
8.7. STARTUP 319

before other MPI routines may be called. To provide for this, MPI includes an initialization
routine MPI_INIT.

MPI_INIT()

int MPI_Init(int *argc, char ***argv)

MPI_INIT(IERROR)

INTEGER IERROR

{void MPI::Init(int& argc, char**& argv)(binding deprecated, see Section 15.2) }

{void MPI::Init()(binding deprecated, see Section 15.2) }
ticket313.

[All MPI programs] Each MPI process must contain exactly one call to an MPI initial-
ization routine: MPI_INIT or MPI_INIT_THREAD. Subsequent calls to any initialization rou-
tines are erroneous. The only MPI functions that may be invoked before the MPI initializa-
tion routines are called are MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED.

The version for ISO C accepts the argc and argv that are provided by the arguments
to main or NULL:

int main(int argc, char **argv)

{

MPI_Init(&argc, &argv);

/* parse arguments */

/* main program */

MPI_Finalize(); /* see below */

}

The Fortran version takes only IERROR.
Conforming implementations of MPI are required to allow applications to pass NULL

for both the argc e argv arguments of main in C. [and C++. In C++, there is an alternative ticket313.
ticket313.binding for MPI::Init that does not have these arguments at all.

Rationale. In some applications, libraries may be making the call to
MPI_Init, and may not have access to argc and argv from main. It is anticipated
that applications requiring special information about the environment or information
supplied by mpiexec can get that information from environment variables. (End of
rationale.)

] ticket313.
After MPI is initialized, the application can access information about the execution

environment by querying the predefined info object MPI_INFO_ENV. The following keys are
predefined for this object, corresponding to the arguments of MPI_COMM_SPAWN or of
mpiexec:

command name of program executed

argv (space separated) arguments to command

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

320 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

maxprocs Maximum number of MPI processes to start.

soft Allowed values for number of processors

host Hostname.

arch Architecture name.

wdir Working directory of the MPI process

file Value is the name of a file in which additional information is specified.

thread_level Requested level of thread support (if requested before the program started ex-
ecution)

The info object MPI_INFO_ENV need not contain a (key,value) pair for each of these
predefined keys; the set of (key,value) pairs provided is implementation-dependent. Imple-
mentations may provide additional, implementation specific, (key,value) pairs.

In case where the MPI processes where started with MPI_COMM_SPAWN_MULTIPLE
or, equivalently, with a startup mechanism that supports multiple process specifications,
then the values stored in the info object MPI_INFO_KEY at a process are those values that
affect the local MPI process.

Example 8.3 If MPI is started with a call to

mpiexec -n 5 -arch sun ocean : -n 10 -arch rs6000 atmos

Then the first 5 processes will have have in their MPI_INFO_ENV object the pairs (command,

ocean), (maxprocs,5), and (arch, sun). The next 10 processes will have in MPI_INFO_KEY

(command, atmos), (maxprocs,10), and (arch, rs600)

Advice to users. The values passed in MPI_INFO_KEY are the values of the argu-
ments passed to the mechanism that started the MPI execution – not the actual value
provided. Thus, the value associated with maxprocs is the number of MPI processes
requested; it can be larger than the actual number of processes obtained, if the soft

option was used. (End of advice to users.)

Advice to implementors. Good quality implementations will provide a (key,value) pair
for each parameter that can be passed to the command that starts an MPI program.
(End of advice to implementors.)

MPI_FINALIZE()

int MPI_Finalize(void)

MPI_FINALIZE(IERROR)

INTEGER IERROR

{void MPI::Finalize()(binding deprecated, see Section 15.2) }

This routine cleans up all MPI state. [Each process must call MPI_FINALIZE before itticket313.
exits. Unless there has been a call to MPI_ABORT, before each process exits process must

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 321

ensure that all pending nonblocking communications are (locally) complete before calling
MPI_FINALIZE. Further, at the instant at which the last process calls MPI_FINALIZE, all
pending sends must be matched by a receive, and all pending receives must be matched by
a send.

For example, the following program is correct
] If an MPI program terminates normally (i.e., not due to a call to MPI_ABORT or an

unrecoverable error) then MPI must be finalized at each MPI process by a call to
MPI_FINALIZE on this process.

