
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

January 28, 2015
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 4

Point-to-Point Communication

4.1 Introduction

Sending and receiving of messages by processes is the basic MPI communication mechanism.
The basic point-to-point communication operations are send and receive. Their use is
illustrated in the example below.

#include "mpi.h"
int main(int argc, char *argv[])
{
char message[20];
int myrank;
MPI_Status status;
MPI_Init(&argc, &argv);
MPI_Comm_rank(MPI_COMM_WORLD, &myrank);
if (myrank == 0) /* code for process zero */
{

strcpy(message,"Hello, there");
MPI_Send(message, strlen(message)+1, MPI_CHAR, 1, 99, MPI_COMM_WORLD);

}
else if (myrank == 1) /* code for process one */
{

MPI_Recv(message, 20, MPI_CHAR, 0, 99, MPI_COMM_WORLD, &status);
printf("received :%s:\n", message);

}
MPI_Finalize();
return 0;

}

In this example, process zero (myrank = 0) sends a message to process one using the
send operation MPI_SEND. The operation specifies a send buffer in the sender memory
from which the message data is taken. In the example above, the send buffer consists of
the storage containing the variable message in the memory of process zero. The location,
size and type of the send buffer are specified by the first three parameters of the send
operation. The message sent will contain the 13 characters of this variable. In addition,
the send operation associates an envelope with the message. This envelope specifies the

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 4. POINT-TO-POINT COMMUNICATION

message destination and contains distinguishing information that can be used by the receive
operation to select a particular message. The last three parameters of the send operation,
along with the rank of the sender, specify the envelope for the message sent. Process one
(myrank = 1) receives this message with the receive operation MPI_RECV. The message to
be received is selected according to the value of its envelope, and the message data is stored
into the receive buffer . In the example above, the receive buffer consists of the storage
containing the string message in the memory of process one. The first three parameters
of the receive operation specify the location, size and type of the receive buffer. The next
three parameters are used for selecting the incoming message. The last parameter is used
to return information on the message just received.

The next sections describe the blocking send and receive operations. We discuss send,
receive, blocking communication semantics, type matching requirements, type conversion in
heterogeneous environments, and more general communication modes. Nonblocking com-
munication is addressed next, followed by probing and canceling a message, channel-like
constructs and send-receive operations, ending with a description of the “dummy” process,
MPI_PROC_NULL.

4.2 Blocking Send and Receive Operations

4.2.1 Blocking Send

The syntax of the blocking send operation is given below.

MPI_SEND(buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Send(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Send(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

The blocking semantics of this call are described in Section 4.4.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.2. BLOCKING SEND AND RECEIVE OPERATIONS 3

4.2.2 Message Data

The send buffer specified by the MPI_SEND operation consists of count successive entries of
the type indicated by datatype, starting with the entry at address buf. Note that we specify
the message length in terms of number of elements, not number of bytes. The former is
machine independent and closer to the application level.

The data part of the message consists of a sequence of count values, each of the type
indicated by datatype. count may be zero, in which case the data part of the message is
empty. The basic datatypes that can be specified for message data values correspond to the
basic datatypes of the host language. Possible values of this argument for Fortran and the
corresponding Fortran types are listed in Table 4.1.

MPI datatype Fortran datatype
MPI_INTEGER INTEGER
MPI_REAL REAL
MPI_DOUBLE_PRECISION DOUBLE PRECISION
MPI_COMPLEX COMPLEX
MPI_LOGICAL LOGICAL
MPI_CHARACTER CHARACTER(1)
MPI_BYTE
MPI_PACKED

Table 4.1: Predefined MPI datatypes corresponding to Fortran datatypes

Possible values for this argument for C and the corresponding C types are listed in
Table 4.2.

The datatypes MPI_BYTE and MPI_PACKED do not correspond to a Fortran or C
datatype. A value of type MPI_BYTE consists of a byte (8 binary digits). A byte is
uninterpreted and is different from a character. Different machines may have different
representations for characters, or may use more than one byte to represent characters. On
the other hand, a byte has the same binary value on all machines. The use of the type
MPI_PACKED is explained in Section 4.2.

MPI requires support of these datatypes, which match the basic datatypes of Fortran
and ISO C. Additional MPI datatypes should be provided if the host language has additional
data types: MPI_DOUBLE_COMPLEX for double precision complex in Fortran declared
to be of type DOUBLE COMPLEX; MPI_REAL2, MPI_REAL4, and MPI_REAL8 for Fortran
reals, declared to be of type REAL*2, REAL*4 and REAL*8, respectively; MPI_INTEGER1,
MPI_INTEGER2, and MPI_INTEGER4 for Fortran integers, declared to be of type
INTEGER*1, INTEGER*2, and INTEGER*4, respectively; etc.

Rationale. One goal of the design is to allow for MPI to be implemented as a
library, with no need for additional preprocessing or compilation. Thus, one cannot
assume that a communication call has information on the datatype of variables in the
communication buffer; this information must be supplied by an explicit argument.
The need for such datatype information will become clear in Section 4.3.2. (End of
rationale.)

The datatypes MPI_AINT, MPI_OFFSET, and MPI_COUNT correspond to the MPI-
defined C types MPI_Aint, MPI_Offset, and MPI_Count and their Fortran equivalents

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI datatype C datatype
MPI_CHAR char

(treated as printable character)
MPI_SHORT signed short int
MPI_INT signed int
MPI_LONG signed long int
MPI_LONG_LONG_INT signed long long int
MPI_LONG_LONG (as a synonym) signed long long int
MPI_SIGNED_CHAR signed char

(treated as integral value)
MPI_UNSIGNED_CHAR unsigned char

(treated as integral value)
MPI_UNSIGNED_SHORT unsigned short int
MPI_UNSIGNED unsigned int
MPI_UNSIGNED_LONG unsigned long int
MPI_UNSIGNED_LONG_LONG unsigned long long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_WCHAR wchar_t

(defined in <stddef.h>)
(treated as printable character)

MPI_C_BOOL _Bool
MPI_INT8_T int8_t
MPI_INT16_T int16_t
MPI_INT32_T int32_t
MPI_INT64_T int64_t
MPI_UINT8_T uint8_t
MPI_UINT16_T uint16_t
MPI_UINT32_T uint32_t
MPI_UINT64_T uint64_t
MPI_C_COMPLEX float _Complex
MPI_C_FLOAT_COMPLEX (as a synonym) float _Complex
MPI_C_DOUBLE_COMPLEX double _Complex
MPI_C_LONG_DOUBLE_COMPLEX long double _Complex
MPI_BYTE
MPI_PACKED

Table 4.2: Predefined MPI datatypes corresponding to C datatypes

INTEGER (KIND=MPI_ADDRESS_KIND), INTEGER (KIND=MPI_OFFSET_KIND), and INTEGER
(KIND=MPI_COUNT_KIND). This is described in Table 4.3. All predefined datatype handles
are available in all language bindings. See Sections 17.2.6 and ?? on page 652 and ?? for
information on interlanguage communication with these types.

If there is an accompanying C++ compiler then the datatypes in Table 4.4 are also
supported in C and Fortran.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.2. BLOCKING SEND AND RECEIVE OPERATIONS 5

MPI datatype C datatype Fortran datatype
MPI_AINT MPI_Aint INTEGER (KIND=MPI_ADDRESS_KIND)
MPI_OFFSET MPI_Offset INTEGER (KIND=MPI_OFFSET_KIND)
MPI_COUNT MPI_Count INTEGER (KIND=MPI_COUNT_KIND)

Table 4.3: Predefined MPI datatypes corresponding to both C and Fortran datatypes

MPI datatype C++ datatype
MPI_CXX_BOOL bool

MPI_CXX_FLOAT_COMPLEX std::complex<float>

MPI_CXX_DOUBLE_COMPLEX std::complex<double>

MPI_CXX_LONG_DOUBLE_COMPLEX std::complex<long double>

Table 4.4: Predefined MPI datatypes corresponding to C++ datatypes

4.2.3 Message Envelope

In addition to the data part, messages carry information that can be used to distinguish
messages and selectively receive them. This information consists of a fixed number of fields,
which we collectively call the message envelope. These fields are

source
destination

tag
communicator

The message source is implicitly determined by the identity of the message sender. The
other fields are specified by arguments in the send operation.

The message destination is specified by the dest argument.
The integer-valued message tag is specified by the tag argument. This integer can be

used by the program to distinguish different types of messages. The range of valid tag
values is 0, . . . , UB, where the value of UB is implementation dependent. It can be found by
querying the value of the attribute MPI_TAG_UB, as described in Chapter 8. MPI requires
that UB be no less than 32767.

The comm argument specifies the communicator that is used for the send operation.
Communicators are explained in Chapter 6; below is a brief summary of their usage.

A communicator specifies the communication context for a communication operation.
Each communication context provides a separate “communication universe”: messages are
always received within the context they were sent, and messages sent in different contexts
do not interfere.

The communicator also specifies the set of processes that share this communication
context. This process group is ordered and processes are identified by their rank within this
group. Thus, the range of valid values for dest is 0, . . . , n − 1 ∪ {MPI_PROC_NULL}, where
n is the number of processes in the group. (If the communicator is an inter-communicator,
then destinations are identified by their rank in the remote group. See Chapter 6.)

A predefined communicator MPI_COMM_WORLD is provided by MPI. It allows com-
munication with all processes that are accessible after MPI initialization and processes are
identified by their rank in the group of MPI_COMM_WORLD.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 4. POINT-TO-POINT COMMUNICATION

Advice to users. Users that are comfortable with the notion of a flat name space
for processes, and a single communication context, as offered by most existing com-
munication libraries, need only use the predefined variable MPI_COMM_WORLD as the
comm argument. This will allow communication with all the processes available at
initialization time.

Users may define new communicators, as explained in Chapter 6. Communicators
provide an important encapsulation mechanism for libraries and modules. They allow
modules to have their own disjoint communication universe and their own process
numbering scheme. (End of advice to users.)

Advice to implementors. The message envelope would normally be encoded by a
fixed-length message header. However, the actual encoding is implementation depen-
dent. Some of the information (e.g., source or destination) may be implicit, and need
not be explicitly carried by messages. Also, processes may be identified by relative
ranks, or absolute ids, etc. (End of advice to implementors.)

4.2.4 Blocking Receive

The syntax of the blocking receive operation is given below.

MPI_RECV (buf, count, datatype, source, tag, comm, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Recv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Status *status)

MPI_Recv(buf, count, datatype, source, tag, comm, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE),
IERROR

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.2. BLOCKING SEND AND RECEIVE OPERATIONS 7

The blocking semantics of this call are described in Section 4.4.
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Advice to users. The MPI_PROBE function described in Section 4.8 can be used to
receive messages of unknown length. (End of advice to users.)

Advice to implementors. Even though no specific behavior is mandated by MPI for
erroneous programs, the recommended handling of overflow situations is to return in
status information about the source and tag of the incoming message. The receive
operation will return an error code. A quality implementation will also ensure that
no memory that is outside the receive buffer will ever be overwritten.

In the case of a message shorter than the receive buffer, MPI is quite strict in that it
allows no modification of the other locations. A more lenient statement would allow
for some optimizations but this is not allowed. The implementation must be ready to
end a copy into the receiver memory exactly at the end of the receive buffer, even if
it is an odd address. (End of advice to implementors.)

The selection of a message by a receive operation is governed by the value of the
message envelope. A message can be received by a receive operation if its envelope matches
the source, tag and comm values specified by the receive operation. The receiver may
specify a wildcard MPI_ANY_SOURCE value for source, and/or a wildcard MPI_ANY_TAG

value for tag, indicating that any source and/or tag are acceptable. It cannot specify a
wildcard value for comm. Thus, a message can be received by a receive operation only
if it is addressed to the receiving process, has a matching communicator, has matching
source unless source=MPI_ANY_SOURCE in the pattern, and has a matching tag unless
tag=MPI_ANY_TAG in the pattern.

The message tag is specified by the tag argument of the receive operation. The argu-
ment source, if different from MPI_ANY_SOURCE, is specified as a rank within the process
group associated with that same communicator (remote process group, for intercommu-
nicators). Thus, the range of valid values for the source argument is {0, . . . , n − 1} ∪
{MPI_ANY_SOURCE},∪{MPI_PROC_NULL}, where n is the number of processes in this group.

Note the asymmetry between send and receive operations: A receive operation may
accept messages from an arbitrary sender, on the other hand, a send operation must specify
a unique receiver. This matches a “push” communication mechanism, where data transfer
is effected by the sender (rather than a “pull” mechanism, where data transfer is effected
by the receiver).

Source = destination is allowed, that is, a process can send a message to itself. (How-
ever, it is unsafe to do so with the blocking send and receive operations described above,
since this may lead to deadlock. See Section 4.5.)

Advice to implementors. Message context and other communicator information can
be implemented as an additional tag field. It differs from the regular message tag
in that wild card matching is not allowed on this field, and that value setting for

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

8 CHAPTER 4. POINT-TO-POINT COMMUNICATION

this field is controlled by communicator manipulation functions. (End of advice to
implementors.)

The use of dest or source=MPI_PROC_NULL to define a “dummy” destination or source
in any send or receive call is described in Section 4.11.

4.2.5 Return Status

The source or tag of a received message may not be known if wildcard values were used
in the receive operation. Also, if multiple requests are completed by a single MPI function
(see Section 4.7.5), a distinct error code may need to be returned for each request. The
information is returned by the status argument of MPI_RECV. The type of status is MPI-
defined. Status variables need to be explicitly allocated by the user, that is, they are not
system objects.

In C, status is a structure that contains three fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR; the structure may contain additional fields. Thus,
status.MPI_SOURCE, status.MPI_TAG and status.MPI_ERROR contain the source, tag, and
error code, respectively, of the received message.

In Fortran with USE mpi or INCLUDE ’mpif.h’, status is an array of INTEGERs of size
MPI_STATUS_SIZE. The constants MPI_SOURCE, MPI_TAG and MPI_ERROR are the indices
of the entries that store the source, tag and error fields. Thus, status(MPI_SOURCE),
status(MPI_TAG) and status(MPI_ERROR) contain, respectively, the source, tag and error
code of the received message.

With Fortran USE mpi_f08, status is defined as the Fortran BIND(C) derived type
TYPE(MPI_Status) containing three public INTEGER fields named MPI_SOURCE, MPI_TAG,
and MPI_ERROR. TYPE(MPI_Status) may contain additional, implementation-specific fields.
Thus, status%MPI_SOURCE, status%MPI_TAG and status%MPI_ERROR contain the source,
tag, and error code of a received message respectively. Additionally, within both the mpi
and the mpi_f08 modules, the constants MPI_STATUS_SIZE, MPI_SOURCE, MPI_TAG,
MPI_ERROR, and TYPE(MPI_Status) are defined to allow conversion between both status
representations. Conversion routines are provided in Section 17.2.5.

