datatype. Then in subsequent calls to the
conversion function, MPI will increment the value in position by the count of items converted
in the previous call, and the userbuf pointer will be unchanged.

Rationale. Passing the conversion function a position and one datatype for the
transfer allows the conversion function to decode the datatype only once and cache an
internal representation of it on the datatype. Then on subsequent calls, the conversion
function can use the position to quickly find its place in the datatype and continue
storing converted data where it left off at the end of the previous call. (End of
rationale.)

Advice to users. Although the conversion function may usefully cache an internal
representation on the datatype, it should not cache any state information specific to
an ongoing conversion operation, since it is possible for the same datatype to be used
concurrently in multiple conversion operations. (End of advice to users.)

The function write_conversion_fn must convert from native representation to file data
representation. Before calling this routine, MPI allocates filebuf of a size large enough to
hold count contiguous data items. The type of each data item matches the corresponding
entry for the predefined datatype in the type signature of datatype. The function must copy
count data items from userbuf in the distribution described by datatype, to a contiguous
distribution in filebuf, converting each data item from native representation to file repre-
sentation. If the size of datatype is less than the size of count data items, the conversion
function must treat datatype as being contiguously tiled over the userbuf.

The function must begin copying at the location in userbuf specified by position into
the (tiled) datatype. datatype will be equivalent to the datatype that the user passed to the
write function. The function is passed, in extra_state, the argument that was passed to the
MPI_REGISTER_DATAREP call.

The predefined constant MPI_CONVERSION_FN_NULL may be used as either
write_conversion_fn or read_conversion_fn. In that case, MPI will not attempt to invoke
write_conversion_fn or read_conversion_fn, respectively, but will perform the requested data
access using the native data representation.

An MPI implementation must ensure that all data accessed is converted, either by
using a filebuf large enough to hold all the requested data items or else by making repeated
calls to the conversion function with the same datatype argument and appropriate values
for position.

An implementation will only invoke the callback routines in this section (
read_conversion_fn, write_conversion_fn, and dtype_file_extent_fn) when one of the read or
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54 CHAPTER 13. I/O

write routines in Section 13.4, or MPI_FILE_GET_TYPE_EXTENT is called by the user.
dtype_file_extent_fn will only be passed predefined datatypes employed by the user. The
conversion functions will only be passed datatypes equivalent to those that the user has
passed to one of the routines noted above.

The conversion functions must be reentrant. User defined data representations are
restricted to use byte alignment for all types. Furthermore, it is erroneous for the conversion
functions to call any collective routines or to free datatype.

The conversion functions should return an error code. If the returned error code has
a value other than MPI_SUCCESS, the implementation will raise an error in the class
MPI_ERR_CONVERSION.

13.7.4 Matching Data Representations

It is the user’s responsibility to ensure that the data representation used to read data from
a file is compatible with the data representation that was used to write that data to the file.

In general, using the same data representation name when writing and reading a file
does not guarantee that the representation is compatible. Similarly, using different repre-
sentation names on two different implementations may yield compatible representations.

Compatibility can be obtained when “external32” representation is used, although
precision may be lost and the performance may be less than when “native” representation is
used. Compatibility is guaranteed using “external32” provided at least one of the following
conditions is met.

• The data access routines directly use types enumerated in Section 13.7.2, that are
supported by all implementations participating in the I/O. The predefined type used
to write a data item must also be used to read a data item.

• In the case of Fortran 90 programs, the programs participating in the data accesses
obtain compatible datatypes using MPI routines that specify precision and/or range
(Section 17.1.9).

• For any given data item, the programs participating in the data accesses use compat-
ible predefined types to write and read the data item.

User-defined data representations may be used to provide an implementation compat-
ibility with another implementation’s “native” or “internal” representation.

Advice to users. Section 17.1.9 defines routines that support the use of matching
datatypes in heterogeneous environments and contains examples illustrating their use.
(End of advice to users.)