Before MPI is finalized at an MPI process, the process must locally complete all MPI
calls. When the last process calls MPI_FINALIZE, all non-local MPI calls at each process
must be matched by MPI calls at the other processes that are needed to complete the
relevant operation: For example, for each send, the matching receive has occurred, and for
each receive, a marching send has occurred; each collective operation has been invoked at
all involved processes, etc.

The call to MPI_FINALIZE does not free objects created by MPI commands – i.e.,
objects that the user can free using MPI calls.

MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective
over the union of all processes that have been and continue to be connected, as explained
in Section 10.5.4 on page 362.

The following examples illustrates these rules

Example 8.4 The following code is correct

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Send(dest=1); MPI_Recv(src=0);

MPI_Finalize(); MPI_Finalize();

Example 8.5 Without a matching receive, the program is erroneous

Process 0 Process 1

----------- -----------

MPI_Init(); MPI_Init();

MPI_Send (dest=1);

MPI_Finalize(); MPI_Finalize();
ticket313.

[deleted in April Since MPI_FINALIZE is a collective call, a correct MPI program will
naturally ensure that all participants in pending collective operations have made the call
before calling MPI_FINALIZE.

A successful return from a blocking communication operation or from MPI_WAIT or
MPI_TEST tells the user that the buffer can be reused and means that the communication
is completed by the user, but does not guarantee that the local process has no more work
to do. A successful return from MPI_REQUEST_FREE with a request handle generated by
an MPI_ISEND nullifies the handle but provides no assurance of operation completion. The
MPI_ISEND is complete only when it is known by some means that a matching receive has

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

322 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

completed. MPI_FINALIZE guarantees that all local actions required by communications
the user has completed will, in fact, occur before it returns.

MPI_FINALIZE guarantees nothing about pending communications that have not been
completed (completion is assured only by MPI_WAIT, MPI_TEST, or MPI_REQUEST_FREE
combined with some other verification of completion).]ticket313.

[

Example 8.6 This program is correct HEADER SKIP ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

Example 8.7 This program is erroneous and its behavior is undefined: HEADER SKIP
ENDHEADER

rank 0 rank 1

===

... ...

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();

]ticket313.

Example 8.8 This program is correct: The send operation on process 0 is locally complete
when MPI_Finalize is called: the local buffer can be reused and no further MPI calls are
required on the sender side.

Process 0 Process 1

--------- ---------

MPI_Init(); MPI_Init();

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Barrier();

MPI_Barrier(); MPI_Finalize();

MPI_Finalize();

Example 8.9 This program is erroneous: The send operation on process 0 is not locally
complete when MPI_Finalize is called

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 323

Process 0 Proces 1

-------- --------

MPI_Init(); MPI_Init();

MPI_Isend(); MPI_Recv();

MPI_Request_free(); MPI_Finalize();

MPI_Finalize(); exit();

exit();
ticket313.

[If no MPI_BUFFER_DETACH occurs between an MPI_BSEND (or other buffered send)
and MPI_FINALIZE, the MPI_FINALIZE implicitly supplies the MPI_BUFFER_DETACH.

Example 8.10 This program is correct, and after the MPI_Finalize, it is as if the buffer
had been detached. HEADER SKIP ENDHEADER

rank 0 rank 1

===

... ...

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();

] ticket313.

Example 8.11 This program is correct. The attached buffer is a resource allocated by
the user, not by MPI; it is availble to the user after MPI is finalized.

Process 0 Process 1

--------- ---------

MPI_Init(0; MPI_Init();

buffer = malloc(1000000); MPI_Recv();

MPI_Buffer_attach(); MPI_Finalize();

MPI_Bsend(); exit();

MPI_Finalize();

free(buffer);

exit();
ticket313.

[

Example 8.12 In this example, MPI_Iprobe() must return a FALSE flag.
MPI_Test_cancelled() must return a TRUE flag, independent of the relative order of execu-
tion of MPI_Cancel() in process 0 and MPI_Finalize() in process 1.

The MPI_Iprobe() call is there to make sure the implementation knows that the “tag1”
message exists at the destination, without being able to claim that the user knows about
it.

HEADER SKIP ENDHEADER

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

324 CHAPTER 8. MPI ENVIRONMENTAL MANAGEMENT

rank 0 rank 1

==

MPI_Init(); MPI_Init();

MPI_Isend(tag1);

MPI_Barrier(); MPI_Barrier();

MPI_Iprobe(tag2);

MPI_Barrier(); MPI_Barrier();

MPI_Finalize();

exit();

MPI_Cancel();

MPI_Wait();

MPI_Test_cancelled();

MPI_Finalize();

exit();

]ticket313.

