
MPI-3 Survey Data

Question 1

Question 2

Question 3

Did you attend the MPI Forum BOF at SC09?

No 1028

Yes 32

Which of the following best describes you?

User of MPI applications 159

MPI application developer 303

Library / middleware developer (that uses
MPI) 104

MPI implementer 54

Academic educator researcher 295

Student 103

Project / program / general management 31

Other 25

Show/Hide Open Answers

administrator
Advanced user support
Application Benchmarker
Beginner
benchmarker in HPC-industry
Compiler developer
computer architect
consultant
general user support
HPC Support
HPC team lead
Industry researcher
MPI implementer (beginner)
OS
performance tools
PMPI user
Q/A engineer of one of the MPI
implementations
scientific computing staff
Several of above
support
systems administrator
technical marketing
tool developer (that targets MPI)
Um was geht's eigentlich?!?!?Gibt's das
auch auf deutsch?

Rate your expertise with the MPI standard.

Seite 1 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 4

Question 5

Question 6

I am not familiar at all with the MPI standard 42

I am knowledgeable about basic MPI functionality 347

I have a good understanding of some parts of the MPI standard 492

I deeply understand most of the MPI standard 174

I am an expert on the entire MPI standard 17

Think of an MPI application that you run frequently. What is the typical number of MPI
processes per job that you run? (Select all that apply)

1-16 MPI processes 472

17-64 MPI processes 495

65-512 MPI processes 466

513-2048 MPI processes 224

2049 MPI processes or more 174

I don't know 38

Using the same MPI application from the previous question, what is the typical number of
MPI processes that you run per node?(Select all that apply)

1 MPI process 358

2-3 MPI processes 323

4-57 MPI processes 476

8-15 MPI processes 322

16 MPI processes or more 133

I don't know 55

Using the same MPI application from the previous question, what is the typical number of
MPI processes that you run per node?(Select all that apply)

32 bit 361

64 bit 886

I don't know 41

Show/Hide Open Answers

Seite 2 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 7

Other 10 64-bit integer
both
depends on platform
Häh?
ia64
IA-64
mixed
PPC

I expect to be able to upgrade to an MPI-3 implementation and still be able to run my legacy
MPI applications *without recompiling*.

Strongly Disagree 257

Disagree 372

Undecided 198

Agree 114

Strongly Agree 59

Show/Hide Open Answers

Seite 3 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

1/ Need to be trained with the new MPI3
standard

2/Need to access to a MPI3 library
Allowing an application to run without
recompiling is too constraining. It would
prevent interesting evolution.
Allowing the implementation changed in
details is convenience and tended to
better performance.
Although recompiling should not be
necessary -- recompiling is minimally
intrusive.
A shift to a major new version of *any*
library normally requires more than just
a recompile.
At first, I thought this meant recompile
and run. But the next question asks about
recompiling. So then I assume here we
are not recompiling. On systems that
don't support shared libraries, I fully
expect that an old MPI2 executable would
run fine after making mpi3 the default.
AUGH. AUGH AUGH AUGH. AUGH
AUGH AUGH AUGH AUGH.

I want an MPI implementation that works
with compilers to be optimized well. Yes,
that breaks the binary compatibility layer
ISVs want, but it would let me write
natural code rather than the bizarre
contortions necessary to pack messages
by hand, etc.
Avoidance to recompilation should not be
an obstacle for innovation.
Backwards compatibility should not
impede progress
Binary backwards compatibility hampers
progress of the standard, and a
recompilation is easily performed.
Binary compatibility is not necessary in
my view. The old libraries can be kept for
applications that are not recompiled.
Cannot see how this question makes
sense. If I've a statically linked
application why would I have to
recompile it just because I updated MPI
libraries. Unless this question is referring
to mpiexec. Ambiguous.
clean it up!
Compiling doesn't hurt
Do you mean via a shared library
implementation??? MPI needs to
standardize the MPI header files (may not
be possible at this point but at least MPI3
should have a standardized set of header
files)

'Expect' is an ambiguous word in this
context. I interpret it to mean 'want/need',
and since I don't want or need this to be
the case, I disagree with the statement. I