13.8 Consistency and Semantics

13.8.1 File Consistency

Consistency semantics define the outcome of multiple accesses to a single file. All file
accesses in MPI are relative to a specific file handle created from a collective open. MPI
provides three levels of consistency: sequential consistency among all accesses using a single
file handle, sequential consistency among all accesses using file handles created from a single
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13.8. CONSISTENCY AND SEMANTICS 55

collective open with atomic mode enabled, and user-imposed consistency among accesses
other than the above. Sequential consistency means the behavior of a set of operations will
be as if the operations were performed in some serial order consistent with program order;
each access appears atomic, although the exact ordering of accesses is unspecified. User-
imposed consistency may be obtained using program order and calls to MPI_FILE_SYNC.

Let FH1 be the set of file handles created from one particular collective open of the
file FOO, and FH2 be the set of file handles created from a different collective open of
FOO. Note that nothing restrictive is said about FH1 and FH2: the sizes of FH1 and
FH2 may be different, the groups of processes used for each open may or may not intersect,
the file handles in FH1 may be destroyed before those in FH2 are created, etc. Consider
the following three cases: a single file handle (e.g., fh1 ∈ FH1), two file handles created
from a single collective open (e.g., fh1a ∈ FH1 and fh1b ∈ FH1), and two file handles from
different collective opens (e.g., fh1 ∈ FH1 and fh2 ∈ FH2).

For the purpose of consistency semantics, a matched pair (Section 13.5.4) of split col-
lective data access operations (e.g., MPI_FILE_READ_ALL_BEGIN and
MPI_FILE_READ_ALL_END) compose a single data access operation. Similarly, a non-
blocking data access routine (e.g., MPI_FILE_IREAD) and the routine which completes the
request (e.g., MPI_WAIT) also compose a single data access operation. For all cases below,
these data access operations are subject to the same constraints as blocking data access
operations.

Advice to users. For an MPI_FILE_IREAD and MPI_WAIT pair, the operation begins
when MPI_FILE_IREAD is called and ends when MPI_WAIT returns. (End of advice
to users.)

Assume that A1 and A2 are two data access operations. Let D1 (D2) be the set of
absolute byte displacements of every byte accessed in A1 (A2). The two data accesses
overlap if D1 ∩D2 6= ∅. The two data accesses conflict if they overlap and at least one is a
write access.

Let SEQfh be a sequence of file operations on a single file handle, bracketed by
MPI_FILE_SYNCs on that file handle. (Both opening and closing a file implicitly perform
an MPI_FILE_SYNC.) SEQfh is a “write sequence” if any of the data access operations in
the sequence are writes or if any of the file manipulation operations in the sequence change
the state of the file (e.g., MPI_FILE_SET_SIZE or MPI_FILE_PREALLOCATE). Given two
sequences, SEQ1 and SEQ2, we say they are not concurrent if one sequence is guaranteed
to completely precede the other (temporally).

The requirements for guaranteeing sequential consistency among all accesses to a par-
ticular file are divided into the three cases given below. If any of these requirements are
not met, then the value of all data in that file is implementation dependent.

Case 1: fh1 ∈ FH1 All operations on fh1 are sequentially consistent if atomic mode is
set. If nonatomic mode is set, then all operations on fh1 are sequentially consistent if they
are either nonconcurrent, nonconflicting, or both.

Case 2: fh1a ∈ FH1 and fh1b ∈ FH1 Assume A1 is a data access operation using fh1a,
and A2 is a data access operation using fh1b. If for any access A1, there is no access A2

that conflicts with A1, then MPI guarantees sequential consistency.
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56 CHAPTER 13. I/O

However, unlike POSIX semantics, the default MPI semantics for conflicting accesses
do not guarantee sequential consistency. If A1 and A2 conflict, sequential consistency can be
guaranteed by either enabling atomic mode via the MPI_FILE_SET_ATOMICITY routine,
or meeting the condition described in Case 3 below.

Case 3: fh1 ∈ FH1 and fh2 ∈ FH2 Consider access to a single file using file handles from
distinct collective opens. In order to guarantee sequential consistency, MPI_FILE_SYNC
must be used (both opening and closing a file implicitly perform an MPI_FILE_SYNC).