Example 8.13 This program is correct. The cancel operation must succeed, since the
send cannot complete normally.

Process 0 Process 1

--------- ---------

MPI_Issend(); MPI_Finalize();

MPI_Cancel();

MPI_Wait();

MPI_Finalize();

ticket313.
[

Advice to implementors. An implementation may need to delay the return from
MPI_FINALIZE until all potential future message cancellations have been processed.
One possible solution is to place a barrier inside MPI_FINALIZE (End of advice to
implementors.)

]ticket313.

Advice to implementors.

Even though a process has completed all the communications it initiated, such commu-
nication may not yet be completed from the viewpoint of the underlying MPI system.
E.g., a blocking send may have returned, even though the data is still buffered at
the sender. The MPI implementation must ensure that a process has completed any
involvement in MPI communication before MPI_FINALIZE returns. Thus, if a process
exits after the call to MPI_FINALIZE, this will not cause an ongoing communication
to fail.

The MPI implementation should also complete freeing all objects marked for deletion
by MPI calls that freed them.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

8.7. STARTUP 325

An implementation may need to delay the return from MPI_FINALIZE on a process
even if all communications related to MPI calls by that process have completed; the
process may still receive cancel requests for messages it has completed receiving. One
possible solution is to place a barrier inside MPI_FINALIZE.

(End of advice to implementors.)
ticket313.

Advice to users. If a process continues execution after the call to MPI_FINALIZE
then it is recommended that the user explitly free all the objects allocated by MPI
calls before the call to MPI_FINALIZE. (End of advice to users.)

Once MPI_FINALIZE returns, no MPI routine (not even MPI_INIT) may be called,
except for MPI_GET_VERSION, MPI_INITIALIZED, and MPI_FINALIZED. ticket313.

[Each process must complete any pending communication it initiated before it calls
MPI_FINALIZE. If the call returns, each process may continue local computations, or exit,
without participating in further MPI communication with other processes.] ticket313.

[MPI_FINALIZE is collective over all connected processes. If no processes were spawned,
accepted or connected then this means over MPI_COMM_WORLD; otherwise it is collective
over the union of all processes that have been and continue to be connected, as explained
in Section 10.5.4 on page 362.] ticket313.

[

Advice to implementors. Even though a process has completed all the communication
it initiated, such communication may not yet be completed from the viewpoint of the
underlying MPI system. E.g., a blocking send may have completed, even though the
data is still buffered at the sender. The MPI implementation must ensure that a
process has completed any involvement in MPI communication before MPI_FINALIZE
returns. Thus, if a process exits after the call to MPI_FINALIZE, this will not cause
an ongoing communication to fail. (End of advice to implementors.)

]
Although it is not required that all processes return from MPI_FINALIZE, it is required

that at least process 0 in MPI_COMM_WORLD return, so that users can know that the MPI
portion of the computation is over. In addition, in a POSIX environment, they may desire
to supply an exit code for each process that returns from MPI_FINALIZE.

Example 8.14 The following illustrates the use of requiring that at least one process
return and that it be known that process 0 is one of the processes that return. One wants
code like the following to work no matter how many processes return.

...

MPI_Comm_rank(MPI_COMM_WORLD, &myrank);

...

MPI_Finalize();

if (myrank == 0) {

resultfile = fopen("outfile","w");

dump_results(resultfile);

fclose(resultfile);

}

exit(0);

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

418 CHAPTER 12. EXTERNAL INTERFACES

The level(s) of thread support that can be provided by MPI_INIT_THREAD will depend
on the implementation, and may depend on information provided by the user before the
program started to execute (e.g., with arguments to mpiexec). If possible, the call will
return provided = required. Failing this, the call will return the least supported level such
that provided > required (thus providing a stronger level of support than required by the
user). Finally, if the user requirement cannot be satisfied, then the call will return in
provided the highest supported level.

A thread compliant MPI implementation will be able to return provided
= MPI_THREAD_MULTIPLE. Such an implementation may always return provided
= MPI_THREAD_MULTIPLE, irrespective of the value of required. [At the other ex-ticket313.
treme, an MPI library that is not thread compliant may always return
provided = MPI_THREAD_SINGLE, irrespective of the value of required.]