Rationale. The Fortran TYPE(MPI_Status) is defined as a BIND(C) derived type so
that it can be used at any location where the status integer array representation can
be used, e.g., in user defined common blocks. (End of rationale.)

Rationale. It is allowed to have the same name (e.g., MPI_SOURCE) defined as a
constant (e.g., Fortran parameter) and as a field of a derived type. (End of rationale.)

In general, message-passing calls do not modify the value of the error code field of
status variables. This field may be updated only by the functions in Section 4.7.5 which
return multiple statuses. The field is updated if and only if such function returns with an
error code of MPI_ERR_IN_STATUS.

Rationale. The error field in status is not needed for calls that return only one status,
such as MPI_WAIT, since that would only duplicate the information returned by the
function itself. The current design avoids the additional overhead of setting it, in such
cases. The field is needed for calls that return multiple statuses, since each request
may have had a different failure. (End of rationale.)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.2. BLOCKING SEND AND RECEIVE OPERATIONS 9

The status argument also returns information on the length of the message received.
However, this information is not directly available as a field of the status variable and a call
to MPI_GET_COUNT is required to “decode” this information.

MPI_GET_COUNT(status, datatype, count)

IN status return status of receive operation (Status)

IN datatype datatype of each receive buffer entry (handle)

OUT count number of received entries (integer)

int MPI_Get_count(const MPI_Status *status, MPI_Datatype datatype,
int *count)

MPI_Get_count(status, datatype, count, ierror)
TYPE(MPI_Status), INTENT(IN) :: status
TYPE(MPI_Datatype), INTENT(IN) :: datatype
INTEGER, INTENT(OUT) :: count
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_GET_COUNT(STATUS, DATATYPE, COUNT, IERROR)
INTEGER STATUS(MPI_STATUS_SIZE), DATATYPE, COUNT, IERROR

Returns the number of entries received. (Again, we count entries, each of type datatype,
not bytes.) The datatype argument should match the argument provided by the receive call
that set the status variable. If the number of entries received exceeds the limits of the count
parameter, then MPI_GET_COUNT sets the value of count to MPI_UNDEFINED. There are
other situations where the value of count can be set to MPI_UNDEFINED; see Section 4.1.11.

Rationale. Some message-passing libraries use INOUT count, tag and
source arguments, thus using them both to specify the selection criteria for incoming
messages and return the actual envelope values of the received message. The use of a
separate status argument prevents errors that are often attached with INOUT argument
(e.g., using the MPI_ANY_TAG constant as the tag in a receive). Some libraries use
calls that refer implicitly to the “last message received.” This is not thread safe.

The datatype argument is passed to MPI_GET_COUNT so as to improve performance.
A message might be received without counting the number of elements it contains,
and the count value is often not needed. Also, this allows the same function to be
used after a call to MPI_PROBE or MPI_IPROBE. With a status from MPI_PROBE
or MPI_IPROBE, the same datatypes are allowed as in a call to MPI_RECV to receive
this message. (End of rationale.)

The value returned as the count argument of MPI_GET_COUNT for a datatype of length
zero where zero bytes have been transferred is zero. If the number of bytes transferred is
greater than zero, MPI_UNDEFINED is returned.

Rationale. Zero-length datatypes may be created in a number of cases. An important
case is MPI_TYPE_CREATE_DARRAY, where the definition of the particular darray
results in an empty block on some MPI process. Programs written in an SPMD style

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

10 CHAPTER 4. POINT-TO-POINT COMMUNICATION

will not check for this special case and may want to use MPI_GET_COUNT to check
the status. (End of rationale.)

Advice to users. The buffer size required for the receive can be affected by data con-
versions and by the stride of the receive datatype. In most cases, the safest approach
is to use the same datatype with MPI_GET_COUNT and the receive. (End of advice
to users.)

All send and receive operations use the buf, count, datatype, source, dest, tag, comm,
and status arguments in the same way as the blocking MPI_SEND and MPI_RECV operations
described in this section.

4.2.6 Passing MPI_STATUS_IGNORE for Status

Every call to MPI_RECV includes a status argument, wherein the system can return details
about the message received. There are also a number of other MPI calls where status
is returned. An object of type MPI_Status is not an MPI opaque object; its structure
is declared in mpi.h and mpif.h, and it exists in the user’s program. In many cases,
application programs are constructed so that it is unnecessary for them to examine the
status fields. In these cases, it is a waste for the user to allocate a status object, and it is
particularly wasteful for the MPI implementation to fill in fields in this object.

To cope with this problem, there are two predefined constants, MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE, which when passed to a receive, probe, wait, or test function,
inform the implementation that the status fields are not to be filled in. Note that
MPI_STATUS_IGNORE is not a special type of MPI_Status object; rather, it is a special value
for the argument. In C one would expect it to be NULL, not the address of a special
MPI_Status.

MPI_STATUS_IGNORE, and the array version MPI_STATUSES_IGNORE, can be used every-
where a status argument is passed to a receive, wait, or test function. MPI_STATUS_IGNORE

cannot be used when status is an IN argument. Note that in Fortran MPI_STATUS_IGNORE

and MPI_STATUSES_IGNORE are objects like MPI_BOTTOM (not usable for initialization or
assignment). See Section 2.5.4.

In general, this optimization can apply to all functions for which status or an array of
statuses is an OUT argument. Note that this converts status into an INOUT argument. The
functions that can be passed MPI_STATUS_IGNORE are all the various forms of MPI_RECV,
MPI_PROBE, MPI_TEST, and MPI_WAIT, as well as MPI_REQUEST_GET_STATUS. When
an array is passed, as in the MPI_{TEST|WAIT}{ALL|SOME} functions, a separate constant,
MPI_STATUSES_IGNORE, is passed for the array argument. It is possible for an MPI function
to return MPI_ERR_IN_STATUS even when MPI_STATUS_IGNORE or MPI_STATUSES_IGNORE

has been passed to that function.
MPI_STATUS_IGNORE and MPI_STATUSES_IGNORE are not required to have the same

values in C and Fortran.
It is not allowed to have some of the statuses in an array of statuses for

MPI_{TEST|WAIT}{ALL|SOME} functions set to MPI_STATUS_IGNORE; one either specifies
ignoring all of the statuses in such a call with MPI_STATUSES_IGNORE, or none of them by
passing normal statuses in all positions in the array of statuses.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.3. DATA TYPE MATCHING AND DATA CONVERSION 11

4.3 Data Type Matching and Data Conversion

4.3.1 Type Matching Rules

One can think of message transfer as consisting of the following three phases.

1. Data is pulled out of the send buffer and a message is assembled.

2. A message is transferred from sender to receiver.

3. Data is pulled from the incoming message and disassembled into the receive buffer.

Type matching has to be observed at each of these three phases: The type of each
variable in the sender buffer has to match the type specified for that entry by the send
operation; the type specified by the send operation has to match the type specified by the
receive operation; and the type of each variable in the receive buffer has to match the type
specified for that entry by the receive operation. A program that fails to observe these three
rules is erroneous.

To define type matching more precisely, we need to deal with two issues: matching of
types of the host language with types specified in communication operations; and matching
of types at sender and receiver.

The types of a send and receive match (phase two) if both operations use identical
names. That is, MPI_INTEGER matches MPI_INTEGER, MPI_REAL matches MPI_REAL,
and so on. There is one exception to this rule, discussed in Section 4.2: the type
MPI_PACKED can match any other type.

The type of a variable in a host program matches the type specified in the commu-
nication operation if the datatype name used by that operation corresponds to the basic
type of the host program variable. For example, an entry with type name MPI_INTEGER
matches a Fortran variable of type INTEGER. A table giving this correspondence for Fortran
and C appears in Section 4.2.2. There are two exceptions to this last rule: an entry with
type name MPI_BYTE or MPI_PACKED can be used to match any byte of storage (on a
byte-addressable machine), irrespective of the datatype of the variable that contains this
byte. The type MPI_PACKED is used to send data that has been explicitly packed, or
receive data that will be explicitly unpacked, see Section 4.2. The type MPI_BYTE allows
one to transfer the binary value of a byte in memory unchanged.

To summarize, the type matching rules fall into the three categories below.

• Communication of typed values (e.g., with datatype different from MPI_BYTE), where
the datatypes of the corresponding entries in the sender program, in the send call, in
the receive call and in the receiver program must all match.

• Communication of untyped values (e.g., of datatype MPI_BYTE), where both sender
and receiver use the datatype MPI_BYTE. In this case, there are no requirements on
the types of the corresponding entries in the sender and the receiver programs, nor is
it required that they be the same.

• Communication involving packed data, where MPI_PACKED is used.

The following examples illustrate the first two cases.

Example 4.1 Sender and receiver specify matching types.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

12 CHAPTER 4. POINT-TO-POINT COMMUNICATION

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 15, MPI_REAL, 0, tag, comm, status, ierr)
END IF

This code is correct if both a and b are real arrays of size ≥ 10. (In Fortran, it might be
correct to use this code even if a or b have size < 10: e.g., when a(1) can be equivalenced
to an array with ten reals.)

Example 4.2 Sender and receiver do not specify matching types.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 10, MPI_REAL, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 40, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is erroneous, since sender and receiver do not provide matching datatype
arguments.

Example 4.3 Sender and receiver specify communication of untyped values.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a(1), 40, MPI_BYTE, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(1), 60, MPI_BYTE, 0, tag, comm, status, ierr)
END IF

This code is correct, irrespective of the type and size of a and b (unless this results in
an out of bounds memory access).

Advice to users. If a buffer of type MPI_BYTE is passed as an argument to MPI_SEND,
then MPI will send the data stored at contiguous locations, starting from the address
indicated by the buf argument. This may have unexpected results when the data
layout is not as a casual user would expect it to be. For example, some Fortran
compilers implement variables of type CHARACTER as a structure that contains the
character length and a pointer to the actual string. In such an environment, sending
and receiving a Fortran CHARACTER variable using the MPI_BYTE type will not have
the anticipated result of transferring the character string. For this reason, the user is
advised to use typed communications whenever possible. (End of advice to users.)

Type MPI_CHARACTER

The type MPI_CHARACTER matches one character of a Fortran variable of type CHARACTER,
rather than the entire character string stored in the variable. Fortran variables of type
CHARACTER or substrings are transferred as if they were arrays of characters. This is
illustrated in the example below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.3. DATA TYPE MATCHING AND DATA CONVERSION 13

Example 4.4
Transfer of Fortran CHARACTERs.

CHARACTER*10 a
CHARACTER*10 b

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(a, 5, MPI_CHARACTER, 1, tag, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_RECV(b(6:10), 5, MPI_CHARACTER, 0, tag, comm, status, ierr)
END IF

The last five characters of string b at process 1 are replaced by the first five characters
of string a at process 0.

Rationale. The alternative choice would be for MPI_CHARACTER to match a char-
acter of arbitrary length. This runs into problems.

A Fortran character variable is a constant length string, with no special termina-
tion symbol. There is no fixed convention on how to represent characters, and how
to store their length. Some compilers pass a character argument to a routine as a
pair of arguments, one holding the address of the string and the other holding the
length of string. Consider the case of an MPI communication call that is passed a
communication buffer with type defined by a derived datatype (Section 4.1). If this
communicator buffer contains variables of type CHARACTER then the information on
their length will not be passed to the MPI routine.

This problem forces us to provide explicit information on character length with the
MPI call. One could add a length parameter to the type MPI_CHARACTER, but this
does not add much convenience and the same functionality can be achieved by defining
a suitable derived datatype. (End of rationale.)

Advice to implementors. Some compilers pass Fortran CHARACTER arguments as a
structure with a length and a pointer to the actual string. In such an environment,
the MPI call needs to dereference the pointer in order to reach the string. (End of
advice to implementors.)

4.3.2 Data Conversion

One of the goals of MPI is to support parallel computations across heterogeneous environ-
ments. Communication in a heterogeneous environment may require data conversions. We
use the following terminology.

type conversion changes the datatype of a value, e.g., by rounding a REAL to an INTEGER.

representation conversion changes the binary representation of a value, e.g., from Hex
floating point to IEEE floating point.

The type matching rules imply that MPI communication never entails type conversion.
On the other hand, MPI requires that a representation conversion be performed when a

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

14 CHAPTER 4. POINT-TO-POINT COMMUNICATION

typed value is transferred across environments that use different representations for the
datatype of this value. MPI does not specify rules for representation conversion. Such
conversion is expected to preserve integer, logical and character values, and to convert a
floating point value to the nearest value that can be represented on the target system.

Overflow and underflow exceptions may occur during floating point conversions. Con-
version of integers or characters may also lead to exceptions when a value that can be
represented in one system cannot be represented in the other system. An exception occur-
ring during representation conversion results in a failure of the communication. An error
occurs either in the send operation, or the receive operation, or both.

If a value sent in a message is untyped (i.e., of type MPI_BYTE), then the binary
representation of the byte stored at the receiver is identical to the binary representation
of the byte loaded at the sender. This holds true, whether sender and receiver run in the
same or in distinct environments. No representation conversion is required. (Note that
representation conversion may occur when values of type MPI_CHARACTER or MPI_CHAR
are transferred, for example, from an EBCDIC encoding to an ASCII encoding.)

No conversion need occur when an MPI program executes in a homogeneous system,
where all processes run in the same environment.

Consider the three examples, 4.1–4.3. The first program is correct, assuming that a and
b are REAL arrays of size ≥ 10. If the sender and receiver execute in different environments,
then the ten real values that are fetched from the send buffer will be converted to the
representation for reals on the receiver site before they are stored in the receive buffer.
While the number of real elements fetched from the send buffer equal the number of real
elements stored in the receive buffer, the number of bytes stored need not equal the number
of bytes loaded. For example, the sender may use a four byte representation and the receiver
an eight byte representation for reals.

The second program is erroneous, and its behavior is undefined.
The third program is correct. The exact same sequence of forty bytes that were loaded

from the send buffer will be stored in the receive buffer, even if sender and receiver run in
a different environment. The message sent has exactly the same length (in bytes) and the
same binary representation as the message received. If a and b are of different types, or if
they are of the same type but different data representations are used, then the bits stored
in the receive buffer may encode values that are different from the values they encoded in
the send buffer.

Data representation conversion also applies to the envelope of a message: source, des-
tination and tag are all integers that may need to be converted.

Advice to implementors. The current definition does not require messages to carry
data type information. Both sender and receiver provide complete data type infor-
mation. In a heterogeneous environment, one can either use a machine independent
encoding such as XDR, or have the receiver convert from the sender representation
to its own, or even have the sender do the conversion.

Additional type information might be added to messages in order to allow the sys-
tem to detect mismatches between datatype at sender and receiver. This might be
particularly useful in a slower but safer debug mode. (End of advice to implementors.)