Seite 4 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

continue to use that definition in the
following.
For me it's not an important feature, as I
recompile all my application whenever I
make a major change on my code
For me the answer depends on the scope
of 'upgrading' (the whole computer
system / OS vs. source code of a
program). I'd expect a system to be able
to run both MPI-2 and MPI-3
applications using different libraries, i.e.
one program linking to MPI-2, the next
job using MPI-3. Upgrading a system to
MPI-3 capabilities should not prevent
legacy binaries from running using an
MPI-2 library. Otherwise the upgrade
probably will not take place at all and
development will not progress towards
MPI-3.
Ha, that's funny.
Have no clue.
Hell, I have to recompile when switching
MPI implementations most of the time.
(Which (ABI interop) is something I'd
love to see changed in MPI3)
High performance computing doesn't
require ABI compatibilities.
Hopefully new functionality will be
presented via new functions or
descriptors. So the old code will run, and
if I'd like to I'll be able to modify part
which are forth to benefit from the new
standart.
I actually don't care about this.
I am used to recompile frequently, thus,
for me having to recompile is no problem.
But for e.g. commercial software cannot
be recompiled by the
user.
I compile my program all the time
I compile statically. So I assume the
library change.
I'd expect to recompile for any new MPI
implementation.
I don't care to recompile, as long as I
don't have to change the source code.
I don't expect to be able to upgrade any
library or subsystem without requiring
apps to relink or recompile.
I don't mind having to recompile even for
large codes.
It would be particularly convenient not to
have to recode.
I don't mind recompiling
I don't mind recompiling.
I expect to be able to upgrade to an MPI-
3 implementation
I expect to recompile whenever I change
MPI implementations, regardless of any
version change ...

Seite 5 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

with ditching backwards compatibility (as
long as I can install MPI2 and MPI3
alongside each other).
If only recompilation is required, I do not
view that as a problem.
If performance benefits make it worth,
great.
If progress is desired, a price must be
paid. This price should be minimized, but
will not be zero.
If recompilation is necessary to support
better performance, it would be ok.
If recompilation is the price for improved
performance and features, why not ?
I frequently recompile for different
platforms, for scalar or MPI code
versions or to describe different physical
problems. I don't care about recompiling,
i frequently recompile the code anyways
I have no problem recompiling my
applications.
IMHO it seems not necessary to be
backward compatible on such a level
since it is an major upgrade.
Implementations could simply ship the
MPI2 libraries, or support a runtime
'hint' that would assert the application is
MPI2 compliant. Either option would
allow existing applications to continue
running, without constraining the MPI3
standard to be compatible with the MPI2
standard. The reality is that most
implementations will continue to support
MPI2 for a very long time - to support
existing customers, and to take advantage
of existing toolsets. The transtion from
MPI2 to MPI3 will probably take at least
as long as the transition from MPI1 to
MPI2.
im willing to have some advantages of
recompiling with mpi3
In most of my MPI using applications, the
code is distributed as source and, in one,
input decks are compiled at run-time into
platform specific optimized binaries. As
such, my users have no expectation of
reusing an ancient binary on modern
systems and such capabilities within an
MPI-3 have no utility for me.
In my opinion, a 'new' MPI should be
able to live with some 'old' MPI side-by-
side on some system, e.g. in an MPI2.dll
and MPI3.dll
I prefer performance and flexibility over
backward compatibility.
I recompile anyway on an almost daily
basis
I recompile my MPI-based applications
quite frequently during developing them,
so it doesn't matter to me that MPI-3
breaks the run-time compatibility.

Seite 6 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Isn't that kind of a ridiculous constraint
to put on MPI developers? I am not an
MPI developer, but some features may
require more information from the user
environment or may factor a problem
differently, it is silly to sacrifice future
performance gains for the sake of saving
a recompile. If people don't have the
source or something, let them keeep their
old executables and old libraries. Or
rewrite it.
it does not matter for me if I have to
recompile
I think that If very usefull changes will be
there, then recompiling will not difficult.
I think this is too much a restriction for
MPI-3 implementors.
It is clear that one has to recompile to
include new features.
it is dangerous to even think about this
option, or do you want MPI to become a
dinosaur?
It is not hard to type make.
It is not important to me, I can recompile
them.
It is reasonable to expect application
developers
to recompile as new libraries become
available.
Its a big problem, that most MPI
implementations are not binary
compatible.
It should be possible for legacy MPI
programs and MPI-3 programs to
coexist, but they don't need to linkt ot the
same libraries
Its no problem to recompile my
application, but the API should be the
same so that there are no patches
necessary to recompile properly.
I want a clean MPI3 without the burden
of old mistakes.
I will have to link the new libraries to the
application
I would not expect being able to run or
even link against a library when the
major version number has changed. This
is the philosophy of version numbers
using major.minor.patch