Sequential consistency is guaranteed among accesses to a single file if for any write
sequence SEQ1 to the file, there is no sequence SEQ2 to the file which is concurrent with
SEQ1. To guarantee sequential consistency when there are write sequences,
MPI_FILE_SYNC must be used together with a mechanism that guarantees nonconcurrency
of the sequences.

See the examples in Section 13.8.11 for further clarification of some of these consistency
semantics.

MPI_FILE_SET_ATOMICITY(fh, flag)

INOUT fh file handle (handle)

IN flag true to set atomic mode, false to set nonatomic mode

(logical)

int MPI_File_set_atomicity(MPI_File fh, int flag)

MPI_File_set_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(IN) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

Let FH be the set of file handles created by one collective open. The consistency
semantics for data access operations using FH is set by collectively calling
MPI_FILE_SET_ATOMICITY on FH. MPI_FILE_SET_ATOMICITY is collective; all pro-
cesses in the group must pass identical values for fh and flag. If flag is true, atomic mode is
set; if flag is false, nonatomic mode is set.

Changing the consistency semantics for an open file only affects new data accesses.
All completed data accesses are guaranteed to abide by the consistency semantics in effect
during their execution. Nonblocking data accesses and split collective operations that have
not completed (e.g., via MPI_WAIT) are only guaranteed to abide by nonatomic mode
consistency semantics.

Advice to implementors. Since the semantics guaranteed by atomic mode are stronger
than those guaranteed by nonatomic mode, an implementation is free to adhere to
the more stringent atomic mode semantics for outstanding requests. (End of advice
to implementors.)
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MPI_FILE_GET_ATOMICITY(fh, flag)

IN fh file handle (handle)

OUT flag true if atomic mode, false if nonatomic mode (logical)

int MPI_File_get_atomicity(MPI_File fh, int *flag)

MPI_File_get_atomicity(fh, flag, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

LOGICAL, INTENT(OUT) :: flag

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_GET_ATOMICITY(FH, FLAG, IERROR)

INTEGER FH, IERROR

LOGICAL FLAG

MPI_FILE_GET_ATOMICITY returns the current consistency semantics for data access
operations on the set of file handles created by one collective open. If flag is true, atomic
mode is enabled; if flag is false, nonatomic mode is enabled.

MPI_FILE_SYNC(fh)

INOUT fh file handle (handle)

int MPI_File_sync(MPI_File fh)

MPI_File_sync(fh, ierror)

TYPE(MPI_File), INTENT(IN) :: fh

INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_FILE_SYNC(FH, IERROR)

INTEGER FH, IERROR

Calling MPI_FILE_SYNC with fh causes all previous writes to fh by the calling process
to be transferred to the storage device. If other processes have made updates to the storage
device, then all such updates become visible to subsequent reads of fh by the calling process.
MPI_FILE_SYNC may be necessary to ensure sequential consistency in certain cases (see
above).

MPI_FILE_SYNC is a collective operation.
The user is responsible for ensuring that all nonblocking requests and split collective

operations on fh have been completed before calling MPI_FILE_SYNC — otherwise, the call
to MPI_FILE_SYNC is erroneous.

13.8.2 Random Access vs. Sequential Files

MPI distinguishes ordinary random access files from sequential stream files, such as pipes
and tape files. Sequential stream files must be opened with the MPI_MODE_SEQUENTIAL

flag set in the amode. For these files, the only permitted data access operations are shared
file pointer reads and writes. Filetypes and etypes with holes are erroneous. In addition, the
notion of file pointer is not meaningful; therefore, calls to MPI_FILE_SEEK_SHARED and
MPI_FILE_GET_POSITION_SHARED are erroneous, and the pointer update rules specified
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58 CHAPTER 13. I/O

for the data access routines do not apply. The amount of data accessed by a data access
operation will be the amount requested unless the end of file is reached or an error is raised.

Rationale. This implies that reading on a pipe will always wait until the requested
amount of data is available or until the process writing to the pipe has issued an end
of file. (End of rationale.)

Finally, for some sequential files, such as those corresponding to magnetic tapes or
streaming network connections, writes to the file may be destructive. In other words, a
write may act as a truncate (a MPI_FILE_SET_SIZE with size set to the current position)
followed by the write.