MPI requires support for inter-language communication, i.e., if messages are sent by a
C or C++ process and received by a Fortran process, or vice-versa. The behavior is defined
in Section 17.2.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.4. COMMUNICATION MODES 15

4.4 Communication Modes

The send call described in Section 4.2.1 is blocking : it does not return until the message
data and envelope have been safely stored away so that the sender is free to modify the
send buffer. The message might be copied directly into the matching receive buffer, or it
might be copied into a temporary system buffer.

Message buffering decouples the send and receive operations. A blocking send can com-
plete as soon as the message was buffered, even if no matching receive has been executed by
the receiver. On the other hand, message buffering can be expensive, as it entails additional
memory-to-memory copying, and it requires the allocation of memory for buffering. MPI
offers the choice of several communication modes that allow one to control the choice of the
communication protocol.

The send call described in Section 4.2.1 uses the standard communication mode. In
this mode, it is up to MPI to decide whether outgoing messages will be buffered. MPI may
buffer outgoing messages. In such a case, the send call may complete before a matching
receive is invoked. On the other hand, buffer space may be unavailable, or MPI may choose
not to buffer outgoing messages, for performance reasons. In this case, the send call will
not complete until a matching receive has been posted, and the data has been moved to the
receiver.

Thus, a send in standard mode can be started whether or not a matching receive has
been posted. It may complete before a matching receive is posted. The standard mode send
is non-local : successful completion of the send operation may depend on the occurrence of
a matching receive.

Rationale. The reluctance of MPI to mandate whether standard sends are buffering
or not stems from the desire to achieve portable programs. Since any system will run
out of buffer resources as message sizes are increased, and some implementations may
want to provide little buffering, MPI takes the position that correct (and therefore,
portable) programs do not rely on system buffering in standard mode. Buffering may
improve the performance of a correct program, but it doesn’t affect the result of the
program. If the user wishes to guarantee a certain amount of buffering, the user-
provided buffer system of Section 4.6 should be used, along with the buffered-mode
send. (End of rationale.)

There are three additional communication modes.
A buffered mode send operation can be started whether or not a matching receive

has been posted. It may complete before a matching receive is posted. However, unlike the
standard send, this operation is local , and its completion does not depend on the occurrence
of a matching receive. Thus, if a send is executed and no matching receive is posted, then
MPI must buffer the outgoing message, so as to allow the send call to complete. An error will
occur if there is insufficient buffer space. The amount of available buffer space is controlled
by the user — see Section 4.6. Buffer allocation by the user may be required for the buffered
mode to be effective.

A send that uses the synchronous mode can be started whether or not a matching
receive was posted. However, the send will complete successfully only if a matching receive is
posted, and the receive operation has started to receive the message sent by the synchronous
send. Thus, the completion of a synchronous send not only indicates that the send buffer
can be reused, but it also indicates that the receiver has reached a certain point in its

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

16 CHAPTER 4. POINT-TO-POINT COMMUNICATION

execution, namely that it has started executing the matching receive. If both sends and
receives are blocking operations then the use of the synchronous mode provides synchronous
communication semantics: a communication does not complete at either end before both
processes rendezvous at the communication. A send executed in this mode is non-local .

A send that uses the ready communication mode may be started only if the matching
receive is already posted. Otherwise, the operation is erroneous and its outcome is unde-
fined. On some systems, this allows the removal of a hand-shake operation that is otherwise
required and results in improved performance. The completion of the send operation does
not depend on the status of a matching receive, and merely indicates that the send buffer
can be reused. A send operation that uses the ready mode has the same semantics as a
standard send operation, or a synchronous send operation; it is merely that the sender
provides additional information to the system (namely that a matching receive is already
posted), that can save some overhead. In a correct program, therefore, a ready send could
be replaced by a standard send with no effect on the behavior of the program other than
performance.

Three additional send functions are provided for the three additional communication
modes. The communication mode is indicated by a one letter prefix: B for buffered, S for
synchronous, and R for ready.

MPI_BSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Bsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Bsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in buffered mode.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.4. COMMUNICATION MODES 17

MPI_SSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Ssend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Ssend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in synchronous mode.

MPI_RSEND (buf, count, datatype, dest, tag, comm)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

int MPI_Rsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm)

MPI_Rsend(buf, count, datatype, dest, tag, comm, ierror)
TYPE(*), DIMENSION(..), INTENT(IN) :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, IERROR)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

18 CHAPTER 4. POINT-TO-POINT COMMUNICATION

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

Send in ready mode.
There is only one receive operation, but it matches any of the send modes. The receive

operation described in the last section is blocking : it returns only after the receive buffer
contains the newly received message. A receive can complete before the matching send has
completed (of course, it can complete only after the matching send has started).

In a multithreaded implementation of MPI, the system may de-schedule a thread that
is blocked on a send or receive operation, and schedule another thread for execution in
the same address space. In such a case it is the user’s responsibility not to modify a
communication buffer until the communication completes. Otherwise, the outcome of the
computation is undefined.

Advice to implementors. Since a synchronous send cannot complete before a matching
receive is posted, one will not normally buffer messages sent by such an operation.

It is recommended to choose buffering over blocking the sender, whenever possible,
for standard sends. The programmer can signal his or her preference for blocking the
sender until a matching receive occurs by using the synchronous send mode.

A possible communication protocol for the various communication modes is outlined
below.

ready send : The message is sent as soon as possible.

synchronous send : The sender sends a request-to-send message. The receiver stores
this request. When a matching receive is posted, the receiver sends back a permission-
to-send message, and the sender now sends the message.

standard send : First protocol may be used for short messages, and second protocol
for long messages.

buffered send : The sender copies the message into a buffer and then sends it with a
nonblocking send (using the same protocol as for standard send).

Additional control messages might be needed for flow control and error recovery. Of
course, there are many other possible protocols.

Ready send can be implemented as a standard send. In this case there will be no
performance advantage (or disadvantage) for the use of ready send.

A standard send can be implemented as a synchronous send. In such a case, no data
buffering is needed. However, users may expect some buffering.

In a multithreaded environment, the execution of a blocking communication should
block only the executing thread, allowing the thread scheduler to de-schedule this
thread and schedule another thread for execution. (End of advice to implementors.)

4.5 Semantics of Point-to-Point Communication

A valid MPI implementation guarantees certain general properties of point-to-point com-
munication, which are described in this section.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 19

Order Messages are non-overtaking : If a sender sends two messages in succession to the
same destination, and both match the same receive, then this operation cannot receive the
second message if the first one is still pending. If a receiver posts two receives in succession,
and both match the same message, then the second receive operation cannot be satisfied
by this message, if the first one is still pending. This requirement facilitates matching of
sends to receives. It guarantees that message-passing code is deterministic, if processes are
single-threaded and the wildcard MPI_ANY_SOURCE is not used in receives. (Some of the
calls described later, such as MPI_CANCEL or MPI_WAITANY, are additional sources of
nondeterminism.)

If a process has a single thread of execution, then any two communications executed
by this process are ordered. On the other hand, if the process is multithreaded, then the
semantics of thread execution may not define a relative order between two send operations
executed by two distinct threads. The operations are logically concurrent, even if one
physically precedes the other. In such a case, the two messages sent can be received in
any order. Similarly, if two receive operations that are logically concurrent receive two
successively sent messages, then the two messages can match the two receives in either
order.

Example 4.5 An example of non-overtaking messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_BSEND(buf2, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(buf1, count, MPI_REAL, 0, MPI_ANY_TAG, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by the first send must be received by the first receive, and the message
sent by the second send must be received by the second receive.

Progress If a pair of matching send and receives have been initiated on two processes, then
at least one of these two operations will complete, independently of other actions in the
system: the send operation will complete, unless the receive is satisfied by another message,
and completes; the receive operation will complete, unless the message sent is consumed by
another matching receive that was posted at the same destination process.

Example 4.6 An example of two, intertwined matching pairs.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_BSEND(buf1, count, MPI_REAL, 1, tag1, comm, ierr)
CALL MPI_SSEND(buf2, count, MPI_REAL, 1, tag2, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(buf1, count, MPI_REAL, 0, tag2, comm, status, ierr)
CALL MPI_RECV(buf2, count, MPI_REAL, 0, tag1, comm, status, ierr)

END IF

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

20 CHAPTER 4. POINT-TO-POINT COMMUNICATION

Both processes invoke their first communication call. Since the first send of process zero
uses the buffered mode, it must complete, irrespective of the state of process one. Since
no matching receive is posted, the message will be copied into buffer space. (If insufficient
buffer space is available, then the program will fail.) The second send is then invoked. At
that point, a matching pair of send and receive operation is enabled, and both operations
must complete. Process one next invokes its second receive call, which will be satisfied by
the buffered message. Note that process one received the messages in the reverse order they
were sent.

Fairness MPI makes no guarantee of fairness in the handling of communication. Suppose
that a send is posted. Then it is possible that the destination process repeatedly posts a
receive that matches this send, yet the message is never received, because it is each time
overtaken by another message, sent from another source. Similarly, suppose that a receive
was posted by a multithreaded process. Then it is possible that messages that match this
receive are repeatedly received, yet the receive is never satisfied, because it is overtaken
by other receives posted at this node (by other executing threads). It is the programmer’s
responsibility to prevent starvation in such situations.

Resource limitations Any pending communication operation consumes system resources
that are limited. Errors may occur when lack of resources prevent the execution of an MPI
call. A quality implementation will use a (small) fixed amount of resources for each pending
send in the ready or synchronous mode and for each pending receive. However, buffer space
may be consumed to store messages sent in standard mode, and must be consumed to store
messages sent in buffered mode, when no matching receive is available. The amount of space
available for buffering will be much smaller than program data memory on many systems.
Then, it will be easy to write programs that overrun available buffer space.

MPI allows the user to provide buffer memory for messages sent in the buffered mode.
Furthermore, MPI specifies a detailed operational model for the use of this buffer. An MPI
implementation is required to do no worse than implied by this model. This allows users to
avoid buffer overflows when they use buffered sends. Buffer allocation and use is described
in Section 4.6.

A buffered send operation that cannot complete because of a lack of buffer space is
erroneous. When such a situation is detected, an error is signaled that may cause the
program to terminate abnormally. On the other hand, a standard send operation that
cannot complete because of lack of buffer space will merely block, waiting for buffer space
to become available or for a matching receive to be posted. This behavior is preferable in
many situations. Consider a situation where a producer repeatedly produces new values
and sends them to a consumer. Assume that the producer produces new values faster
than the consumer can consume them. If buffered sends are used, then a buffer overflow
will result. Additional synchronization has to be added to the program so as to prevent
this from occurring. If standard sends are used, then the producer will be automatically
throttled, as its send operations will block when buffer space is unavailable.

In some situations, a lack of buffer space leads to deadlock situations. This is illustrated
by the examples below.

Example 4.7 An exchange of messages.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.5. SEMANTICS OF POINT-TO-POINT COMMUNICATION 21

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

This program will succeed even if no buffer space for data is available. The standard send
operation can be replaced, in this example, with a synchronous send.

Example 4.8 An errant attempt to exchange messages.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)

END IF

The receive operation of the first process must complete before its send, and can complete
only if the matching send of the second processor is executed. The receive operation of the
second process must complete before its send and can complete only if the matching send
of the first process is executed. This program will always deadlock. The same holds for any
other send mode.

Example 4.9 An exchange that relies on buffering.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(sendbuf, count, MPI_REAL, 1, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 1, tag, comm, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_SEND(sendbuf, count, MPI_REAL, 0, tag, comm, ierr)
CALL MPI_RECV(recvbuf, count, MPI_REAL, 0, tag, comm, status, ierr)

END IF

The message sent by each process has to be copied out before the send operation returns
and the receive operation starts. For the program to complete, it is necessary that at least
one of the two messages sent be buffered. Thus, this program can succeed only if the
communication system can buffer at least count words of data.

Advice to users. When standard send operations are used, then a deadlock situation
may occur where both processes are blocked because buffer space is not available. The
same will certainly happen, if the synchronous mode is used. If the buffered mode is
used, and not enough buffer space is available, then the program will not complete
either. However, rather than a deadlock situation, we shall have a buffer overflow
error.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

22 CHAPTER 4. POINT-TO-POINT COMMUNICATION

A program is “safe” if no message buffering is required for the program to complete.
One can replace all sends in such program with synchronous sends, and the pro-
gram will still run correctly. This conservative programming style provides the best
portability, since program completion does not depend on the amount of buffer space
available or on the communication protocol used.

Many programmers prefer to have more leeway and opt to use the “unsafe” program-
ming style shown in Example 4.9. In such cases, the use of standard sends is likely
to provide the best compromise between performance and robustness: quality imple-
mentations will provide sufficient buffering so that “common practice” programs will
not deadlock. The buffered send mode can be used for programs that require more
buffering, or in situations where the programmer wants more control. This mode
might also be used for debugging purposes, as buffer overflow conditions are easier to
diagnose than deadlock conditions.

Nonblocking message-passing operations, as described in Section 4.7, can be used to
avoid the need for buffering outgoing messages. This prevents deadlocks due to lack
of buffer space, and improves performance, by allowing overlap of computation and
communication, and avoiding the overheads of allocating buffers and copying messages
into buffers. (End of advice to users.)

4.6 Buffer Allocation and Usage

A user may specify a buffer to be used for buffering messages sent in buffered mode. Buffer-
ing is done by the sender.

MPI_BUFFER_ATTACH(buffer, size)

IN buffer initial buffer address (choice)

IN size buffer size, in bytes (non-negative integer)

int MPI_Buffer_attach(void* buffer, int size)

MPI_Buffer_attach(buffer, size, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buffer
INTEGER, INTENT(IN) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BUFFER_ATTACH(BUFFER, SIZE, IERROR)
<type> BUFFER(*)
INTEGER SIZE, IERROR

Provides to MPI a buffer in the user’s memory to be used for buffering outgoing mes-
sages. The buffer is used only by messages sent in buffered mode. Only one buffer can be
attached to a process at a time. In C, buffer is the starting address of a memory region. In
Fortran, one can pass the first element of a memory region or a whole array, which must be
‘simply contiguous’ (for ‘simply contiguous,’ see also Section 17.1.12.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.6. BUFFER ALLOCATION AND USAGE 23

MPI_BUFFER_DETACH(buffer_addr, size)

OUT buffer_addr initial buffer address (choice)

OUT size buffer size, in bytes (non-negative integer)

int MPI_Buffer_detach(void* buffer_addr, int* size)

MPI_Buffer_detach(buffer_addr, size, ierror)
USE, INTRINSIC :: ISO_C_BINDING, ONLY : C_PTR
TYPE(C_PTR), INTENT(OUT) :: buffer_addr
INTEGER, INTENT(OUT) :: size
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BUFFER_DETACH(BUFFER_ADDR, SIZE, IERROR)
<type> BUFFER_ADDR(*)
INTEGER SIZE, IERROR

Detach the buffer currently associated with MPI. The call returns the address and the
size of the detached buffer. This operation will block until all messages currently in the
buffer have been transmitted. Upon return of this function, the user may reuse or deallocate
the space taken by the buffer.