I would not like to see any changes to the
already existing APIs. Please do not make
the mistake those dumb idiots of the HDF
group made when they moved from HDF4
-> HDF5 and, yet again, when they
moved from HDF5 version 1.6 to HDF5
version 1.8. I would vote, strongly, in
favor of backward compatibility. All MPI-
1.1 and MPI-2 APIs should work as is in
MPI-3.

All that said, it would be ridiculous to

Seite 7 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

expect legacy MPI applications to run
without recompiling
Jumping from major to major release is
not a big issue,
but it would be preferably to jump
between differennt MPI-3
implementations without recompiling.
I know that ABI's has been discussed
before, and propably has been voted as
not important, but for
a provider of commercial software like us
it would beneficial
Kann man das essen?
Major version changes normally require
recompilation.
Most ISVs probably would like this, but
this may make some changes difficult. So
I would have no problems breaking this
restriction. But do so only once.
MPI-3 should not be binary compatible
with previous versions of the standard.
No need to port obsolete routines into the
next generation
No objections to compile providing the
source code can remain unchanged.
no problem to recompile
not applicable, I am a developer
Not realistic...
not sure why without recompiling is in
quotes - is something different meant than
the obvious?
not to be forced to recompile is a matter
of convenience, but nothing essential at
all
One usually has to recompile with every
update of the MPI library on the systems
anyways...
only if just the implementation has
changed. usualla there'l some more
changes such like with the compilers . .
Performance portability is a hopeless
effort with MPI.
recomiling is fine, as long as the previous
API remains supported
Recompilation is a non-issue
Recompilation is no issue at all for any of
my applications, they are regulary
recompiled anyway.
Recompilation should not be a problem
especially if the new standard brings new
features.
One can always #ifdef MPI3 versus older
versions for preserving portability.
recompilation would be fine with me if it's
smooth.
- recompile is fine

Recompiling, even in case of very huge
programs, should be acceptable if it
needs to be done a single time.

Seite 8 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

each new simulation setup.

Recompiling is negligible compared to
runtime.
recompiling is no problem at all.
recompiling is no problem at all, and
freqently done anyway
Recompiling is not a problem.
Relinking will be required obviously.
Requiring recompile makes transition
between versions difficult, but could
probably live with it.
Since I use the programs on super
computers like juropa with special
architectures, I anyway recompile the
program with respect to the given super
computer; therefore it seems not to be a
problem to recompile shortly the
program.
Since our (academic use) code is
recompiled almost every time it is run,
this is not particularly relevant for us.
Source code available - recompilation is
not an issue
Support for old binary execution in my
opinion is not mandatory: if needed by
the evolution of the standard, we should
be able to change binary support.
Compatibility may still be provided for
old binary by means of library wrappers
or virtual execution.
That's ridiculous.
There is no binary compatibility between
different MPI2 implementations today,
anyway.
This assumes a shared library
environment. I generally don't run in an
environment that supports shared
libraries so it isn't an expectation at all.
this depends on a large part on the
implementation and the stability/quality
of the implementation
This is more complicated (more parts)
than just the mpi libs, so if there were an
'it depends' option i'd vote for it. ;) This is
one of the things that i'd sacrifice if the
benefits were compensating.
This is what library versioning is for. If
you have an MPI-2 application, link it
against MPI-2 libraries. If you have an
MPI-3 application, link it against MPI-3.
This of course depends on a lot of details
concerning the MPI3 implementation.
This of course presupposes that the
calling interfaces for the existing MPI
routines stay the same.
This would severely limit the nature of the
changes considered for MPI-3. Re-
compilation when moving from one major
version of a standard to the next is not
unreasonable.

