
ULFM Update
(March to June 2014)

FTWG@MPI Forum meeting
Chicago, june 2014

Application Recovery Patterns

2

User Level Failure Mitigation: a set of MPI interface extensions to enable MPI
programs to restore MPI communication capabilities disabled by failures

Minimal Feature Set for FT

• Failure Notification (MPI exceptions)
• Error Propagation (Revoke)
• Error Recovery (Shrink,Agree,Spawn)

Not all recovery strategies require all of these
features, that’s why the interface splits
notification, propagation and recovery

3

Modified
•  Ticket 0 (Bill’s comments)
•  Finalize completes (removed “successfully”, due to

attributes destructors)
• RMA rewrite
•  Relaxed memory consistency after failure (the entire window exposed

memory may become undefined)
•  Relaxed error raising requirement (previous text overspecified our intention,

now only synchronization function must raise exceptions)
•  Added advice on win_free (after raising PF, it becomes non-synchronizing,

users should be careful).
•  Added advice to implementors “please, do not continue to deliver RMA

operations from dead processes after win_free”

• Agree is now a bitwise AND (on integer)
• Examples use error classes and codes properly

4

Considered, but discarded

• MPI_Comm_ishrink
•  Performance benefit unclear at this point
•  Postponed until proven to serve a purpose (that is a better

implementation than doing it all in wait is possible)

• MPI_Win_free synchronizes even with failures
•  Considered too costly
•  There is a way out for users, it can then be deployed only when FT is

necessary

5

Coming next

• Upgrade from F77 to F08 interfaces
• Query of FT support
•  Predefined attribute on MPI_COMM_WORLD or info key in MPI_INFO_ENV
•  Alternative: using MPI_Init_with_info (future ticket from Hybrid group)

• Query status of revoked handles
•  MPI_Comm_is_revoked(comm)

• MPIT keys and better interaction with tools

6

Implementation progress

• Open MPI implementation
•  Failure free performance is satisfactory
•  Poor agreement algorithm in the current implementation results in poor

post-failure performance
•  Work ongoing to provide better Agreement (ERA early august)

• MPICH implementation also well advanced

7

Some more applications

• Large number of papers at EuroMPI about
ULFM (5+ submissions)

•  IPDPS: ANU presented a sparse PDE code
(deployed in GENE application)

8

Getting more info
•  Ticket wiki with standard text, links
•  https://svn.mpi-forum.org/trac/mpi-forum-web/ticket/323

•  Users and applications using ULFM
•  http://fault-tolerance.org/2014/05/27/anu-presents-pde-solver-with-ulfm-at-ipdps/

20140527-ulfm-users/

•  Example codes and modular snippets
•  http://fault-tolerance.org/2014/02/04/slides-with-ulfm-examples/ulfm-mpi-

dec13forum/

•  Implementations
•  Open MPI: https://bitbucket.org/icldistcomp/ulfm
•  MPICH

•  Publications
•  Bland, W., Bouteiller, A., Herault, T., Bosilca, G., Dongarra, J.J. “

Post-failure recovery of MPI communication capability: Design and rationale,” International Journal of High Performance
Computing Applications August 2013 27: 244-254, doi:10.1177/109434201348823

•  Bland, W., Bouteiller, A., Herault, T., Hursey, J., Bosilca, G., Dongarra, J.J. “
An Evaluation of User-Level Failure Mitigation Support in MPI,“ Computing, Springer, 2013, issn 0010-4885X, http://
dx.doi.org/10.1007/s00607-013-0331-3

9

Implementation in Open MPI

•  It works! Performance is good!

10

Sequoia AMG is an unstructured physics mesh application with a complex
communication pattern that employs both point-to-point and collective
operations. Its failure free performance is unchanged whether it is deployed
with ULFM or normal Open MPI.

The failure of rank 3 is detected and managed by rank 2 during the 512 bytes
message test. The connectivity and bandwidth between rank 0 and rank 1
are unaffected by failure handling activities at rank 2.