Example 4.10 Calls to attach and detach buffers.

#define BUFFSIZE 10000
int size;
char *buff;
MPI_Buffer_attach(malloc(BUFFSIZE), BUFFSIZE);
/* a buffer of 10000 bytes can now be used by MPI_Bsend */
MPI_Buffer_detach(&buff, &size);
/* Buffer size reduced to zero */
MPI_Buffer_attach(buff, size);
/* Buffer of 10000 bytes available again */

Advice to users. Even though the C functions MPI_Buffer_attach and
MPI_Buffer_detach both have a first argument of type void*, these arguments are used
differently: A pointer to the buffer is passed to MPI_Buffer_attach; the address of the
pointer is passed to MPI_Buffer_detach, so that this call can return the pointer value.
In Fortran with the mpi module or mpif.h, the type of the buffer_addr argument is
wrongly defined and the argument is therefore unused. In Fortran with the mpi_f08
module, the address of the buffer is returned as TYPE(C_PTR), see also Example 8.1
about the use of C_PTR pointers. (End of advice to users.)

Rationale. Both arguments are defined to be of type void* (rather than
void* and void**, respectively), so as to avoid complex type casts. E.g., in the last
example, &buff, which is of type char**, can be passed as argument to
MPI_Buffer_detach without type casting. If the formal parameter had type void**
then we would need a type cast before and after the call. (End of rationale.)

The statements made in this section describe the behavior of MPI for buffered-mode
sends. When no buffer is currently associated, MPI behaves as if a zero-sized buffer is
associated with the process.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

24 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI must provide as much buffering for outgoing messages as if outgoing message
data were buffered by the sending process, in the specified buffer space, using a circular,
contiguous-space allocation policy. We outline below a model implementation that defines
this policy. MPI may provide more buffering, and may use a better buffer allocation algo-
rithm than described below. On the other hand, MPI may signal an error whenever the
simple buffering allocator described below would run out of space. In particular, if no buffer
is explicitly associated with the process, then any buffered send may cause an error.

MPI does not provide mechanisms for querying or controlling buffering done by standard
mode sends. It is expected that vendors will provide such information for their implemen-
tations.

Rationale. There is a wide spectrum of possible implementations of buffered com-
munication: buffering can be done at sender, at receiver, or both; buffers can be
dedicated to one sender-receiver pair, or be shared by all communications; buffering
can be done in real or in virtual memory; it can use dedicated memory, or memory
shared by other processes; buffer space may be allocated statically or be changed dy-
namically; etc. It does not seem feasible to provide a portable mechanism for querying
or controlling buffering that would be compatible with all these choices, yet provide
meaningful information. (End of rationale.)

4.6.1 Model Implementation of Buffered Mode

The model implementation uses the packing and unpacking functions described in Sec-
tion 4.2 and the nonblocking communication functions described in Section 4.7.

We assume that a circular queue of pending message entries (PME) is maintained.
Each entry contains a communication request handle that identifies a pending nonblocking
send, a pointer to the next entry and the packed message data. The entries are stored in
successive locations in the buffer. Free space is available between the queue tail and the
queue head.

A buffered send call results in the execution of the following code.

• Traverse sequentially the PME queue from head towards the tail, deleting all entries
for communications that have completed, up to the first entry with an uncompleted
request; update queue head to point to that entry.

• Compute the number, n, of bytes needed to store an entry for the new message. An
upper bound on n can be computed as follows: A call to the function
MPI_PACK_SIZE(count, datatype, comm, size), with the count, datatype and comm
arguments used in the MPI_BSEND call, returns an upper bound on the amount
of space needed to buffer the message data (see Section 4.2). The MPI constant
MPI_BSEND_OVERHEAD provides an upper bound on the additional space consumed
by the entry (e.g., for pointers or envelope information).

• Find the next contiguous empty space of n bytes in buffer (space following queue tail,
or space at start of buffer if queue tail is too close to end of buffer). If space is not
found then raise buffer overflow error.

• Append to end of PME queue in contiguous space the new entry that contains request
handle, next pointer and packed message data; MPI_PACK is used to pack data.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 25

• Post nonblocking send (standard mode) for packed data.

• Return

4.7 Nonblocking Communication

One can improve performance on many systems by overlapping communication and com-
putation. This is especially true on systems where communication can be executed au-
tonomously by an intelligent communication controller. Light-weight threads are one mech-
anism for achieving such overlap. An alternative mechanism that often leads to better
performance is to use nonblocking communication. A nonblocking send start call initiates
the send operation, but does not complete it. The send start call can return before the
message was copied out of the send buffer. A separate send complete call is needed to
complete the communication, i.e., to verify that the data has been copied out of the send
buffer. With suitable hardware, the transfer of data out of the sender memory may proceed
concurrently with computations done at the sender after the send was initiated and before
it completed. Similarly, a nonblocking receive start call initiates the receive operation, but
does not complete it. The call can return before a message is stored into the receive buffer.
A separate receive complete call is needed to complete the receive operation and verify that
the data has been received into the receive buffer. With suitable hardware, the transfer
of data into the receiver memory may proceed concurrently with computations done after
the receive was initiated and before it completed. The use of nonblocking receives may also
avoid system buffering and memory-to-memory copying, as information is provided early
on the location of the receive buffer.

Nonblocking send start calls can use the same four modes as blocking sends: standard ,
buffered , synchronous and ready . These carry the same meaning. Sends of all modes, ready
excepted, can be started whether a matching receive has been posted or not; a nonblocking
ready send can be started only if a matching receive is posted. In all cases, the send start
call is local: it returns immediately, irrespective of the status of other processes. If the call
causes some system resource to be exhausted, then it will fail and return an error code.
Quality implementations of MPI should ensure that this happens only in “pathological”
cases. That is, an MPI implementation should be able to support a large number of pending
nonblocking operations.

The send-complete call returns when data has been copied out of the send buffer. It
may carry additional meaning, depending on the send mode.

If the send mode is synchronous, then the send can complete only if a matching receive
has started. That is, a receive has been posted, and has been matched with the send. In
this case, the send-complete call is non-local. Note that a synchronous, nonblocking send
may complete, if matched by a nonblocking receive, before the receive complete call occurs.
(It can complete as soon as the sender “knows” the transfer will complete, but before the
receiver “knows” the transfer will complete.)

If the send mode is buffered then the message must be buffered if there is no pending
receive. In this case, the send-complete call is local, and must succeed irrespective of the
status of a matching receive.

If the send mode is standard then the send-complete call may return before a matching
receive is posted, if the message is buffered. On the other hand, the receive-complete may
not complete until a matching receive is posted, and the message was copied into the receive
buffer.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

26 CHAPTER 4. POINT-TO-POINT COMMUNICATION

Nonblocking sends can be matched with blocking receives, and vice-versa.

Advice to users. The completion of a send operation may be delayed, for standard
mode, and must be delayed, for synchronous mode, until a matching receive is posted.
The use of nonblocking sends in these two cases allows the sender to proceed ahead
of the receiver, so that the computation is more tolerant of fluctuations in the speeds
of the two processes.

Nonblocking sends in the buffered and ready modes have a more limited impact, e.g.,
the blocking version of buffered send is capable of completing regardless of when a
matching receive call is made. However, separating the start from the completion
of these sends still gives some opportunity for optimization within the MPI library.
For example, starting a buffered send gives an implementation more flexibility in
determining if and how the message is buffered. There are also advantages for both
nonblocking buffered and ready modes when data copying can be done concurrently
with computation.

The message-passing model implies that communication is initiated by the sender.
The communication will generally have lower overhead if a receive is already posted
when the sender initiates the communication (data can be moved directly to the
receive buffer, and there is no need to queue a pending send request). However, a
receive operation can complete only after the matching send has occurred. The use
of nonblocking receives allows one to achieve lower communication overheads without
blocking the receiver while it waits for the send. (End of advice to users.)

4.7.1 Communication Request Objects

Nonblocking communications use opaque request objects to identify communication oper-
ations and match the operation that initiates the communication with the operation that
terminates it. These are system objects that are accessed via a handle. A request object
identifies various properties of a communication operation, such as the send mode, the com-
munication buffer that is associated with it, its context, the tag and destination arguments
to be used for a send, or the tag and source arguments to be used for a receive. In addition,
this object stores information about the status of the pending communication operation.

4.7.2 Communication Initiation

We use the same naming conventions as for blocking communication: a prefix of B, S, or R
is used for buffered , synchronous or ready mode. In addition a prefix of I (for immediate)
indicates that the call is nonblocking.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 27

MPI_ISEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Isend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Isend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a standard mode, nonblocking send.

MPI_IBSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ibsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ibsend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

28 CHAPTER 4. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IBSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a buffered mode, nonblocking send.

MPI_ISSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Issend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Issend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_ISSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a synchronous mode, nonblocking send.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 29

MPI_IRSEND(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements in send buffer (non-negative inte-
ger)

IN datatype datatype of each send buffer element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irsend(const void* buf, int count, MPI_Datatype datatype, int dest,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irsend(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IRSEND(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Start a ready mode nonblocking send.

MPI_IRECV (buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Irecv(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Irecv(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

30 CHAPTER 4. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IRECV(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Start a nonblocking receive.
These calls allocate a communication request object and associate it with the request

handle (the argument request). The request can be used later to query the status of the
communication or wait for its completion.

A nonblocking send call indicates that the system may start copying data out of the
send buffer. The sender should not modify any part of the send buffer after a nonblocking
send operation is called, until the send completes.

A nonblocking receive call indicates that the system may start writing data into the re-
ceive buffer. The receiver should not access any part of the receive buffer after a nonblocking
receive operation is called, until the receive completes.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–??.
(End of advice to users.)

4.7.3 Communication Completion

The functions MPI_WAIT and MPI_TEST are used to complete a nonblocking communica-
tion. The completion of a send operation indicates that the sender is now free to update the
locations in the send buffer (the send operation itself leaves the content of the send buffer
unchanged). It does not indicate that the message has been received, rather, it may have
been buffered by the communication subsystem. However, if a synchronous mode send was
used, the completion of the send operation indicates that a matching receive was initiated,
and that the message will eventually be received by this matching receive.

The completion of a receive operation indicates that the receive buffer contains the
received message, the receiver is now free to access it, and that the status object is set. It
does not indicate that the matching send operation has completed (but indicates, of course,
that the send was initiated).

We shall use the following terminology: A null handle is a handle with value
MPI_REQUEST_NULL. A persistent request and the handle to it are inactive if the request
is not associated with any ongoing communication (see Section 4.9). A handle is active if
it is neither null nor inactive. An empty status is a status which is set to return tag =
MPI_ANY_TAG, source = MPI_ANY_SOURCE, error = MPI_SUCCESS, and is also internally
configured so that calls to MPI_GET_COUNT, MPI_GET_ELEMENTS, and
MPI_GET_ELEMENTS_X return count = 0 and MPI_TEST_CANCELLED returns false. We
set a status variable to empty when the value returned by it is not significant. Status is set
in this way so as to prevent errors due to accesses of stale information.

The fields in a status object returned by a call to MPI_WAIT, MPI_TEST, or any
of the other derived functions (MPI_{TEST|WAIT}{ALL|SOME|ANY}), where the request
corresponds to a send call, are undefined, with two exceptions: The error status field will

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 31

contain valid information if the wait or test call returned with MPI_ERR_IN_STATUS; and
the returned status can be queried by the call MPI_TEST_CANCELLED.

Error codes belonging to the error class MPI_ERR_IN_STATUS should be returned only by
the MPI completion functions that take arrays of MPI_Status. For the functions MPI_TEST,
MPI_TESTANY, MPI_WAIT, and MPI_WAITANY, which return a single MPI_Status value,
the normal MPI error return process should be used (not the MPI_ERROR field in the
MPI_Status argument).

MPI_WAIT(request, status)

INOUT request request (handle)

OUT status status object (Status)

int MPI_Wait(MPI_Request *request, MPI_Status *status)

MPI_Wait(request, status, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAIT(REQUEST, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_WAIT returns when the operation identified by request is complete. If
the request is an active persistent request, it is marked inactive. Any other type of request
is and the request handle is set to MPI_REQUEST_NULL. MPI_WAIT is a non-local operation.

The call returns, in status, information on the completed operation. The content of
the status object for a receive operation can be accessed as described in Section 4.2.5. The
status object for a send operation may be queried by a call to MPI_TEST_CANCELLED
(see Section 4.8).

One is allowed to call MPI_WAIT with a null or inactive request argument. In this case
the operation returns immediately with empty status.

Advice to users. Successful return of MPI_WAIT after a MPI_IBSEND implies that
the user send buffer can be reused — i.e., data has been sent out or copied into
a buffer attached with MPI_BUFFER_ATTACH. Note that, at this point, we can no
longer cancel the send (see Section 4.8). If a matching receive is never posted, then the
buffer cannot be freed. This runs somewhat counter to the stated goal of MPI_CANCEL
(always being able to free program space that was committed to the communication
subsystem). (End of advice to users.)

Advice to implementors. In a multithreaded environment, a call to MPI_WAIT should
block only the calling thread, allowing the thread scheduler to schedule another thread
for execution. (End of advice to implementors.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

32 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_TEST(request, flag, status)

INOUT request communication request (handle)

OUT flag true if operation completed (logical)

OUT status status object (Status)

int MPI_Test(MPI_Request *request, int *flag, MPI_Status *status)

MPI_Test(request, flag, status, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST(REQUEST, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR

A call to MPI_TEST returns flag = true if the operation identified by request is complete.
In such a case, the status object is set to contain information on the completed operation.
If the request is an active persistent request, it is marked as inactive. Any other type of
request is deallocated and the request handle is set to MPI_REQUEST_NULL. The call returns
flag = false if the operation identified by request is not complete. In this case, the value of
the status object is undefined. MPI_TEST is a local operation.

The return status object for a receive operation carries information that can be accessed
as described in Section 4.2.5. The status object for a send operation carries information
that can be accessed by a call to MPI_TEST_CANCELLED (see Section 4.8).

One is allowed to call MPI_TEST with a null or inactive request argument. In such a
case the operation returns with flag = true and empty status.

The functions MPI_WAIT and MPI_TEST can be used to complete both sends and
receives.

Advice to users. The use of the nonblocking MPI_TEST call allows the user to
schedule alternative activities within a single thread of execution. An event-driven
thread scheduler can be emulated with periodic calls to MPI_TEST. (End of advice to
users.)