13.8.3 Progress

The progress rules of MPI are both a promise to users and a set of constraints on imple-
mentors. In cases where the progress rules restrict possible implementation choices more
than the interface specification alone, the progress rules take precedence.

All blocking routines must complete in finite time unless an exceptional condition (such
as resource exhaustion) causes an error.

Nonblocking data access routines inherit the following progress rule from nonblocking
point to point communication: a nonblocking write is equivalent to a nonblocking send for
which a receive is eventually posted, and a nonblocking read is equivalent to a nonblocking
receive for which a send is eventually posted.

Finally, an implementation is free to delay progress of collective routines until all pro-
cesses in the group associated with the collective call have invoked the routine. Once all
processes in the group have invoked the routine, the progress rule of the equivalent noncol-
lective routine must be followed.

13.8.4 Collective File Operations

Collective file operations are subject to the same restrictions as collective communication
operations. For a complete discussion, please refer to the semantics set forth in Section 5.13.

Collective file operations are collective over a duplicate of the communicator used to
open the file — this duplicate communicator is implicitly specified via the file handle ar-
gument. Different processes can pass different values for other arguments of a collective
routine unless specified otherwise.

13.8.5 Nonblocking Collective File Operations

Nonblocking collective file operations are defined only for data access routines with explicit
offsets and individual file pointers but not with shared file pointers.

Nonblocking collective file operations are subject to the same restrictions as blocking
collective I/O operations. All processes belonging to the group of the communicator that
was used to open the file must call collective I/O operations (blocking and nonblocking)
in the same order. This is consistent with the ordering rules for collective operations in
threaded environments. For a complete discussion, please refer to the semantics set forth
in Section 5.13 on page 214.

Nonblocking collective I/O operations do not match with blocking collective I/O oper-
ations. Multiple nonblocking collective I/O operations can be outstanding on a single file
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handle. High quality MPI implementations should be able to support a large number of
pending nonblocking I/O operations.

All nonblocking collective I/O calls are local and return immediately, irrespective of the
status of other processes. The call initiates the operation which may progress independently
of any communication, computation, or I/O. The call returns a request handle, which must
be passed to a completion call. Input buffers should not be modified and output buffers
should not be accessed before the completion call returns. The same progress rules described
for nonblocking collective operations apply for nonblocking collective I/O operations. For
a complete discussion, please refer to the semantics set forth in Section 5.12 on page 196.

13.8.6 Type Matching

The type matching rules for I/O mimic the type matching rules for communication with one
exception: if etype is MPI_BYTE, then this matches any datatype in a data access operation.
In general, the etype of data items written must match the etype used to read the items,
and for each data access operation, the current etype must also match the type declaration
of the data access buffer.

Advice to users. In most cases, use of MPI_BYTE as a wild card will defeat the
file interoperability features of MPI. File interoperability can only perform automatic
conversion between heterogeneous data representations when the exact datatypes ac-
cessed are explicitly specified. (End of advice to users.)

13.8.7 Miscellaneous Clarifications

Once an I/O routine completes, it is safe to free any opaque objects passed as arguments
to that routine. For example, the comm and info used in an MPI_FILE_OPEN, or the etype
and filetype used in an MPI_FILE_SET_VIEW, can be freed without affecting access to the
file. Note that for nonblocking routines and split collective operations, the operation must
be completed before it is safe to reuse data buffers passed as arguments.

As in communication, datatypes must be committed before they can be used in file
manipulation or data access operations. For example, the etype and filetype must be com-
mitted before calling MPI_FILE_SET_VIEW, and the datatype must be committed before
calling MPI_FILE_READ or MPI_FILE_WRITE.

13.8.8 MPI_Offset Type

MPI_Offset is an integer type of size sufficient to represent the size (in bytes) of the largest
file supported by MPI. Displacements and offsets are always specified as values of type
MPI_Offset.

In Fortran, the corresponding integer is an integer with kind parameter
MPI_OFFSET_KIND, which is defined in the mpi_f08 module, the mpi module and the mpif.h
include file.