Seite 9 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 8

Too large of a constraint.
Unless you use DLL code, it is very
difficult to change MPI without
recompiling. Nevertheless, DLL
deployment is a good practice :)
useful to run legacy exec for verification,
I would not expect to run as performant
w/o
recompilation
Usually, recompilation is NOT the
problem.
We already run multiple MPI
implementations, seems silly to contrain
future implementations with compatibility
with past libraries.
we don't mind currently because we ask
users to compile source codes for the
parallel version.
We have wrapper library for different
MPI implementation. They will surely
have to be recompiled.
We recompile applications when compiler
is updated for improved performance
because performance fairly important in
the area where MPI is used.
In the same way, we recompile
applications if MPI implementation is
updated.
What? Install MPI-3 and not even
recompile? Who DOES that???
Why upgrade then?
without recompiling an 'compatible
mode' (offering NOT all new, but all OLD
functionalities) would be nice ...
Would be fine if it was like that - but I
think it's nearly impossible.
Wow, the time spent implementing this
feature might best be used elsewhere,
don't you think?

Given the plethora of MPI
implementations and the manners in
which they have been implemented,
testing this feature would be a nightmare,
and ultimately failure oriented.

I expect to be able to upgrade to an MPI-3 implementation and only need to recompile my
legacy MPI applications *with no source code changes*.

Strongly Disagree 31

Disagree 76

Undecided 154

Show/Hide Open Answers

Seite 10 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Agree 394

Strongly Agree 341

Seite 11 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

additional functionality added to the new
standard should add state to the
standard, not change the function of what
is already there, to the extent humanly
possible.
again, no changes to the source code
would be convenient, but being forced to
modify the sources wouldn't be a show
stopper either
although this would be nice, it might limit
the possibilities to accomodate new
features in a user friendly way. I don't
mind source code changes, but they
should be e.g. straightforward regexp
replacements and nothing that requires a
lot of genuinely new coding
An 'upgrade paper' with concrete (!)
information on what has to be changed
would be brilliant.
Your documentation is usually very good,
but I'm not familiar with all the details
and concepts, so this could potentially
save me (and others) a lot of work.
Any change to the MPI API would
prevent a new version from becoming
widespread.
As long as it is easy to maintain MPI-2
and MPI-3 source compatibility with a
minimum effort.
As long as the legacy is not using some
function which may be depreciated, I do
agree with this.
As long as there is a clear guide to
necessary code changes, I don't mind
slight modifications to the code. What is
definitely a no-go is a change to the
interfaces which allows old code to be
compiled succesfully yet changes its
functionality.
As previous. Code changes are not a
problem.
despite my code is 3.3million lines, the
MPI-part has been isolated under
separate Classes/Modules ('jacket
routines') and changing that is not a
problem. More actually a preferred way!
backward compatibility is the reason for
some of the worst library interfaces in the
history of software development :)
Backward compatibility on basic routines
such as SendRecv or AllReduce should be
maintained.
Source changes at the level of derived
type construction differences between
MPI-1 and -2 would be OK
Backward compatibility should be
maintained (at least in the first versions)
Backwards compatibility would be quite
nice.
changes required in the source code
should be only minor.

Changing source code is not a problem.

Seite 12 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Changing the code is very undesirable. I
have to support multiple platforms, now I
need to support multiple MPI levels? The
best thing about MPI is that it's a
standard, not a basket of standards.
clean it up!
compatibility assumed.
Define legacy, please. Our actively
developed codes often break when
switching implementations. Usually we
don't have a problem running with the
Cray or SGI libraries but OpenMPI and
MVAPICH frequently cause us
headaches. I wonder too about
implementations of openib and
openfabrics. That stuff is out of my realm,
but some of our problems could be rooted
here instead of with MPI.
Depends on the complexity of the
changes, eg if I can use a script (e.g. a
name changes), and of course, how
extensively I use that which changes.
depends on the cost/benefit ratio
Depends on the specific features.
Compatibility is expected of course.
downward compatibilty is essential!
Exceptions might be acceptable for
seldom used parts of MPI-1/2
Except maybe some specific non-
commonly used MPI routines
For accessing the new features, it is
understandable to change the source
code
For a given MPI 1.2 / 2 ABI, an upgrade
to MPI-3 _must_ maintain backward
binary compatibility
For most parts, I expect that I don't have
to do source code changes, at least if I
don't get some great benefits from it, i.e,
not just because minor usability
improvements.
For our application (open source
scientific code), only simple changes in
the source code that could be performed
based on autotools detection and
preprocessor macros will be acceptable.
Otherwise, we would not be able to
migrate to MPI-3 until it is available in
all possible platforms our users might
have access to.
For the most part, yes. However, peta-
scale may require substantial
enhancements and modifications to truly
scale.
From a ScaLAPACK perspective, porting
the BLACS is a pain.
General backward compatibility is
important, even if for a special topic
exception can be considered.
Given my previous comment, it is
arguable that at least source-code