Example 4.11 Simple usage of nonblocking operations and MPI_WAIT.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_ISEND(a(1), 10, MPI_REAL, 1, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a(1), 15, MPI_REAL, 0, tag, comm, request, ierr)
**** do some computation to mask latency ****
CALL MPI_WAIT(request, status, ierr)

END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 33

A request object can be deallocated without waiting for the associated communication
to complete, by using the following operation.

MPI_REQUEST_FREE(request)

INOUT request communication request (handle)

int MPI_Request_free(MPI_Request *request)

MPI_Request_free(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_FREE(REQUEST, IERROR)
INTEGER REQUEST, IERROR

Mark the request object for deallocation and set request to MPI_REQUEST_NULL. An
ongoing communication that is associated with the request will be allowed to complete. The
request will be deallocated only after its completion.

Rationale. The MPI_REQUEST_FREE mechanism is provided for reasons of perfor-
mance and convenience on the sending side. (End of rationale.)

Advice to users. Once a request is freed by a call to MPI_REQUEST_FREE, it is not
possible to check for the successful completion of the associated communication with
calls to MPI_WAIT or MPI_TEST. Also, if an error occurs subsequently during the
communication, an error code cannot be returned to the user — such an error must
be treated as fatal. An active receive request should never be freed as the receiver
will have no way to verify that the receive has completed and the receive buffer can
be reused. (End of advice to users.)

Example 4.12 An example using MPI_REQUEST_FREE.

CALL MPI_COMM_RANK(MPI_COMM_WORLD, rank, ierr)
IF (rank.EQ.0) THEN

DO i=1, n
CALL MPI_ISEND(outval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 1, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END DO
ELSE IF (rank.EQ.1) THEN

CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)
DO I=1, n-1

CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_REQUEST_FREE(req, ierr)
CALL MPI_IRECV(inval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

34 CHAPTER 4. POINT-TO-POINT COMMUNICATION

END DO
CALL MPI_ISEND(outval, 1, MPI_REAL, 0, 0, MPI_COMM_WORLD, req, ierr)
CALL MPI_WAIT(req, status, ierr)

END IF

4.7.4 Semantics of Nonblocking Communications

The semantics of nonblocking communication is defined by suitably extending the definitions
in Section 4.5.

Order Nonblocking communication operations are ordered according to the execution order
of the calls that initiate the communication. The non-overtaking requirement of Section 4.5
is extended to nonblocking communication, with this definition of order being used.

Example 4.13 Message ordering for nonblocking operations.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

CALL MPI_ISEND(a, 1, MPI_REAL, 1, 0, comm, r1, ierr)
CALL MPI_ISEND(b, 1, MPI_REAL, 1, 0, comm, r2, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, 0, MPI_ANY_TAG, comm, r1, ierr)
CALL MPI_IRECV(b, 1, MPI_REAL, 0, 0, comm, r2, ierr)

END IF
CALL MPI_WAIT(r1, status, ierr)
CALL MPI_WAIT(r2, status, ierr)

The first send of process zero will match the first receive of process one, even if both messages
are sent before process one executes either receive.

Progress A call to MPI_WAIT that completes a receive will eventually terminate and return
if a matching send has been started, unless the send is satisfied by another receive. In
particular, if the matching send is nonblocking, then the receive should complete even if no
call is executed by the sender to complete the send. Similarly, a call to MPI_WAIT that
completes a send will eventually return if a matching receive has been started, unless the
receive is satisfied by another send, and even if no call is executed to complete the receive.

Example 4.14 An illustration of progress semantics.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (RANK.EQ.0) THEN

CALL MPI_SSEND(a, 1, MPI_REAL, 1, 0, comm, ierr)
CALL MPI_SEND(b, 1, MPI_REAL, 1, 1, comm, ierr)

ELSE IF (rank.EQ.1) THEN
CALL MPI_IRECV(a, 1, MPI_REAL, 0, 0, comm, r, ierr)
CALL MPI_RECV(b, 1, MPI_REAL, 0, 1, comm, status, ierr)
CALL MPI_WAIT(r, status, ierr)

END IF

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 35

This code should not deadlock in a correct MPI implementation. The first synchronous
send of process zero must complete after process one posts the matching (nonblocking)
receive even if process one has not yet reached the completing wait call. Thus, process zero
will continue and execute the second send, allowing process one to complete execution.

If an MPI_TEST that completes a receive is repeatedly called with the same arguments,
and a matching send has been started, then the call will eventually return flag = true, unless
the send is satisfied by another receive. If an MPI_TEST that completes a send is repeatedly
called with the same arguments, and a matching receive has been started, then the call will
eventually return flag = true, unless the receive is satisfied by another send.

4.7.5 Multiple Completions

It is convenient to be able to wait for the completion of any, some, or all the operations
in a list, rather than having to wait for a specific message. A call to MPI_WAITANY or
MPI_TESTANY can be used to wait for the completion of one out of several operations. A
call to MPI_WAITALL or MPI_TESTALL can be used to wait for all pending operations in
a list. A call to MPI_WAITSOME or MPI_TESTSOME can be used to complete all enabled
operations in a list.

MPI_WAITANY (count, array_of_requests, index, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of handle for operation that completed (integer)

OUT status status object (Status)

int MPI_Waitany(int count, MPI_Request array_of_requests[], int *index,
MPI_Status *status)

MPI_Waitany(count, array_of_requests, index, status, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITANY(COUNT, ARRAY_OF_REQUESTS, INDEX, STATUS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

Blocks until one of the operations associated with the active requests in the array has
completed. If more than one operation is enabled and can terminate, one is arbitrarily
chosen. Returns in index the index of that request in the array and returns in status the
status of the completing operation. (The array is indexed from zero in C, and from one in
Fortran.) If the request is an active persistent request, it is marked inactive. Any other
type of request is deallocated and the request handle is set to MPI_REQUEST_NULL.

The array_of_requests list may contain null or inactive handles. If the list contains no
active handles (list has length zero or all entries are null or inactive), then the call returns

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

36 CHAPTER 4. POINT-TO-POINT COMMUNICATION

immediately with index = MPI_UNDEFINED, and an empty status.
The execution of MPI_WAITANY(count, array_of_requests, index, status) has the same

effect as the execution of MPI_WAIT(&array_of_requests[i], status), where i is the value
returned by index (unless the value of index is MPI_UNDEFINED). MPI_WAITANY with an
array containing one active entry is equivalent to MPI_WAIT.

MPI_TESTANY(count, array_of_requests, index, flag, status)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT index index of operation that completed, or
MPI_UNDEFINED if none completed (integer)

OUT flag true if one of the operations is complete (logical)

OUT status status object (Status)

int MPI_Testany(int count, MPI_Request array_of_requests[], int *index,
int *flag, MPI_Status *status)

MPI_Testany(count, array_of_requests, index, flag, status, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, INTENT(OUT) :: index
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTANY(COUNT, ARRAY_OF_REQUESTS, INDEX, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*), INDEX, STATUS(MPI_STATUS_SIZE),
IERROR

Tests for completion of either one or none of the operations associated with active
handles. In the former case, it returns flag = true, returns in index the index of this request
in the array, and returns in status the status of that operation. If the request is an active
persistent request, it is marked as inactive. Any other type of request is deallocated and
the handle is set to MPI_REQUEST_NULL. (The array is indexed from zero in C, and from
one in Fortran.) In the latter case (no operation completed), it returns flag = false, returns
a value of MPI_UNDEFINED in index and status is undefined.

The array may contain null or inactive handles. If the array contains no active handles
then the call returns immediately with flag = true, index = MPI_UNDEFINED, and an empty
status.

If the array of requests contains active handles then the execution of
MPI_TESTANY(count, array_of_requests, index, status) has the same effect as the execution
of MPI_TEST(&array_of_requests[i], flag, status), for i=0, 1 ,. . ., count-1, in some arbitrary
order, until one call returns flag = true, or all fail. In the former case, index is set to the
last value of i, and in the latter case, it is set to MPI_UNDEFINED. MPI_TESTANY with an
array containing one active entry is equivalent to MPI_TEST.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 37

MPI_WAITALL(count, array_of_requests, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Waitall(int count, MPI_Request array_of_requests[],
MPI_Status array_of_statuses[])

MPI_Waitall(count, array_of_requests, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITALL(COUNT, ARRAY_OF_REQUESTS, ARRAY_OF_STATUSES, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*)
INTEGER ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Blocks until all communication operations associated with active handles in the list
complete, and return the status of all these operations (this includes the case where no
handle in the list is active). Both arrays have the same number of valid entries. The
i-th entry in array_of_statuses is set to the return status of the i-th operation. Active
persistent requests are marked inactive. Requests of any other type are deallocated and the
corresponding handles in the array are set to MPI_REQUEST_NULL. The list may contain
null or inactive handles. The call sets to empty the status of each such entry.

The error-free execution of MPI_WAITALL(count, array_of_requests, array_of_statuses)
has the same effect as the execution of
MPI_WAIT(&array_of_request[i], &array_of_statuses[i]), for i=0 ,. . ., count-1, in some arbi-
trary order. MPI_WAITALL with an array of length one is equivalent to MPI_WAIT.

When one or more of the communications completed by a call to MPI_WAITALL fail,
it is desirable to return specific information on each communication. The function
MPI_WAITALL will return in such case the error code MPI_ERR_IN_STATUS and will set the
error field of each status to a specific error code. This code will be MPI_SUCCESS, if the
specific communication completed; it will be another specific error code, if it failed; or it can
be MPI_ERR_PENDING if it has neither failed nor completed. The function MPI_WAITALL
will return MPI_SUCCESS if no request had an error, or will return another error code if it
failed for other reasons (such as invalid arguments). In such cases, it will not update the
error fields of the statuses.

Rationale. This design streamlines error handling in the application. The application
code need only test the (single) function result to determine if an error has occurred. It
needs to check each individual status only when an error occurred. (End of rationale.)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

38 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_TESTALL(count, array_of_requests, flag, array_of_statuses)

IN count lists length (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT flag (logical)

OUT array_of_statuses array of status objects (array of Status)

int MPI_Testall(int count, MPI_Request array_of_requests[], int *flag,
MPI_Status array_of_statuses[])

MPI_Testall(count, array_of_requests, flag, array_of_statuses, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTALL(COUNT, ARRAY_OF_REQUESTS, FLAG, ARRAY_OF_STATUSES, IERROR)
LOGICAL FLAG
INTEGER COUNT, ARRAY_OF_REQUESTS(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Returns flag = true if all communications associated with active handles in the array
have completed (this includes the case where no handle in the list is active). In this case, each
status entry that corresponds to an active request is set to the status of the corresponding
operation. Active persistent requests are marked inactive. Requests of any other type are
deallocated and the corresponding handles in the array are set to MPI_REQUEST_NULL.
Each status entry that corresponds to a null or inactive handle is set to empty.

Otherwise, flag = false is returned, no request is modified and the values of the status
entries are undefined. This is a local operation.

Errors that occurred during the execution of MPI_TESTALL are handled in the same
manner as errors in MPI_WAITALL.

MPI_WAITSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of
integers)

OUT array_of_statuses array of status objects for operations that completed
(array of Status)

int MPI_Waitsome(int incount, MPI_Request array_of_requests[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 39

MPI_Waitsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_WAITSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Waits until at least one of the operations associated with active handles in the list have
completed. Returns in outcount the number of requests from the list array_of_requests that
have completed. Returns in the first outcount locations of the array array_of_indices the
indices of these operations (index within the array array_of_requests; the array is indexed
from zero in C and from one in Fortran). Returns in the first outcount locations of the
array array_of_status the status for these completed operations. Completed active persistent
requests are marked as inactive. Any other type or request that completed is deallocated,
and the associated handle is set to MPI_REQUEST_NULL.

If the list contains no active handles, then the call returns immediately with outcount
= MPI_UNDEFINED.

When one or more of the communications completed by MPI_WAITSOME fails, then
it is desirable to return specific information on each communication. The arguments
outcount, array_of_indices and array_of_statuses will be adjusted to indicate completion of
all communications that have succeeded or failed. The call will return the error code
MPI_ERR_IN_STATUS and the error field of each status returned will be set to indicate
success or to indicate the specific error that occurred. The call will return MPI_SUCCESS

if no request resulted in an error, and will return another error code if it failed for other
reasons (such as invalid arguments). In such cases, it will not update the error fields of the
statuses.

MPI_TESTSOME(incount, array_of_requests, outcount, array_of_indices, array_of_statuses)

IN incount length of array_of_requests (non-negative integer)

INOUT array_of_requests array of requests (array of handles)

OUT outcount number of completed requests (integer)

OUT array_of_indices array of indices of operations that completed (array of
integers)

OUT array_of_statuses array of status objects for operations that completed
(array of Status)

int MPI_Testsome(int incount, MPI_Request array_of_requests[],
int *outcount, int array_of_indices[],
MPI_Status array_of_statuses[])

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

40 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_Testsome(incount, array_of_requests, outcount, array_of_indices,
array_of_statuses, ierror)

INTEGER, INTENT(IN) :: incount
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(incount)
INTEGER, INTENT(OUT) :: outcount, array_of_indices(*)
TYPE(MPI_Status) :: array_of_statuses(*)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TESTSOME(INCOUNT, ARRAY_OF_REQUESTS, OUTCOUNT, ARRAY_OF_INDICES,
ARRAY_OF_STATUSES, IERROR)

INTEGER INCOUNT, ARRAY_OF_REQUESTS(*), OUTCOUNT, ARRAY_OF_INDICES(*),
ARRAY_OF_STATUSES(MPI_STATUS_SIZE,*), IERROR

Behaves like MPI_WAITSOME, except that it returns immediately. If no operation has
completed it returns outcount = 0. If there is no active handle in the list it returns outcount
= MPI_UNDEFINED.

MPI_TESTSOME is a local operation, which returns immediately, whereas
MPI_WAITSOME will block until a communication completes, if it was passed a list that
contains at least one active handle. Both calls fulfill a fairness requirement: If a request
for a receive repeatedly appears in a list of requests passed to MPI_WAITSOME or
MPI_TESTSOME, and a matching send has been posted, then the receive will eventually
succeed, unless the send is satisfied by another receive; and similarly for send requests.

Errors that occur during the execution of MPI_TESTSOME are handled as for
MPI_WAITSOME.

Advice to users. The use of MPI_TESTSOME is likely to be more efficient than the use
of MPI_TESTANY. The former returns information on all completed communications,
with the latter, a new call is required for each communication that completes.

A server with multiple clients can use MPI_WAITSOME so as not to starve any client.
Clients send messages to the server with service requests. The server calls
MPI_WAITSOME with one receive request for each client, and then handles all receives
that completed. If a call to MPI_WAITANY is used instead, then one client could starve
while requests from another client always sneak in first. (End of advice to users.)