B
A

N
D

W
ID

T
H

 (
G

b
it

/s
)

MESSAGE SIZE (Bytes)

ULFM Fault Tolerant MPI Performance with failures
IMB Ping-pong between ranks 0 and 1 (IB20G)

Open MPI
FT Open MPI (w/failure at rank 3)

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 11

 12

1 4 16 64 256 1K 4K 16K 64K 256K 1M 4M

L
A

T
E

N
C

Y
 (

u
s
)

 4

 4.5

 5

 5.5

 6

 6.5

 7

 7.5

 8

1 4 16 64 256 1K

-1%

-0.5%

+0%

+0.5%

+1%

8 16 32 64 128 256 512

D
IF

F
E

R
E

N
C

E
 I
N

 R
U

N
N

IN
G

 T
IM

E

NUMBER OF PROCESSES

Sequoia AMG Performance with Fault Tolerance

N
o

n
-F

T
 i
s
 f

a
s
te

r
U

L
F

M
 i
s
 f

a
s
te

r

Thanks for CREST, Riken support

More performance:
synthetic benchmarks

11

5 Performance Analysis

The following analysis used a prototype of the ULFM proposal based on the
development trunk of Open MPI [12] (r26237). The test results presented were
gathered from the Smoky system at Oak Ridge National Laboratory. Each node
contains four quad-core 2.0 GHz AMD Opteron processors with 2 GB of memory
per compute core. Compute nodes are connected with gigabit Ethernet and
InfiniBand. Some shared-memory benchmarks were conducted on Romulus, a
6⇥ 8-core AMD Opteron 6180 SE with 256GB of memory (32GB per socket) at
the University of Tennessee.

The NetPIPE benchmark (v3.7) was used to assess the 1-byte latency and
bandwidth impact of the modifications necessary for the ULFM support in Open
MPI. We compare the vanilla version of Open MPI (r26237) with the ULFM
enabled version on Smoky. Table 1 highlights the fact that the di↵erences in
performance are well below the noise limit, and that the standard deviation is
negligible proving the performance stability and lack of impact.

1-byte Latency (microseconds) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Di↵erence

Shared Memory 0.8008 0.0093 0.8016 0.0161 0.0008
TCP 10.2564 0.0946 10.2776 0.1065 0.0212
OpenIB 4.9637 0.0018 4.9650 0.0022 0.0013

Bandwidth (Mbps) (cache hot)
Interconnect Vanilla Std. Dev. Enabled Std. Dev. Di↵erence

Shared Memory 10,625.92 23.46 10,602.68 30.73 -23.24
TCP 6,311.38 14.42 6,302.75 10.72 -8.63
OpenIB 9,688.85 3.29 9,689.13 3.77 0.28

Table 1. NetPIPE results on Smoky.

The impact on shared memory systems, which are sensitive even to small
modifications of the MPI library, has been further assessed on the Romulus
machine – a large shared memory machine – using the IMB benchmark suite
(v3.2.3). As shown in Figure 1, the duration di↵erence of all the benchmarks
(point-to-point and collective) remains below 5%, thus within the standard de-
viation of the implementation on that machine.

To measure the impact of the prototype on a real application, we used the
Sequoia AMG benchmark6. This MPI intensive benchmark is an Algebraic Mult-
Grid (AMG) linear system solver for unstructured mesh physics. A weak scaling
study was conducted up to 512 processes following the problem Set 5. In Fig-
ure 2, we compare the time slicing of three main phases (Solve, Setup, and
SStruct) of the benchmark, with, side by side, the vanilla version of the Open
MPI implementation, and the ULFM enabled one. The application itself is not
fault tolerant and does not use the features proposed in ULFM. The goal of
this benchmark is to demonstrate that a careful implementation of the proposed

6 https://asc.llnl.gov/sequoia/benchmarks/#amg

-5

-4

-3

-2

-1

 0

 1

 2

 3

 4

 5

%
 d

if
fe

re
n

c
e

U
L

F
M

 i
s

 f
a

s
te

r
V

a
n

il
la

 i
s

 f
a

s
te

r

A
ll

R
e

d
u

c
e

 4
B

A
ll

R
e

d
u

c
e

 4
M

B

A
ll

to
A

ll
 4

B

A
ll

to
A

ll
 4

M
B

B
c

a
s

t
4

B

B
c

a
s

t
4

M
B

R
e

d
u

c
e

 4
B

R
e

d
u

c
e

 4
M

B

S
e

n
d

R
e

c
v

 4
B

S
e

n
d

R
e

c
v

 4
M

B

P
in

g
P

in
g

 4
B

P
in

g
P

in
g

 4
M

B

P
in

g
P

o
n

g
 4

B

P
in

g
P

o
n

g
 4

M
B

B
a

rr
ie

r

Bandwidth benchmark
Latency benchmark

Fig. 1. The Intel MPI Benchmarks: relative di↵erence between ULFM and the vanilla
Open MPI on shared memory (Romulus). Standard deviation ⇡5% on 1,000 runs.

semantic does not impact the performance of the MPI implementation, and ul-
timately leaves unchanged the behavior and performance of legacy applications.
The results show that the performance di↵erence is negligible.