Seite 13 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

compatibility should be maintained.
However, minimal changes (e.g. to use a
backward compatible version of include
files, or to enable a compatible behavior
for MPI-3 functions) are quite
acceptable.
Given the installed base, a fully
backwards compatible mode should be
supported to avoid alienating or at least
seriously annoying users. It will help
speed adoption to have this compatibility
mode.
Hopefully, the majority of MPI
applications will need no or minimal
changes. There should be no problem to
modify or improve less-often used
features, if that increases useability.
I do not want to have to maintain two
versions of the code for hosts that support
MPI-2 or MPI-3.
I don't think it's such a big deal to break
one or two APIs when releasing a major
new version of a lib. When should one
clean up old cruft if not at such an
occasion. But the work required to port to
the new version should be kept
reasonable.
I expect some APIs to change, however,
most legacy MPI programs should run
without major source code changes
I expect source code changes to reflect
new possibilities in the MPI protocol.
If changes to the API are necessary to
provide a substantial increase in
performance, that's OK with me.
If changes to the interface make things
better with additional concurrency
control recompiling/restructuring my
code is fine.
If new features require architectural
changes, then they should be made. Users
can use MPI2 until they are ready to
change.
If performance benefits make it worth, so
be it.
If performance can be improved by small
changes to the API (e.g. additional
parameters like hints; or less parameters
by API consolidation) that's fine.
If source code changes can be avoided,
that would be nice. But I would not
hesitate changing the source code if this
brings performance/portability
advantages.
If the existing C++-bindings go, that's ok.
If there is no *stron* need, I expect
backward compatibility.

If there is the possibility to improve e.g.
MPI performance on multicore systems,
regardless if it would involve a major
redesign. Performance should overrule

Seite 14 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

downward compability in the field of
HPC.
However, the legacy interface should
remain unchanged.
(e.g. a new mpi3.h - header and an old
mpi.h - header)
I have to use MPI-1. Even MPI-2 would
make difficulties without code changes.
I hope the relevant changes in my source
code are as few as possible.
In my applications, 3rd party
communications libraries such as MPI
are only exposed to the application
through thin wrapper library. This has
been used many times successfully to
permit different libraries, vendor specific
extensions and what not to be used in my
applications without source code change
outside the wrapper implementation. As
such, it doesn't matter much to me
whether or not source code changes are
required to use an MPI-3
implementation; such changes would only
affect a tiny part of my code base.
I see no real reason to make old functions
obsolete.
'it depends', again.
I think, that changes in source code will
not be applicable for some users of MPI
applications and a problems may be here.
It is not a big issue for us, but mainly use
broadcast,send/receive and have hidden
everything below a thin layer so it will
not be a big problem if things changes
It is not optimal having to maintain
several versions of the same code or to
write custom MPI routine wrappers, until
MPI-3 is widely deployed
It's a nice-to-have, but hardly a show
stopper
it should be clear what changes there are
and how to 'quickly' fix issues (maybe
sub-optimally, but at least working)
It's preferable to leave existing code
unchanged. Small interface changes
however are acceptable, since it is still
possible to run old code with an MPI-2
implementation.
It would be nice, but it's not critical. The
key issue is if one needs to *rethink* the
parallelism in a legacy MPI application,
not just make simple text substitutions.
It would be nice though!
It would be nice to avoid source code
changes but I'm not sure if it's that
important. Source code management
tools make many types of changes like
this fairly easy to make.