In Fortran 77 environments that do not support KIND parameters, MPI_Offset argu-
ments should be declared as an INTEGER of suitable size. The language interoperability
implications for MPI_Offset are similar to those for addresses (see Section 17.2).
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13.8.9 Logical vs. Physical File Layout

MPI specifies how the data should be laid out in a virtual file structure (the view), not
how that file structure is to be stored on one or more disks. Specification of the physical
file structure was avoided because it is expected that the mapping of files to disks will be
system specific, and any specific control over file layout would therefore restrict program
portability. However, there are still cases where some information may be necessary to
optimize file layout. This information can be provided as hints specified via info when a file
is created (see Section 13.2.8).

13.8.10 File Size

The size of a file may be increased by writing to the file after the current end of file. The size
may also be changed by calling MPI size changing routines, such as MPI_FILE_SET_SIZE.
A call to a size changing routine does not necessarily change the file size. For example,
calling MPI_FILE_PREALLOCATE with a size less than the current size does not change the
size.

Consider a set of bytes that has been written to a file since the most recent call to a
size changing routine, or since MPI_FILE_OPEN if no such routine has been called. Let the
high byte be the byte in that set with the largest displacement. The file size is the larger of

• One plus the displacement of the high byte.

• The size immediately after the size changing routine, or MPI_FILE_OPEN, returned.

When applying consistency semantics, calls to MPI_FILE_SET_SIZE and
MPI_FILE_PREALLOCATE are considered writes to the file (which conflict with operations
that access bytes at displacements between the old and new file sizes), and
MPI_FILE_GET_SIZE is considered a read of the file (which overlaps with all accesses to the
file).

Advice to users. Any sequence of operations containing the collective routines
MPI_FILE_SET_SIZE and MPI_FILE_PREALLOCATE is a write sequence. As such,
sequential consistency in nonatomic mode is not guaranteed unless the conditions in
Section 13.8.1 are satisfied. (End of advice to users.)

File pointer update semantics (i.e., file pointers are updated by the amount accessed)
are only guaranteed if file size changes are sequentially consistent.

Advice to users. Consider the following example. Given two operations made by
separate processes to a file containing 100 bytes: an MPI_FILE_READ of 10 bytes and
an MPI_FILE_SET_SIZE to 0 bytes. If the user does not enforce sequential consis-
tency between these two operations, the file pointer may be updated by the amount
requested (10 bytes) even if the amount accessed is zero bytes. (End of advice to
users.)

13.8.11 Examples

The examples in this section illustrate the application of the MPI consistency and semantics
guarantees. These address
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13.8. CONSISTENCY AND SEMANTICS 61

• conflicting accesses on file handles obtained from a single collective open, and

• all accesses on file handles obtained from two separate collective opens.

The simplest way to achieve consistency for conflicting accesses is to obtain sequential
consistency by setting atomic mode. For the code below, process 1 will read either 0 or 10
integers. If the latter, every element of b will be 5. If nonatomic mode is set, the results of
the read are undefined.

/* Process 0 */

int i, a[10] ;

int TRUE = 1;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh0, TRUE ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

/* Process 1 */

int b[10] ;

int TRUE = 1;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_set_atomicity( fh1, TRUE ) ;

/* MPI_Barrier( MPI_COMM_WORLD ) ; */

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status) ;

A user may guarantee that the write on process 0 precedes the read on process 1 by imposing
temporal order with, for example, calls to MPI_BARRIER.

Advice to users. Routines other than MPI_BARRIER may be used to impose temporal
order. In the example above, process 0 could use MPI_SEND to send a 0 byte message,
received by process 1 using MPI_RECV. (End of advice to users.)

Alternatively, a user can impose consistency with nonatomic mode set:

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;
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62 CHAPTER 13. I/O

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh0 ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_sync( fh1 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

The “sync-barrier-sync” construct is required because:

• The barrier ensures that the write on process 0 occurs before the read on process 1.

• The first sync guarantees that the data written by all processes is transferred to the
storage device.

• The second sync guarantees that all data which has been transferred to the storage
device is visible to all processes. (This does not affect process 0 in this example.)

The following program represents an erroneous attempt to achieve consistency by elim-
inating the apparently superfluous second “sync” call for each process.