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256 512

C
u

m
u

la
te

d
 T

im
e
 (

s
)

Number of processes

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

F
T

n
o

 F
T

Solve
Setup
SStruct

Fig. 2. Comparison of the vanilla and
ULFM versions of Open MPI running
Sequoia-AMG at di↵erent scales (Smoky).

 0

 10

 20

 30

 40

 50

 60

 70

 80

8 16 32 64 128 256

T
im

e
 (

m
s
)

Number of Processes

Detection
Revoke
Shrink

Fig. 3. Evaluation of the Fault Injection
Benchmark with full recovery at di↵erent
scales (Smoky).

To assess the overheads of recovery constructs, we developed a synthetic
benchmark that mimics the behavior of a typical fixed-size tightly-coupled fault-
tolerant application. Unlike a normal application it performs an infinite loop,
where each iteration contains a failure and the corresponding recovery procedure.
Each iteration consists of 5 phases: in the first phase (Detection), all processes
but a designated victim enter a Barrier on the intracommunicator. The victim
dies, and the failure detection mechanism makes all surviving processes exit the
Barrier, some with an error code. In Phase 2 (Revoke), the surviving processes
that detected a process-failure related error during the previous phase invoke the
new construct MPI_COMM_REVOKE. Then they proceed to Phase 3 (Shrink) where
the intracommunicator is shrunk using MPI_COMM_SHRINK. The two other phases
serve to repair a full-size intracommunicator using spawn and intercommunicator
merge operations to allow the benchmark to proceed to the next round.

Collective communications:
48 core shared memory (very stressful)
Performance difference is less than
 std-deviation

Failure Notification
• Notification of failures is local only
•  New error MPI_ERR_PROC_FAILED Raised when a communication with a

targeted process fails

•  In an operation (collective), some process may
succeed while other raise an error
•  Bcast might succeed for the top of the tree, but fail for some subtree rooted

on a failed process

• ANY_SOURCE must raise an exception
•  the dead could be the expected sender
•  Raise error MPI_ERR_PROC_FAILED_PENDING, preserve matching order
•  The application can complete the recv later (MPI_COMM_FAILURE_ACK())

• Exceptions indicate an operation failed
•  To know what process failed, apps call MPI_COMM_FAILURE_ACK(),

MPI_COMM_FAILURE_GET_ACKED()

12

App using notification only

• Error notifications do not break MPI
•  App can continue to communicate on the communicator
•  More errors may be raised if the op cannot complete (typically, most collective

ops are expected to fail), but p2p between non-failed processes works

•  In this Master-Worker example, we can continue
w/o recovery!
•  Master sees a worker failed
•  Resubmit the lost work unit onto another worker
•  Quietly continue

13

Master

W1

W2

Wn

Send (W1,T1)
Submit T1

Send (W2,T1)
Resubmit

Recv (ANY)
Detected W1

App using propagation only

•  Application does only p2p communications
•  P1 fails, P2 raises an error and wants to change comm

pattern to do application recovery
•  but P3..Pn are stuck in their posted recv
•  P2 unlocks them with Revoke
•  P3..Pn join P2 in the new recovery p2p communication

pattern

14

Recv(P1): failure
P2 calls RevokeP1

P2

P3

Pn

Recv(P1) Recv(P1): revoked

Recovery

Error Recovery

• Restores full communication capability (all
collective ops, etc).
• MPI_COMM_SHRINK(comm, newcomm)
•  Creates a new communicator excluding failed processes
•  New failures are absorbed during the operation
•  The communicator can be restored to full size with MPI_COMM_SPAWN

15

P1

P2

P3

Pn

Bcast

Bcast

Shrink

Bcast

Error Agreement

• When in need to decide if there is a failure and
if the condition is recoverable (collectively)
•  MPI_COMM_AGREE(comm, flag)

•  Fault tolerant agreement over boolean flag
•  Unexpected failures (not acknowledged before the call)

raise MPI_ERR_PROC_FAILED
•  The flag can be used to compute a user condition, even

when there are failures in comm

• Can be used as a global failure detector

16

ANU: Sparse PDE

17
Full slides deck available from http://cs.anu.edu.au/Peter.Strazdins/seminars

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 4

4 Two-dimension PDE Solver: Recovery Methods

• replication/re-
sampling:
recover grids 0–3
from duplicate grids
7–10;
recover grids 4–6 via
resampling from grid
0–3