Advice to implementors. MPI_TESTSOME should complete as many pending com-
munications as possible. (End of advice to implementors.)

Example 4.15 Client-server code (starvation can occur).

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.7. NONBLOCKING COMMUNICATION 41

CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,
comm, request_list(i), ierr)

END DO
DO WHILE(.TRUE.)

CALL MPI_WAITANY(size-1, request_list, index, status, ierr)
CALL DO_SERVICE(a(1,index)) ! handle one message
CALL MPI_IRECV(a(1, index), n, MPI_REAL, index, tag,

comm, request_list(index), ierr)
END DO

END IF

Example 4.16 Same code, using MPI_WAITSOME.

CALL MPI_COMM_SIZE(comm, size, ierr)
CALL MPI_COMM_RANK(comm, rank, ierr)
IF(rank .GT. 0) THEN ! client code

DO WHILE(.TRUE.)
CALL MPI_ISEND(a, n, MPI_REAL, 0, tag, comm, request, ierr)
CALL MPI_WAIT(request, status, ierr)

END DO
ELSE ! rank=0 -- server code

DO i=1, size-1
CALL MPI_IRECV(a(1,i), n, MPI_REAL, i, tag,

comm, request_list(i), ierr)
END DO
DO WHILE(.TRUE.)

CALL MPI_WAITSOME(size, request_list, numdone,
indices, statuses, ierr)

DO i=1, numdone
CALL DO_SERVICE(a(1, indices(i)))
CALL MPI_IRECV(a(1, indices(i)), n, MPI_REAL, 0, tag,

comm, request_list(indices(i)), ierr)
END DO

END DO
END IF

4.7.6 Non-destructive Test of status

This call is useful for accessing the information associated with a request, without freeing
the request (in case the user is expected to access it later). It allows one to layer libraries
more conveniently, since multiple layers of software may access the same completed request
and extract from it the status information.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

42 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_REQUEST_GET_STATUS(request, flag, status)

IN request request (handle)

OUT flag boolean flag, same as from MPI_TEST (logical)

OUT status status object if flag is true (Status)

int MPI_Request_get_status(MPI_Request request, int *flag,
MPI_Status *status)

MPI_Request_get_status(request, flag, status, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_REQUEST_GET_STATUS(REQUEST, FLAG, STATUS, IERROR)
INTEGER REQUEST, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

Sets flag=true if the operation is complete, and, if so, returns in status the request
status. However, unlike test or wait, it does not deallocate or inactivate the request; a
subsequent call to test, wait or free should be executed with that request. It sets flag=false
if the operation is not complete.

One is allowed to call MPI_REQUEST_GET_STATUS with a null or inactive request
argument. In such a case the operation returns with flag=true and empty status.

4.8 Probe and Cancel

The MPI_PROBE, MPI_IPROBE, MPI_MPROBE, and MPI_IMPROBE operations allow in-
coming messages to be checked for, without actually receiving them. The user can then
decide how to receive them, based on the information returned by the probe (basically, the
information returned by status). In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

The MPI_CANCEL operation allows pending communications to be cancelled. This is
required for cleanup. Posting a send or a receive ties up user resources (send or receive
buffers), and a cancel may be needed to free these resources gracefully.

4.8.1 Probe

MPI_IPROBE(source, tag, comm, flag, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT flag (logical)

OUT status status object (Status)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.8. PROBE AND CANCEL 43

int MPI_Iprobe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Status *status)

MPI_Iprobe(source, tag, comm, flag, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IPROBE(SOURCE, TAG, COMM, FLAG, STATUS, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_IPROBE(source, tag, comm, flag, status) returns flag = true if there is a message
that can be received and that matches the pattern specified by the arguments source, tag,
and comm. The call matches the same message that would have been received by a call to
MPI_RECV(. . ., source, tag, comm, status) executed at the same point in the program, and
returns in status the same value that would have been returned by MPI_RECV(). Otherwise,
the call returns flag = false, and leaves status undefined.

If MPI_IPROBE returns flag = true, then the content of the status object can be sub-
sequently accessed as described in Section 4.2.5 to find the source, tag and length of the
probed message.

A subsequent receive executed with the same communicator, and the source and tag re-
turned in status by MPI_IPROBE will receive the message that was matched by the probe, if
no other intervening receive occurs after the probe, and the send is not successfully cancelled
before the receive. If the receiving process is multithreaded, it is the user’s responsibility
to ensure that the last condition holds.

The source argument of MPI_PROBE can be MPI_ANY_SOURCE, and the tag argument
can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

It is not necessary to receive a message immediately after it has been probed for, and
the same message may be probed for several times before it is received.

A probe with MPI_PROC_NULL as source returns flag = true, and the status object
returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0; see Section 4.11.

MPI_PROBE(source, tag, comm, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Probe(int source, int tag, MPI_Comm comm, MPI_Status *status)

MPI_Probe(source, tag, comm, status, ierror)
INTEGER, INTENT(IN) :: source, tag

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

44 CHAPTER 4. POINT-TO-POINT COMMUNICATION

TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_PROBE(SOURCE, TAG, COMM, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

MPI_PROBE behaves like MPI_IPROBE except that it is a blocking call that returns
only after a matching message has been found.

The MPI implementation of MPI_PROBE and MPI_IPROBE needs to guarantee progress:
if a call to MPI_PROBE has been issued by a process, and a send that matches the probe
has been initiated by some process, then the call to MPI_PROBE will return, unless the
message is received by another concurrent receive operation (that is executed by another
thread at the probing process). Similarly, if a process busy waits with MPI_IPROBE and a
matching message has been issued, then the call to MPI_IPROBE will eventually return flag
= true unless the message is received by another concurrent receive operation or matched
by a concurrent matched probe.

Example 4.17
Use blocking probe to wait for an incoming message.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank.EQ.2) THEN

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, 0, 0, comm, status, ierr)
ELSE

200 CALL MPI_RECV(x, 1, MPI_REAL, 1, 0, comm, status, ierr)
END IF

END DO
END IF

Each message is received with the right type.

Example 4.18 A similar program to the previous example, but now it has a problem.

CALL MPI_COMM_RANK(comm, rank, ierr)
IF (rank.EQ.0) THEN

CALL MPI_SEND(i, 1, MPI_INTEGER, 2, 0, comm, ierr)
ELSE IF (rank.EQ.1) THEN

CALL MPI_SEND(x, 1, MPI_REAL, 2, 0, comm, ierr)
ELSE IF (rank.EQ.2) THEN

DO i=1, 2
CALL MPI_PROBE(MPI_ANY_SOURCE, 0,

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.8. PROBE AND CANCEL 45

comm, status, ierr)
IF (status(MPI_SOURCE) .EQ. 0) THEN

100 CALL MPI_RECV(i, 1, MPI_INTEGER, MPI_ANY_SOURCE,
0, comm, status, ierr)

ELSE
200 CALL MPI_RECV(x, 1, MPI_REAL, MPI_ANY_SOURCE,

0, comm, status, ierr)
END IF

END DO
END IF

In Example 4.18, the two receive calls in statements labeled 100 and 200 in Example 4.17
slightly modified, using MPI_ANY_SOURCE as the source argument. The program is now
incorrect: the receive operation may receive a message that is distinct from the message
probed by the preceding call to MPI_PROBE.

Advice to users. In a multithreaded MPI program, MPI_PROBE and
MPI_IPROBE might need special care. If a thread probes for a message and then
immediately posts a matching receive, the receive may match a message other than
that found by the probe since another thread could concurrently receive that original
message [2]. MPI_MPROBE and MPI_IMPROBE solve this problem by matching the
incoming message so that it may only be received with MPI_MRECV or MPI_IMRECV
on the corresponding message handle. (End of advice to users.)

Advice to implementors. A call to MPI_PROBE(source, tag, comm, status) will match
the message that would have been received by a call to MPI_RECV(. . ., source, tag,
comm, status) executed at the same point. Suppose that this message has source s,
tag t and communicator c. If the tag argument in the probe call has value
MPI_ANY_TAG then the message probed will be the earliest pending message from
source s with communicator c and any tag; in any case, the message probed will be
the earliest pending message from source s with tag t and communicator c (this is the
message that would have been received, so as to preserve message order). This message
continues as the earliest pending message from source s with tag t and communicator
c, until it is received. A receive operation subsequent to the probe that uses the
same communicator as the probe and uses the tag and source values returned by
the probe, must receive this message, unless it has already been received by another
receive operation. (End of advice to implementors.)

4.8.2 Matching Probe

The function MPI_PROBE checks for incoming messages without receiving them. Since the
list of incoming messages is global among the threads of each MPI process, it can be hard
to use this functionality in threaded environments [2, 1].

Like MPI_PROBE and MPI_IPROBE, the MPI_MPROBE and MPI_IMPROBE opera-
tions allow incoming messages to be queried without actually receiving them, except that
MPI_MPROBE and MPI_IMPROBE provide a mechanism to receive the specific message
that was matched regardless of other intervening probe or receive operations. This gives
the application an opportunity to decide how to receive the message, based on the infor-
mation returned by the probe. In particular, the user may allocate memory for the receive
buffer, according to the length of the probed message.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

46 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_IMPROBE(source, tag, comm, flag, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT flag flag (logical)

OUT message returned message (handle)

OUT status status object (Status)

int MPI_Improbe(int source, int tag, MPI_Comm comm, int *flag,
MPI_Message *message, MPI_Status *status)

MPI_Improbe(source, tag, comm, flag, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
LOGICAL, INTENT(OUT) :: flag
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR
LOGICAL FLAG

MPI_IMPROBE(source, tag, comm, flag, message, status) returns flag = true if there is
a message that can be received and that matches the pattern specified by the arguments
source, tag, and comm. The call matches the same message that would have been received
by a call to MPI_RECV(. . ., source, tag, comm, status) executed at the same point in the
program and returns in status the same value that would have been returned by MPI_RECV.
In addition, it returns in message a handle to the matched message. Otherwise, the call
returns flag = false, and leaves status and message undefined.

A matched receive (MPI_MRECV or MPI_IMRECV) executed with the message han-
dle will receive the message that was matched by the probe. Unlike MPI_IPROBE, no
other probe or receive operation may match the message returned by MPI_IMPROBE.
Each message returned by MPI_IMPROBE must be received with either MPI_MRECV or
MPI_IMRECV.

The source argument of MPI_IMPROBE can be MPI_ANY_SOURCE, and the tag argu-
ment can be MPI_ANY_TAG, so that one can probe for messages from an arbitrary source
and/or with an arbitrary tag. However, a specific communication context must be provided
with the comm argument.

A synchronous send operation that is matched with MPI_IMPROBE or MPI_MPROBE
will complete successfully only if both a matching receive is posted with MPI_MRECV or
MPI_IMRECV, and the receive operation has started to receive the message sent by the
synchronous send.

There is a special predefined message: MPI_MESSAGE_NO_PROC, which is a message
which has MPI_PROC_NULL as its source process. The predefined constant
MPI_MESSAGE_NULL is the value used for invalid message handles.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.8. PROBE AND CANCEL 47

A matching probe with MPI_PROC_NULL as source returns flag = true, message =

MPI_MESSAGE_NO_PROC, and the status object returns source = MPI_PROC_NULL, tag
= MPI_ANY_TAG, and count = 0; see Section 4.11. It is not necessary to call MPI_MRECV
or MPI_IMRECV with MPI_MESSAGE_NO_PROC, but it is not erroneous to do so.

Rationale. MPI_MESSAGE_NO_PROC was chosen instead of
MPI_MESSAGE_PROC_NULL to avoid possible confusion as another null handle con-
stant. (End of rationale.)

MPI_MPROBE(source, tag, comm, message, status)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT message returned message (handle)

OUT status status object (Status)

int MPI_Mprobe(int source, int tag, MPI_Comm comm, MPI_Message *message,
MPI_Status *status)

MPI_Mprobe(source, tag, comm, message, status, ierror)
INTEGER, INTENT(IN) :: source, tag
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Message), INTENT(OUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MPROBE(SOURCE, TAG, COMM, MESSAGE, STATUS, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

MPI_MPROBE behaves like MPI_IMPROBE except that it is a blocking call that returns
only after a matching message has been found.

The implementation of MPI_MPROBE and MPI_IMPROBE needs to guarantee progress
in the same way as in the case of MPI_PROBE and MPI_IPROBE.

4.8.3 Matched Receives

The functions MPI_MRECV and MPI_IMRECV receive messages that have been previously
matched by a matching probe (Section 4.8.2).

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

48 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_MRECV(buf, count, datatype, message, status)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

INOUT message message (handle)

OUT status status object (Status)

int MPI_Mrecv(void* buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Status *status)

MPI_Mrecv(buf, count, datatype, message, status, ierror)
TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_MRECV(BUF, COUNT, DATATYPE, MESSAGE, STATUS, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, MESSAGE, STATUS(MPI_STATUS_SIZE), IERROR

This call receives a message matched by a matching probe operation (Section 4.8.2).
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If the message is shorter than the receive buffer, then only those locations corresponding
to the (shorter) message are modified.

On return from this function, the message handle is set to MPI_MESSAGE_NULL. All
errors that occur during the execution of this operation are handled according to the error
handler set for the communicator used in the matching probe call that produced the message
handle.

If MPI_MRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with the status object set to source = MPI_PROC_NULL, tag =
MPI_ANY_TAG, and count = 0, as if a receive from MPI_PROC_NULL was issued (see Sec-
tion 4.11). A call to MPI_MRECV with MPI_MESSAGE_NULL is erroneous.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.8. PROBE AND CANCEL 49

MPI_IMRECV(buf, count, datatype, message, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements in receive buffer (non-negative in-
teger)

IN datatype datatype of each receive buffer element (handle)

INOUT message message (handle)

OUT request communication request (handle)

int MPI_Imrecv(void* buf, int count, MPI_Datatype datatype,
MPI_Message *message, MPI_Request *request)

MPI_Imrecv(buf, count, datatype, message, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Message), INTENT(INOUT) :: message
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_IMRECV(BUF, COUNT, DATATYPE, MESSAGE, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, MESSAGE, REQUEST, IERROR

MPI_IMRECV is the nonblocking variant of MPI_MRECV and starts a nonblocking
receive of a matched message. Completion semantics are similar to MPI_IRECV as described
in Section 4.7.2. On return from this function, the message handle is set to
MPI_MESSAGE_NULL.

If MPI_IMRECV is called with MPI_MESSAGE_NO_PROC as the message argument, the
call returns immediately with a request object which, when completed, will yield a status
object set to source = MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0, as if a
receive from MPI_PROC_NULL was issued (see Section 4.11). A call to MPI_IMRECV with
MPI_MESSAGE_NULL is erroneous.