An MPI library that is not thread compliant must always return
provided=MPI_THREAD_SINGLE, even if MPI_INIT_THREAD is called on a multithreaded
process. The library should also return correct values for the MPI calls that can be executed
before initialization, even if multiple threads have been spawned.

Rationale. Such code is erroneous, but the error cannot be detected until
MPI_INIT_THREAD is called. The requirements in the previous paragraph ensure
that the error can be properly detected. (End of rationale.)

A call to MPI_INIT has the same effect as a call to MPI_INIT_THREAD with a required
= MPI_THREAD_SINGLE.

Vendors may provide (implementation dependent) means to specify the level(s) of
thread support available when the MPI program is started, e.g., with arguments to mpiexec.
This will affect the outcome of calls to MPI_INIT and MPI_INIT_THREAD. Suppose, for
example, that an MPI program has been started so that only MPI_THREAD_MULTIPLE is
available. Then MPI_INIT_THREAD will return provided = MPI_THREAD_MULTIPLE, ir-
respective of the value of required; a call to MPI_INIT will also initialize the MPI thread
support level to MPI_THREAD_MULTIPLE. Suppose, on the other hand, that an MPI pro-
gram has been started so that all four levels of thread support are available. Then, a call to
MPI_INIT_THREAD will return provided = required; on the other hand, a call to MPI_INIT
will initialize the MPI thread support level to MPI_THREAD_SINGLE.

Rationale. Various optimizations are possible when MPI code is executed single-
threaded, or is executed on multiple threads, but not concurrently: mutual exclusion
code may be omitted. Furthermore, if only one thread executes, then the MPI library
can use library functions that are not thread safe, without risking conflicts with user
threads. Also, the model of one communication thread, multiple computation threads
fits many applications well, e.g., if the process code is a sequential Fortran/C/C++
program with MPI calls that has been parallelized by a compiler for execution on an
SMP node, in a cluster of SMPs, then the process computation is multi-threaded, but
MPI calls will likely execute on a single thread.

The design accommodates a static specification of the thread support level, for en-
vironments that require static binding of libraries, and for compatibility for current
multi-threaded MPI codes. (End of rationale.)

Advice to implementors. If provided is not MPI_THREAD_SINGLE then the MPI library
should not invoke C/ C++/Fortran library calls that are not thread safe, e.g., in an

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

12.4. MPI AND THREADS 419

environment where malloc is not thread safe, then malloc should not be used by the
MPI library.

Some implementors may want to use different MPI libraries for different levels of thread
support. They can do so using dynamic linking and selecting which library will be
linked when MPI_INIT_THREAD is invoked. If this is not possible, then optimizations
for lower levels of thread support will occur only when the level of thread support
required is specified at link time. (End of advice to implementors.)

The following function can be used to query the current level of thread support.

MPI_QUERY_THREAD(provided)

OUT provided provided level of thread support (integer)

int MPI_Query_thread(int *provided)

MPI_QUERY_THREAD(PROVIDED, IERROR)

INTEGER PROVIDED, IERROR

{int MPI::Query_thread()(binding deprecated, see Section 15.2) }

The call returns in provided the current level of thread [support. This]support, which ticket0.
will be the value returned in provided by MPI_INIT_THREAD, if MPI was initialized by a
call to MPI_INIT_THREAD().

MPI_IS_THREAD_MAIN(flag)

OUT flag true if calling thread is main thread, false otherwise

(logical)

int MPI_Is_thread_main(int *flag)

MPI_IS_THREAD_MAIN(FLAG, IERROR)

LOGICAL FLAG

INTEGER IERROR

{bool MPI::Is_thread_main()(binding deprecated, see Section 15.2) }

This function can be called by a thread to [find out whether]determine if it is the main ticket0.
thread (the thread that called MPI_INIT or MPI_INIT_THREAD).

All routines listed in this section must be supported by all MPI implementations.

Rationale. MPI libraries are required to provide these calls even if they do not
support threads, so that portable code that contains invocations to these functions
[be able to]can link correctly. MPI_INIT continues to be supported so as to provide ticket0.
compatibility with current MPI codes. (End of rationale.)

Advice to users. It is possible to spawn threads before MPI is initialized, but no
MPI call other than [MPI_INITIALIZED] MPI_GET_VERSION, MPI_INITIALIZED, or ticket313.
MPI_FINALIZED should be executed by these threads, until MPI_INIT_THREAD is

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

	313 1
	313 2
	313 3