• alternate combina-
tion:
lost grid g 2 {0..6}
is ignored; final result
(sparse grid) is con-
structed via a subset
of {0..6, 11..13}� {g}

JJ J • I II ⇥

ANU: Sparse PDE

18

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 5

5 Recovery Methods: Alternate Combination Formula

• uses extra set of smaller sub-grids on a 3rd (next lower) diagonal
(modest amount of extra overhead)

• for a single failure on a fine sub-grid, can find a new combination with
an inclusion/exclusion principle avoiding the failed sub-grid

• also works for many (but not all) cases of multiple failures

• if the failure is on 2nd diagonal, can similarly use a 4th (lower) diagonal
to avoid this

JJ J • I II ⇥

ANU: Sparse PDE

19

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 7

7 Fault Recovery Procedure: Detect Failed Process

0 1 2 3 4 5 6

Process 3 and 5 on parent fail
0 1 2 3 4 5 6

Shrink the communicator and spawn
failed processes as child with rank 0 and 1

0 1 2 4 6 0 1

Use intercommunicator merge to assign
the two highest ranks to the newly created

0 1 2 3 4 5 6

Sending failed ranks from parent to the
two highest ranks on child and split the

communicator with the same color to assign

0 1 2 4 6 3 5

Changing child to parent

0 1 2 4 6 3 5

Parent

Child

A communicator with global size 7

processes on child part

rank 3 and 5 to the child processes to order
the ranks as it was before the failure

• can detect failed processes as fol-
lows:

• attach an error handler en-
suring failures get acknowl-
edged on (original) communi-
cator comm

• call MPI Barrier(comm); if fails:
• revoke it via
MPI Comm revoke(comm)

and create shrunken
communicator via
OMPI Comm shrink(comm, &scomm)

• use
MPI Group difference(..., &fg)

to make a globally consistent
list of failed processes

JJ J • I II ⇥

ANU: Sparse PDE

20

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 12

12 Results: Scalability

0 50 100 150 200 250 300 350 400
0

20

40

60

80

100

RC: 0 RC: 1 RC: 2

AC: 0 AC: 1 AC: 2

CR: 0 CR: 1 CR: 2

number of cores

n
o
rm

a
liz

e
d
 e

f f
ic

ie
n
c
y
 (

%
)

• results on OPL cluster, max.
resolution of 213

• in terms of absolute time,
CR is always more longer
(however, uses fewer pro-
cesses)

• RC and AC also show best
scalability

• plots for 2 failures erratic
due to high overheads in �
version of ULFM MPI

JJ J • I II ⇥

RC=Replication/resampling
AC=Alternate recombination
CR=Checkpoint/Restart

OPL cluster node: 2x6 cores Xeon5670, QDR IB

ANU: GENE application

21

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 13

13 Fault Recovery of a Real Application - GENE

• GENE: Gyrokinetic Electromag-
netic Numerical Experiment

• plasma microturbulence code
• multidimensional solver of

Vlasov equation
• fixed grid in five-dimensional

phase space (x||, x?, xr, v||, v?)
• computes gyroradius-scale fluctuations and transport coefficients

• these fields are the main output of GENE

• hybrid MPI/OpenMP parallelization – high scalability to 2K cores

• dimensions are limited to powers of two

• sparse grid combination technique has yielded good results!

• physical system is relatively homogeneous

JJ J • I II ⇥

SNL May 2014 Application Level Fault Recovery: Using Fault-Tolerant Open MPI in a PDE Solver 14

14 GENE: Implementation and Preliminary Results

• apply combination technique over density function in 5D phase space

• modify GENE to run appropriate problem instances simultaneously

• use BINDC utilize to call into C++ communicator constructor and com-
bination algorithm code

• a communicator split off MPI COMM WORLD is passed back to each sub-
set of process implementing a GENE instance

• used an ‘initial value’ simulation on for a ‘full-grid’ of (x|| = 1, x? = 64, xr =
64, v|| = 128, v? = 128) applying l = 4 combination technique on (v||, v?)
for 100 timesteps

cores tg tc �tf tG
49 48.9 3.4 1.0 107.6
98 36.8 3.8 7.4 65.3

196 63.2 11.5 19.9 98.7

times: tg for GENE instance
tc for comb. alg.
�tf extra for one failure
tG for full-grid GENE instance

• relative error from full-grid GENE instance: 3.0E-04

JJ J • I II ⇥