Advice to implementors. If reception of a matched message is started with
MPI_IMRECV, then it is possible to cancel the returned request with MPI_CANCEL. If
MPI_CANCEL succeeds, the matched message must be found by a subsequent message
probe (MPI_PROBE, MPI_IPROBE, MPI_MPROBE, or MPI_IMPROBE), received by
a subsequent receive operation or cancelled by the sender. See Section 4.8.4 for details
about MPI_CANCEL. The cancellation of operations initiated with MPI_IMRECV may
fail. (End of advice to implementors.)

4.8.4 Cancel

MPI_CANCEL(request)

IN request communication request (handle)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

50 CHAPTER 4. POINT-TO-POINT COMMUNICATION

int MPI_Cancel(MPI_Request *request)

MPI_Cancel(request, ierror)
TYPE(MPI_Request), INTENT(IN) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_CANCEL(REQUEST, IERROR)
INTEGER REQUEST, IERROR

A call to MPI_CANCEL marks for cancellation a pending, nonblocking communication
operation (send or receive). The cancel call is local. It returns immediately, possibly before
the communication is actually cancelled. It is still necessary to call MPI_REQUEST_FREE,
MPI_WAIT or MPI_TEST (or any of the derived operations) with the cancelled request as
argument after the call to MPI_CANCEL. If a communication is marked for cancellation,
then a MPI_WAIT call for that communication is guaranteed to return, irrespective of
the activities of other processes (i.e., MPI_WAIT behaves as a local function); similarly if
MPI_TEST is repeatedly called in a busy wait loop for a cancelled communication, then
MPI_TEST will eventually be successful.

MPI_CANCEL can be used to cancel a communication that uses a persistent request (see
Section 4.9), in the same way it is used for nonpersistent requests. A successful cancellation
cancels the active communication, but not the request itself. After the call to MPI_CANCEL
and the subsequent call to MPI_WAIT or MPI_TEST, the request becomes inactive and can
be activated for a new communication.

The successful cancellation of a buffered send frees the buffer space occupied by the
pending message.

Either the cancellation succeeds, or the communication succeeds, but not both. If a
send is marked for cancellation, then it must be the case that either the send completes
normally, in which case the message sent was received at the destination process, or that
the send is successfully cancelled, in which case no part of the message was received at the
destination. Then, any matching receive has to be satisfied by another send. If a receive is
marked for cancellation, then it must be the case that either the receive completes normally,
or that the receive is successfully cancelled, in which case no part of the receive buffer is
altered. Then, any matching send has to be satisfied by another receive.

If the operation has been cancelled, then information to that effect will be returned in
the status argument of the operation that completes the communication.

Rationale. Although the IN request handle parameter should not need to be passed
by reference, the C binding has listed the argument type as MPI_Request* since MPI-
1.0. This function signature therefore cannot be changed without breaking existing
MPI applications. (End of rationale.)

MPI_TEST_CANCELLED(status, flag)

IN status status object (Status)

OUT flag (logical)

int MPI_Test_cancelled(const MPI_Status *status, int *flag)

MPI_Test_cancelled(status, flag, ierror)

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.9. PERSISTENT COMMUNICATION REQUESTS 51

TYPE(MPI_Status), INTENT(IN) :: status
LOGICAL, INTENT(OUT) :: flag
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_TEST_CANCELLED(STATUS, FLAG, IERROR)
LOGICAL FLAG
INTEGER STATUS(MPI_STATUS_SIZE), IERROR

Returns flag = true if the communication associated with the status object was cancelled
successfully. In such a case, all other fields of status (such as count or tag) are undefined.
Returns flag = false, otherwise. If a receive operation might be cancelled then one should
call MPI_TEST_CANCELLED first, to check whether the operation was cancelled, before
checking on the other fields of the return status.

Advice to users. Cancel can be an expensive operation that should be used only
exceptionally. (End of advice to users.)

Advice to implementors. If a send operation uses an “eager” protocol (data is
transferred to the receiver before a matching receive is posted), then the cancellation
of this send may require communication with the intended receiver in order to free
allocated buffers. On some systems this may require an interrupt to the intended
receiver. Note that, while communication may be needed to implement
MPI_CANCEL, this is still a local operation, since its completion does not depend on
the code executed by other processes. If processing is required on another process,
this should be transparent to the application (hence the need for an interrupt and an
interrupt handler). (End of advice to implementors.)

4.9 Persistent Communication Requests

Often a communication with the same argument list is repeatedly executed within the inner
loop of a parallel computation. In such a situation, it may be possible to optimize the com-
munication by binding the list of communication arguments to a persistent communication
request once and, then, repeatedly using the request to initiate and complete messages.
The persistent request thus created can be thought of as a communication port or a “half-
channel.” It does not provide the full functionality of a conventional channel, since there
is no binding of the send port to the receive port. This construct allows reduction of the
overhead for communication between the process and communication controller, but not of
the overhead for communication between one communication controller and another. It is
not necessary that messages sent with a persistent request be received by a receive operation
using a persistent request, or vice versa.

A persistent communication request is created using one of the five following calls.
These calls involve no communication.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

52 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_SEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Send_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Send_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a standard mode send operation, and
binds to it all the arguments of a send operation.

MPI_BSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Bsend_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Bsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.9. PERSISTENT COMMUNICATION REQUESTS 53

TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_BSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a buffered mode send.

MPI_SSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Ssend_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Ssend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a synchronous mode send operation.

MPI_RSEND_INIT(buf, count, datatype, dest, tag, comm, request)

IN buf initial address of send buffer (choice)

IN count number of elements sent (non-negative integer)

IN datatype type of each element (handle)

IN dest rank of destination (integer)

IN tag message tag (integer)

IN comm communicator (handle)

OUT request communication request (handle)

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

54 CHAPTER 4. POINT-TO-POINT COMMUNICATION

int MPI_Rsend_init(const void* buf, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm, MPI_Request *request)

MPI_Rsend_init(buf, count, datatype, dest, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), INTENT(IN), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, dest, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RSEND_INIT(BUF, COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, TAG, COMM, REQUEST, IERROR

Creates a persistent communication object for a ready mode send operation.

MPI_RECV_INIT(buf, count, datatype, source, tag, comm, request)

OUT buf initial address of receive buffer (choice)

IN count number of elements received (non-negative integer)

IN datatype type of each element (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN tag message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT request communication request (handle)

int MPI_Recv_init(void* buf, int count, MPI_Datatype datatype, int source,
int tag, MPI_Comm comm, MPI_Request *request)

MPI_Recv_init(buf, count, datatype, source, tag, comm, request, ierror)
TYPE(*), DIMENSION(..), ASYNCHRONOUS :: buf
INTEGER, INTENT(IN) :: count, source, tag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Request), INTENT(OUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_RECV_INIT(BUF, COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR)
<type> BUF(*)
INTEGER COUNT, DATATYPE, SOURCE, TAG, COMM, REQUEST, IERROR

Creates a persistent communication request for a receive operation. The argument buf
is marked as OUT because the user gives permission to write on the receive buffer by passing
the argument to MPI_RECV_INIT.

A persistent communication request is inactive after it was created — no active com-
munication is attached to the request.

A communication (send or receive) that uses a persistent request is initiated by the
function MPI_START.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.9. PERSISTENT COMMUNICATION REQUESTS 55

MPI_START(request)

INOUT request communication request (handle)

int MPI_Start(MPI_Request *request)

MPI_Start(request, ierror)
TYPE(MPI_Request), INTENT(INOUT) :: request
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_START(REQUEST, IERROR)
INTEGER REQUEST, IERROR

The argument, request, is a handle returned by one of the previous five calls. The
associated request should be inactive. The request becomes active once the call is made.

If the request is for a send with ready mode, then a matching receive should be posted
before the call is made. The communication buffer should not be modified after the call,
and until the operation completes.

The call is local, with similar semantics to the nonblocking communication operations
described in Section 4.7. That is, a call to MPI_START with a request created by
MPI_SEND_INIT starts a communication in the same manner as a call to MPI_ISEND; a
call to MPI_START with a request created by MPI_BSEND_INIT starts a communication
in the same manner as a call to MPI_IBSEND; and so on.

MPI_STARTALL(count, array_of_requests)

IN count list length (non-negative integer)

INOUT array_of_requests array of requests (array of handle)

int MPI_Startall(int count, MPI_Request array_of_requests[])

MPI_Startall(count, array_of_requests, ierror)
INTEGER, INTENT(IN) :: count
TYPE(MPI_Request), INTENT(INOUT) :: array_of_requests(count)
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_STARTALL(COUNT, ARRAY_OF_REQUESTS, IERROR)
INTEGER COUNT, ARRAY_OF_REQUESTS(*), IERROR

Start all communications associated with requests in array_of_requests. A call to
MPI_STARTALL(count, array_of_requests) has the same effect as calls to
MPI_START (&array_of_requests[i]), executed for i=0 ,. . ., count-1, in some arbitrary order.

A communication started with a call to MPI_START or MPI_STARTALL is completed
by a call to MPI_WAIT, MPI_TEST, or one of the derived functions described in Sec-
tion 4.7.5. The request becomes inactive after successful completion of such call. The re-
quest is not deallocated and it can be activated anew by an MPI_START or MPI_STARTALL
call.

A persistent request is deallocated by a call to MPI_REQUEST_FREE (Section 4.7.3).
The call to MPI_REQUEST_FREE can occur at any point in the program after the per-

sistent request was created. However, the request will be deallocated only after it becomes

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

56 CHAPTER 4. POINT-TO-POINT COMMUNICATION

inactive. Active receive requests should not be freed. Otherwise, it will not be possible
to check that the receive has completed. It is preferable, in general, to free requests when
they are inactive. If this rule is followed, then the functions described in this section will be
invoked in a sequence of the form, Create (Start Complete)∗ Free where ∗ indicates
zero or more repetitions. If the same communication object is used in several concurrent
threads, it is the user’s responsibility to coordinate calls so that the correct sequence is
obeyed.

A send operation initiated with MPI_START can be matched with any receive operation
and, likewise, a receive operation initiated with MPI_START can receive messages generated
by any send operation.

Advice to users. To prevent problems with the argument copying and register
optimization done by Fortran compilers, please note the hints in Sections 17.1.10–??.
(End of advice to users.)

4.10 Send-Receive

The send-receive operations combine in one call the sending of a message to one destination
and the receiving of another message, from another process. The two (source and destina-
tion) are possibly the same. A send-receive operation is very useful for executing a shift
operation across a chain of processes. If blocking sends and receives are used for such a shift,
then one needs to order the sends and receives correctly (for example, even processes send,
then receive, odd processes receive first, then send) so as to prevent cyclic dependencies that
may lead to deadlock. When a send-receive operation is used, the communication subsys-
tem takes care of these issues. The send-receive operation can be used in conjunction with
the functions described in Chapter 7 in order to perform shifts on various logical topologies.
Also, a send-receive operation is useful for implementing remote procedure calls.

A message sent by a send-receive operation can be received by a regular receive oper-
ation or probed by a probe operation; a send-receive operation can receive a message sent
by a regular send operation.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.10. SEND-RECEIVE 57

MPI_SENDRECV(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf, recvcount, recvtype,
source, recvtag, comm, status)

IN sendbuf initial address of send buffer (choice)

IN sendcount number of elements in send buffer (non-negative inte-
ger)

IN sendtype type of elements in send buffer (handle)

IN dest rank of destination (integer)

IN sendtag send tag (integer)

OUT recvbuf initial address of receive buffer (choice)

IN recvcount number of elements in receive buffer (non-negative in-
teger)

IN recvtype type of elements in receive buffer (handle)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv(const void *sendbuf, int sendcount, MPI_Datatype sendtype,
int dest, int sendtag, void *recvbuf, int recvcount,
MPI_Datatype recvtype, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

MPI_Sendrecv(sendbuf, sendcount, sendtype, dest, sendtag, recvbuf,
recvcount, recvtype, source, recvtag, comm, status, ierror)

TYPE(*), DIMENSION(..), INTENT(IN) :: sendbuf
TYPE(*), DIMENSION(..) :: recvbuf
INTEGER, INTENT(IN) :: sendcount, dest, sendtag, recvcount, source,
recvtag
TYPE(MPI_Datatype), INTENT(IN) :: sendtype, recvtype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV(SENDBUF, SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVBUF,
RECVCOUNT, RECVTYPE, SOURCE, RECVTAG, COMM, STATUS, IERROR)

<type> SENDBUF(*), RECVBUF(*)
INTEGER SENDCOUNT, SENDTYPE, DEST, SENDTAG, RECVCOUNT, RECVTYPE,
SOURCE, RECVTAG, COMM, STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive operation. Both send and receive use the same
communicator, but possibly different tags. The send buffer and receive buffers must be
disjoint, and may have different lengths and datatypes.

The semantics of a send-receive operation is what would be obtained if the caller forked
two concurrent threads, one to execute the send, and one to execute the receive, followed
by a join of these two threads.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

58 CHAPTER 4. POINT-TO-POINT COMMUNICATION

MPI_SENDRECV_REPLACE(buf, count, datatype, dest, sendtag, source, recvtag, comm, sta-
tus)

INOUT buf initial address of send and receive buffer (choice)

IN count number of elements in send and receive buffer (non-
negative integer)

IN datatype type of elements in send and receive buffer (handle)

IN dest rank of destination (integer)

IN sendtag send message tag (integer)

IN source rank of source or MPI_ANY_SOURCE (integer)

IN recvtag receive message tag or MPI_ANY_TAG (integer)

IN comm communicator (handle)

OUT status status object (Status)

int MPI_Sendrecv_replace(void* buf, int count, MPI_Datatype datatype,
int dest, int sendtag, int source, int recvtag, MPI_Comm comm,
MPI_Status *status)

MPI_Sendrecv_replace(buf, count, datatype, dest, sendtag, source, recvtag,
comm, status, ierror)

TYPE(*), DIMENSION(..) :: buf
INTEGER, INTENT(IN) :: count, dest, sendtag, source, recvtag
TYPE(MPI_Datatype), INTENT(IN) :: datatype
TYPE(MPI_Comm), INTENT(IN) :: comm
TYPE(MPI_Status) :: status
INTEGER, OPTIONAL, INTENT(OUT) :: ierror

MPI_SENDRECV_REPLACE(BUF, COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG,
COMM, STATUS, IERROR)

<type> BUF(*)
INTEGER COUNT, DATATYPE, DEST, SENDTAG, SOURCE, RECVTAG, COMM,
STATUS(MPI_STATUS_SIZE), IERROR

Execute a blocking send and receive. The same buffer is used both for the send and
for the receive, so that the message sent is replaced by the message received.

Advice to implementors. Additional intermediate buffering is needed for the “replace”
variant. (End of advice to implementors.)