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */

/* Process 0 */

int i, a[10] ;

for ( i=0;i<10;i++)

a[i] = 5 ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh0 ) ;

MPI_File_set_view( fh0, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh0, 0, a, 10, MPI_INT, &status ) ;

MPI_File_sync( fh0 ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

/* Process 1 */

int b[10] ;

MPI_File_open( MPI_COMM_WORLD, "workfile",

MPI_MODE_RDWR | MPI_MODE_CREATE, MPI_INFO_NULL, &fh1 ) ;

MPI_File_set_view( fh1, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_Barrier( MPI_COMM_WORLD ) ;

MPI_File_sync( fh1 ) ;

MPI_File_read_at(fh1, 0, b, 10, MPI_INT, &status ) ;

/* ---------------- THIS EXAMPLE IS ERRONEOUS --------------- */
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The above program also violates the MPI rule against out-of-order collective operations and
will deadlock for implementations in which MPI_FILE_SYNC blocks.

Advice to users. Some implementations may choose to implement MPI_FILE_SYNC
as a temporally synchronizing function. When using such an implementation, the
“sync-barrier-sync” construct above can be replaced by a single “sync.” The results of
using such code with an implementation for which MPI_FILE_SYNC is not temporally
synchronizing is undefined. (End of advice to users.)

Asynchronous I/O

The behavior of asynchronous I/O operations is determined by applying the rules specified
above for synchronous I/O operations.

The following examples all access a preexisting file “myfile.” Word 10 in myfile initially
contains the integer 2. Each example writes and reads word 10.

First consider the following code fragment:

int a = 4, b, TRUE=1;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Waitall(2, reqs, statuses) ;

For asynchronous data access operations, MPI specifies that the access occurs at any time
between the call to the asynchronous data access routine and the return from the corre-
sponding request complete routine. Thus, executing either the read before the write, or the
write before the read is consistent with program order. If atomic mode is set, then MPI
guarantees sequential consistency, and the program will read either 2 or 4 into b. If atomic
mode is not set, then sequential consistency is not guaranteed and the program may read
something other than 2 or 4 due to the conflicting data access.

Similarly, the following code fragment does not order file accesses:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

/* MPI_File_set_atomicity( fh, TRUE ) ; Use this to set atomic mode. */

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_Wait(&reqs[1], &status) ;

If atomic mode is set, either 2 or 4 will be read into b. Again, MPI does not guarantee
sequential consistency in nonatomic mode.

On the other hand, the following code fragment:
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int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_iwrite_at(fh, 10, &a, 1, MPI_INT, &reqs[0]) ;

MPI_Wait(&reqs[0], &status) ;

MPI_File_iread_at(fh, 10, &b, 1, MPI_INT, &reqs[1]) ;

MPI_Wait(&reqs[1], &status) ;

defines the same ordering as:

int a = 4, b;

MPI_File_open( MPI_COMM_WORLD, "myfile",

MPI_MODE_RDWR, MPI_INFO_NULL, &fh ) ;

MPI_File_set_view( fh, 0, MPI_INT, MPI_INT, "native", MPI_INFO_NULL ) ;

MPI_File_write_at(fh, 10, &a, 1, MPI_INT, &status ) ;

MPI_File_read_at(fh, 10, &b, 1, MPI_INT, &status ) ;

Since

• nonconcurrent operations on a single file handle are sequentially consistent, and

• the program fragments specify an order for the operations,

MPI guarantees that both program fragments will read the value 4 into b. There is no need
to set atomic mode for this example.

Similar considerations apply to conflicting accesses of the form:

MPI_File_iwrite_all(fh,...) ;

MPI_File_iread_all(fh,...) ;

MPI_Waitall(...) ;

In addition, as mentioned in Section 13.8.5 on page 58, nonblocking collective I/O
operations have to be called in the same order on the file handle by all processes.