4.11 Null Processes

In many instances, it is convenient to specify a “dummy” source or destination for commu-
nication. This simplifies the code that is needed for dealing with boundaries, for example,
in the case of a non-circular shift done with calls to send-receive.

The special value MPI_PROC_NULL can be used instead of a rank wherever a source or a
destination argument is required in a call. A communication with process MPI_PROC_NULL

has no effect. A send to MPI_PROC_NULL succeeds and returns as soon as possible. A receive

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

4.11. NULL PROCESSES 59

from MPI_PROC_NULL succeeds and returns as soon as possible with no modifications to
the receive buffer. When a receive with source = MPI_PROC_NULL is executed then the
status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and count = 0. A
probe or matching probe with source = MPI_PROC_NULL succeeds and returns as soon as
possible, and the status object returns source = MPI_PROC_NULL, tag = MPI_ANY_TAG and
count = 0. A matching probe (cf. Section 4.8.2) with MPI_PROC_NULL as source returns
flag = true, message = MPI_MESSAGE_NO_PROC, and the status object returns source =
MPI_PROC_NULL, tag = MPI_ANY_TAG, and count = 0.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Bibliography

[1] D. Gregor, T. Hoefler, B. Barrett, and A. Lumsdaine. Fixing probe for multi-threaded
MPI applications. Technical Report 674, Indiana University, Jan. 2009. 4.8.2

[2] T. Hoefler, G. Bronevetsky, B. Barrett, B. R. de Supinski, and A. Lumsdaine. Efficient
MPI support for advanced hybrid programming models. In Recent Advances in the
Message Passing Interface (EuroMPI’10), volume LNCS 6305, pages 50–61. Springer,
Sep. 2010. 4.8.1, 4.8.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only 60

Index

active, 30

blocking, 15, 18
buffered, 15, 25, 26
buffered send, 18

communicator, 5
CONST:a, 13
CONST:b, 13
CONST:bool, 5
CONST:char**, 23
CONST:CHARACTER, 12, 13
CONST:false, 30
CONST:message = MPI_MESSAGE_NO_PROC,

47, 59
CONST:MPI_ADDRESS_KIND, 4
CONST:MPI_AINT, 3, 5
CONST:MPI_Aint, 3
CONST:MPI_ANY_SOURCE, 6, 7, 19, 29,

30, 42, 43, 45–47, 54, 57, 58
CONST:MPI_ANY_TAG, 6, 7, 9, 29, 30, 42,

43, 45–49, 54, 57–59
CONST:MPI_BOTTOM, 10
CONST:MPI_BSEND_OVERHEAD, 24
CONST:MPI_BYTE, 3, 4, 11, 12, 14
CONST:MPI_C_BOOL, 4
CONST:MPI_C_COMPLEX, 4
CONST:MPI_C_DOUBLE_COMPLEX, 4
CONST:MPI_C_FLOAT_COMPLEX (as a

synonym), 4
CONST:MPI_C_LONG_DOUBLE_COMPLEX,

4
CONST:MPI_CHAR, 4, 14
CONST:MPI_CHARACTER, 3, 12–14
CONST:MPI_Comm, 2
CONST:MPI_COMM_WORLD, 5, 6
CONST:MPI_COMPLEX, 3
CONST:MPI_COUNT, 3, 5
CONST:MPI_Count, 3
CONST:MPI_COUNT_KIND, 4

CONST:MPI_CXX_BOOL, 5
CONST:MPI_CXX_DOUBLE_COMPLEX, 5
CONST:MPI_CXX_FLOAT_COMPLEX, 5
CONST:MPI_CXX_LONG_DOUBLE_COMPLEX,

5
CONST:MPI_DOUBLE, 4
CONST:MPI_DOUBLE_COMPLEX, 3
CONST:MPI_DOUBLE_PRECISION, 3
CONST:MPI_ERR_IN_STATUS, 8, 10, 31,

37, 39
CONST:MPI_ERR_PENDING, 37
CONST:MPI_ERROR, 8, 31
CONST:MPI_FLOAT, 4
CONST:MPI_INT, 4
CONST:MPI_INT16_T, 4
CONST:MPI_INT32_T, 4
CONST:MPI_INT64_T, 4
CONST:MPI_INT8_T, 4
CONST:MPI_INTEGER, 3, 11
CONST:MPI_INTEGER1, 3
CONST:MPI_INTEGER2, 3
CONST:MPI_INTEGER4, 3
CONST:MPI_LOGICAL, 3
CONST:MPI_LONG, 4
CONST:MPI_LONG_DOUBLE, 4
CONST:MPI_LONG_LONG, 4
CONST:MPI_LONG_LONG_INT, 4
CONST:MPI_Message, 46
CONST:MPI_MESSAGE_NO_PROC, 46, 48,

49
CONST:MPI_MESSAGE_NULL, 46, 48, 49
CONST:MPI_OFFSET, 3
CONST:MPI_Offset, 3
CONST:MPI_OFFSET , 5
CONST:MPI_OFFSET_KIND, 4
CONST:MPI_PACKED, 3, 4, 11
CONST:MPI_PROC_NULL, 2, 5, 7, 8, 43,

46–49, 58, 59
CONST:MPI_REAL, 3, 11
CONST:MPI_REAL2, 3

61

62 INDEX

CONST:MPI_REAL4, 3
CONST:MPI_REAL8, 3
CONST:MPI_Request, 27–29, 31, 32, 33, 35–

39, 42, 49, 52–55
CONST:MPI_REQUEST_NULL, 30–33, 35–

39
CONST:MPI_SHORT, 4
CONST:MPI_SIGNED_CHAR, 4
CONST:MPI_SOURCE, 8
CONST:MPI_Status, 6, 8–10, 31, 32, 35–39,

42, 43, 46–48, 50, 57, 58
CONST:MPI_STATUS_IGNORE, 10
CONST:MPI_STATUS_SIZE, 8
CONST:MPI_STATUSES_IGNORE, 10
CONST:MPI_SUCCESS, 30, 37, 39
CONST:MPI_TAG, 8
CONST:MPI_TAG_UB, 5
CONST:MPI_UINT16_T, 4
CONST:MPI_UINT32_T, 4
CONST:MPI_UINT64_T, 4
CONST:MPI_UINT8_T, 4
CONST:MPI_UNDEFINED, 9, 36, 39, 40
CONST:MPI_UNSIGNED, 4
CONST:MPI_UNSIGNED_CHAR, 4
CONST:MPI_UNSIGNED_LONG, 4
CONST:MPI_UNSIGNED_LONG_LONG, 4
CONST:MPI_UNSIGNED_SHORT, 4
CONST:MPI_WCHAR, 4
CONST:NULL, 10
CONST:std::complex<double>, 5
CONST:std::complex<float>, 5
CONST:std::complex<long double>, 5
CONST:true, 36
CONST:void*, 23
CONST:void**, 23

empty, 30
envelope, 1
EXAMPLES:Client-server code, 40, 41

with blocking probe, 44
with blocking probe, wrong, 44

EXAMPLES:Datatypes
matching, 11
not matching, 12
untyped, 12

EXAMPLES:Deadlock
if not buffered, 21
wrong message exchange, 21

EXAMPLES:Intertwined matching pairs, 19
EXAMPLES:Message exchange (ping-pong),

20
EXAMPLES:MPI_BSEND, 19
EXAMPLES:MPI_Buffer_attach, 23
EXAMPLES:MPI_Buffer_detach, 23
EXAMPLES:MPI_BYTE, 12
EXAMPLES:MPI_CHARACTER, 13
EXAMPLES:MPI_IRECV, 32–34, 40, 41
EXAMPLES:MPI_ISEND, 32–34, 40, 41
EXAMPLES:MPI_PROBE, 44
EXAMPLES:MPI_RECV, 11–13, 19–21, 34,

44
EXAMPLES:MPI_REQUEST_FREE, 33
EXAMPLES:MPI_SEND, 11–13, 20, 21, 34,

44
EXAMPLES:MPI_SSEND, 19, 34
EXAMPLES:MPI_WAIT, 32–34, 40, 41
EXAMPLES:MPI_WAITANY, 40
EXAMPLES:MPI_WAITSOME, 41
EXAMPLES:Non-overtaking messages, 19
EXAMPLES:Nonblocking operations, 32, 33

message ordering, 34
progress, 34

fairness, 40

immediate, 26
inactive, 30

local, 15

message, 1
message envelope, 5
MPI_BSEND, 24
MPI_BSEND (buf, count, datatype, dest, tag,

comm), 16
MPI_BSEND_INIT, 55
MPI_BSEND_INIT(buf, count, datatype, dest,

tag, comm, request), 52
MPI_BUFFER_ATTACH, 31
MPI_BUFFER_ATTACH(buffer, size), 22
MPI_BUFFER_DETACH(buffer_addr, size),

23
MPI_CANCEL, 19, 31, 42, 49–51
MPI_CANCEL(request), 49
MPI_GET_COUNT, 9, 10, 30
MPI_GET_COUNT(status, datatype, count),

9

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

INDEX 63

MPI_GET_ELEMENTS, 30
MPI_GET_ELEMENTS_X, 30
MPI_IBSEND, 31, 55
MPI_IBSEND(buf, count, datatype, dest, tag,

comm, request), 27
MPI_IMPROBE, 42, 45–47, 49
MPI_IMPROBE(source, tag, comm, flag, mes-

sage, status), 46, 46
MPI_IMRECV, 45–47, 49
MPI_IMRECV(buf, count, datatype, mes-

sage, request), 49
MPI_IPROBE, 9, 42–47, 49
MPI_IPROBE(source, tag, comm, flag, sta-

tus), 42, 43
MPI_IRECV, 49
MPI_IRECV (buf, count, datatype, source,

tag, comm, request), 29
MPI_IRSEND(buf, count, datatype, dest, tag,

comm, request), 29
MPI_ISEND, 55
MPI_ISEND(buf, count, datatype, dest, tag,

comm, request), 27
MPI_ISSEND(buf, count, datatype, dest, tag,

comm, request), 28
MPI_MPROBE, 42, 45–47, 49
MPI_MPROBE(source, tag, comm, message,

status), 47
MPI_MRECV, 45–49
MPI_MRECV(buf, count, datatype, message,

status), 48
MPI_PACK, 24
MPI_PACK_SIZE(count, datatype, comm, size),

24
MPI_PROBE, 7, 9, 10, 42–45, 47, 49
MPI_PROBE(source, tag, comm, status), 43,

45
MPI_RECV, 2, 8–10, 46
MPI_RECV (buf, count, datatype, source,

tag, comm, status), 6
MPI_RECV(. . ., source, tag, comm, status),

43, 45, 46
MPI_RECV(), 43
MPI_RECV_INIT, 54
MPI_RECV_INIT(buf, count, datatype, source,

tag, comm, request), 54
MPI_REQUEST_FREE, 33, 50, 55
MPI_REQUEST_FREE(request), 33
MPI_REQUEST_GET_STATUS, 10, 42

MPI_REQUEST_GET_STATUS(request, flag,
status), 42

MPI_RSEND (buf, count, datatype, dest, tag,
comm), 17

MPI_RSEND_INIT(buf, count, datatype, dest,
tag, comm, request), 53

MPI_SEND, 1, 3, 10, 12
MPI_SEND(buf, count, datatype, dest, tag,

comm), 2
MPI_SEND_INIT, 55
MPI_SEND_INIT(buf, count, datatype, dest,

tag, comm, request), 52
MPI_SENDRECV(sendbuf, sendcount, send-

type, dest, sendtag, recvbuf, recv-
count, recvtype, source, recvtag, comm,
status), 57

MPI_SENDRECV_REPLACE(buf, count, datatype,
dest, sendtag, source, recvtag, comm,
status), 58

MPI_SSEND (buf, count, datatype, dest, tag,
comm), 17

MPI_SSEND_INIT(buf, count, datatype, dest,
tag, comm, request), 53

MPI_START, 54–56
MPI_START(request), 55
MPI_STARTALL, 55
MPI_STARTALL(count, array_of_requests),

55, 55
MPI_TEST, 10, 30–33, 35, 36, 50, 55
MPI_TEST(&array_of_requests[i], flag, sta-

tus), 36
MPI_TEST(request, flag, status), 32
MPI_TEST_CANCELLED, 30–32, 51
MPI_TEST_CANCELLED(status, flag), 50
MPI_TESTALL, 35, 38
MPI_TESTALL(count, array_of_requests, flag,

array_of_statuses), 38
MPI_TESTANY, 31, 35, 36, 40
MPI_TESTANY(count, array_of_requests, in-

dex, flag, status), 36
MPI_TESTANY(count, array_of_requests, in-

dex, status), 36
MPI_TESTSOME, 35, 40
MPI_TESTSOME(incount, array_of_requests,

outcount, array_of_indices, array_of_statuses),
39

MPI_TYPE_CREATE_DARRAY, 9
MPI_WAIT, 8, 10, 30–34, 36, 37, 50, 55

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

64 INDEX

MPI_WAIT(&array_of_request[i], &array_of_statuses[i]),
37

MPI_WAIT(&array_of_requests[i], status), 36
MPI_WAIT(request, status), 31
MPI_WAITALL, 35, 37, 38
MPI_WAITALL(count, array_of_requests,

array_of_statuses), 37
MPI_WAITALL(count, array_of_requests, ar-

ray_of_statuses), 37
MPI_WAITANY, 19, 31, 35, 36, 40
MPI_WAITANY (count, array_of_requests,

index, status), 35
MPI_WAITANY(count, array_of_requests, in-

dex, status), 36
MPI_WAITSOME, 35, 39–41
MPI_WAITSOME(incount, array_of_requests,

outcount, array_of_indices, array_of_statuses),
38

non-local, 15, 16
nonblocking communication, 25
null, 30

persistent, 51
process group, 5

ready, 16, 25, 26
ready send, 18
receive, 1, 2
receive buffer, 2
receive complete, 25
receive start call, 25
request, 26

send, 1
send buffer, 1
send complete, 25
send start, 25
send-receive, 56
standard, 15, 25
standard send, 18
synchronous, 15, 25, 26, 30
synchronous send, 18

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

	Point-to-Point Communication
	Introduction
	Blocking Send and Receive Operations
	Blocking Send
	Message Data
	Message Envelope
	Blocking Receive
	Return Status
	Passing MPI_STATUS_IGNORE for Status

	Data Type Matching and Data Conversion
	Type Matching Rules
	Data Conversion

	Communication Modes
	Semantics of Point-to-Point Communication
	Buffer Allocation and Usage
	Model Implementation of Buffered Mode

	Nonblocking Communication
	Communication Request Objects
	Communication Initiation
	Communication Completion
	Semantics of Nonblocking Communications
	Multiple Completions
	Non-destructive Test of status

	Probe and Cancel
	Probe
	Matching Probe
	Matched Receives
	Cancel

	Persistent Communication Requests
	Send-Receive
	Null Processes