Similar considerations apply to conflicting accesses of the form:

MPI_File_write_all_begin(fh,...) ;

MPI_File_iread(fh,...) ;

MPI_Wait(fh,...) ;

MPI_File_write_all_end(fh,...) ;

Recall that constraints governing consistency and semantics are not relevant to the
following:

MPI_File_write_all_begin(fh,...) ;

MPI_File_read_all_begin(fh,...) ;

MPI_File_read_all_end(fh,...) ;

MPI_File_write_all_end(fh,...) ;

since split collective operations on the same file handle may not overlap (see Section 13.5.4).
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13.9 I/O Error Handling

By default, communication errors are fatal — MPI_ERRORS_ARE_FATAL is the default error
handler associated with MPI_COMM_WORLD. I/O errors are usually less catastrophic (e.g.,
“file not found”) than communication errors, and common practice is to catch these errors
and continue executing. For this reason, MPI provides additional error facilities for I/O.

Advice to users. MPI does not specify the state of a computation after an erroneous
MPI call has occurred. A high-quality implementation will support the I/O error
handling facilities, allowing users to write programs using common practice for I/O.
(End of advice to users.)

Like communicators, each file handle has an error handler associated with it. The MPI
I/O error handling routines are defined in Section 8.3.

When MPI calls a user-defined error handler resulting from an error on a particular
file handle, the first two arguments passed to the file error handler are the file handle and
the error code. For I/O errors that are not associated with a valid file handle (e.g., in
MPI_FILE_OPEN or MPI_FILE_DELETE), the first argument passed to the error handler is
MPI_FILE_NULL.

I/O error handling differs from communication error handling in another important
aspect. By default, the predefined error handler for file handles is MPI_ERRORS_RETURN.
The default file error handler has two purposes: when a new file handle is created (by
MPI_FILE_OPEN), the error handler for the new file handle is initially set to the default
error handler, and I/O routines that have no valid file handle on which to raise an error
(e.g., MPI_FILE_OPEN or MPI_FILE_DELETE) use the default file error handler. The de-
fault file error handler can be changed by specifying MPI_FILE_NULL as the fh argument
to MPI_FILE_SET_ERRHANDLER. The current value of the default file error handler can
be determined by passing MPI_FILE_NULL as the fh argument to
MPI_FILE_GET_ERRHANDLER.

Rationale. For communication, the default error handler is inherited from
MPI_COMM_WORLD. In I/O, there is no analogous “root” file handle from which de-
fault properties can be inherited. Rather than invent a new global file handle, the
default file error handler is manipulated as if it were attached to MPI_FILE_NULL. (End
of rationale.)

13.10 I/O Error Classes

The implementation dependent error codes returned by the I/O routines can be converted
into the error classes defined in Table 13.3.

In addition, calls to routines in this chapter may raise errors in other MPI classes, such
as MPI_ERR_TYPE.

13.11 Examples

13.11.1 Double Buffering with Split Collective I/O

This example shows how to overlap computation and output. The computation is performed
by the function compute_buffer().
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66 CHAPTER 13. I/O

MPI_ERR_FILE Invalid file handle
MPI_ERR_NOT_SAME Collective argument not identical on all

processes, or collective routines called in
a different order by different processes

MPI_ERR_AMODE Error related to the amode passed to
MPI_FILE_OPEN

MPI_ERR_UNSUPPORTED_DATAREP Unsupported datarep passed to
MPI_FILE_SET_VIEW

MPI_ERR_UNSUPPORTED_OPERATION Unsupported operation, such as seeking on
a file which supports sequential access only

MPI_ERR_NO_SUCH_FILE File does not exist
MPI_ERR_FILE_EXISTS File exists
MPI_ERR_BAD_FILE Invalid file name (e.g., path name too long)
MPI_ERR_ACCESS Permission denied
MPI_ERR_NO_SPACE Not enough space
MPI_ERR_QUOTA Quota exceeded
MPI_ERR_READ_ONLY Read-only file or file system
MPI_ERR_FILE_IN_USE File operation could not be completed, as

the file is currently open by some process
MPI_ERR_DUP_DATAREP Conversion functions could not be regis-

tered because a data representation identi-
fier that was already defined was passed to
MPI_REGISTER_DATAREP

MPI_ERR_CONVERSION An error occurred in a user supplied data
conversion function.

MPI_ERR_IO Other I/O error

Table 13.3: I/O Error Classes
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/*=========================================================================

*

* Function: double_buffer

*

* Synopsis:

* void double_buffer(

* MPI_File fh, ** IN

* MPI_Datatype buftype, ** IN

* int bufcount ** IN

* )

*

* Description:

* Performs the steps to overlap computation with a collective write

* by using a double-buffering technique.

*

* Parameters:

* fh previously opened MPI file handle

* buftype MPI datatype for memory layout

* (Assumes a compatible view has been set on fh)

* bufcount # buftype elements to transfer

*------------------------------------------------------------------------*/

/* this macro switches which buffer "x" is pointing to */

#define TOGGLE_PTR(x) (((x)==(buffer1)) ? (x=buffer2) : (x=buffer1))

void double_buffer( MPI_File fh, MPI_Datatype buftype, int bufcount)

{

MPI_Status status; /* status for MPI calls */

float *buffer1, *buffer2; /* buffers to hold results */

float *compute_buf_ptr; /* destination buffer */

/* for computing */

float *write_buf_ptr; /* source for writing */

int done; /* determines when to quit */

/* buffer initialization */

buffer1 = (float *)

malloc(bufcount*sizeof(float)) ;

buffer2 = (float *)

malloc(bufcount*sizeof(float)) ;

compute_buf_ptr = buffer1 ; /* initially point to buffer1 */

write_buf_ptr = buffer1 ; /* initially point to buffer1 */

/* DOUBLE-BUFFER prolog:

* compute buffer1; then initiate writing buffer1 to disk

*/

compute_buffer(compute_buf_ptr, bufcount, &done);
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MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

/* DOUBLE-BUFFER steady state:

* Overlap writing old results from buffer pointed to by write_buf_ptr

* with computing new results into buffer pointed to by compute_buf_ptr.

*

* There is always one write-buffer and one compute-buffer in use

* during steady state.

*/

while (!done) {

TOGGLE_PTR(compute_buf_ptr);

compute_buffer(compute_buf_ptr, bufcount, &done);

MPI_File_write_all_end(fh, write_buf_ptr, &status);

TOGGLE_PTR(write_buf_ptr);

MPI_File_write_all_begin(fh, write_buf_ptr, bufcount, buftype);

}

/* DOUBLE-BUFFER epilog:

* wait for final write to complete.

*/

MPI_File_write_all_end(fh, write_buf_ptr, &status);

/* buffer cleanup */

free(buffer1);

free(buffer2);

}

13.11.2 Subarray Filetype Constructor

Process 0 Process 2

Process 1 Process 3

Figure 13.4: Example array file layout

Assume we are writing out a 100x100 2D array of double precision floating point num-
bers that is distributed among 4 processes such that each process has a block of 25 columns
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HolesMPI_DOUBLE

Figure 13.5: Example local array filetype for process 1

(e.g., process 0 has columns 0–24, process 1 has columns 25–49, etc.; see Figure 13.4). To
create the filetypes for each process one could use the following C program (see

13.12

4.1.3):

double subarray[100][25];

MPI_Datatype filetype;

int sizes[2], subsizes[2], starts[2];

int rank;

MPI_Comm_rank(MPI_COMM_WORLD, &rank);

sizes[0]=100; sizes[1]=100;

subsizes[0]=100; subsizes[1]=25;

starts[0]=0; starts[1]=rank*subsizes[1];

MPI_Type_create_subarray(2, sizes, subsizes, starts, MPI_ORDER_C,

MPI_DOUBLE, &filetype);

Or, equivalently in Fortran:

double precision subarray(100,25)

integer filetype, rank, ierror

integer sizes(2), subsizes(2), starts(2)

call MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierror)

sizes(1)=100

sizes(2)=100

subsizes(1)=100

subsizes(2)=25

starts(1)=0

starts(2)=rank*subsizes(2)

call MPI_TYPE_CREATE_SUBARRAY(2, sizes, subsizes, starts, &

MPI_ORDER_FORTRAN, MPI_DOUBLE_PRECISION, &
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filetype, ierror)

The generated filetype will then describe the portion of the file contained within the
process’s subarray with holes for the space taken by the other processes. Figure 13.5 shows
the filetype created for process 1.
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