It would be nice to see very basic
functionality (the big 6 - say init, finalize,
send, recv, allreduce, sendrecv) not

Seite 15 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

require code changes.
I use only basic functionality which
should stay the same apart from some
fringe changes (include files etc).
I would accept smaller local changes that
don't affect the communication structure
as a whole.
I would expect to have to make source
code changes to be able to take
advantage of new MPI3 capabilities.
Minimal source code changes would be
acceptable.
Minor code changes are also not a
problem.
Minor code modifications, or those
possible to handle semi-automatically
would be fine I think.
Most MPI implementation supports one
specific version of MPI standard. So we
have to update MPI standard if
computing system operator updates MPI
implementation. We don't want to modify
all application source code.
MPI-3 has to be backward compatible
and not change the semantics of any
existing MPI calls. Mess with that and
you may as well go home.
mpi3 implementations should include as
well mpi2 as mpi1.1/1.2
MPI3 is MPI, not a new stuff.
MPI-3 should not be API compatible with
previous versions of the standard.
MPI3 should not break any existing MPI2
API's or calling syntax. If the value of the
MPI constants need to change, that will
be reflected in the header files, and
addressed at compile time. Extensions to
existing API's are acceptable.
My code uses the mainstream MPI
constructs (including MPI-IO).
No clue.
No need to port obsolete routines into the
next generation
Not having to change the source is the
key point of having standards. Also, the
performance should at least not suffer
when switching to MPI3.
Obviously development costs shold be
minimal as possible. All the big
companies runing their cost saving
programs now, and new standarts could
become below budget.
Of course, if I have to tell configure to
use a different library for legacy MPI
applications, that is OK
One would expect that minor source code
changes are necessary for routins like
MPI_Init, but not for most of the message
passing subroutines.

Only new features should need source

Seite 16 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

code change.
(or at least, a little changes)
or least source code changes should be
trivial and small.
Or with minor modifications
Otherwise, if there would be an
automated conversion process for e.g.
(but not limited to=
C/C++/Fortran77/Fortran/9x, then
changes to the source code could be less
unattractive to the average MPI user.
Parallel computers have changed a lot
since the introduction of MPI-1. If MPI is
not allowed to follow these changes, it
will become obsolete.

It is already common to have software in
several versions installed on parallel
computers. Providing both MPI-2 and
MPI-3 libraries to choose from would
thus be straightforward.
Particularly important when relying on
3rd party libraries which would all need
to be updated.
Perhaps some sort of backward-
compatibility mechanisms can be devised
to make legacy applications compile
(think of a special header to be included
or macro to be defined before including
mpi.h) and link (think of a special MPI-2
library wrapping the MPI-3
implementation) against the MPI-2 API.
In this case, the MPI-3 would have to
freedom to advance in current limitations
(like the 2GB entries maximum)
Probably one compile 'directive' could
help to tell to MPI library what kind of
MPI 'profile' (MPI version) I want to be
used.
See above
See above comments.
See last question.
Seems unrealistic to have only one MPI
implementation for any large cluster.
Again we would run a legacy mpi for a
legacy app.
should we let legacy be the driving factor
of innovation?
Simple applications should run without
change. The changes would have to be for
greatly improved
scalability/performance.
Small adjustments would be OK if it is
necessary for a cleaner standard.
Smaller changes may be acceptable if
sufficient benefit may be reached. Strong
changes in dogma may be a problem.
Some many codes exist with minimal
support that source code changes pose
problems, particularly if this means a full
QA-cycle is required.

Seite 17 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

only if - the MPI-3 call preserve the same
MPI original names and the tasks
operated by MPI-3 are formally identical
to MPI

Source changes would be acceptable to
me if they provided better performance in
the long term, or if they produced other
tangible benefits to maintainability or
readability of the source code.
Source code changes are understandable
if we can get enough advantages from
MPI-3.
Source code changes make sense if the
result is better than before.
Source code compatibility is absolutely
essential for MPI applications to remain
sustainable over time. If I develop a
simulation in 2009, I want people to still
be able to verify and test the program as-
is in 2050.
Source level compatiblities would be
help.
Such features are called upward
compatibility?!
Surely a 'must'?
That would be nice.
That would be nice for a standard to
really be backwards compatible.
Although changes would probably be
minor, I guess...
The MPI-3 API should be backward
compatible to MPI-2 in order to allow
legacy code to continue running in
production. However, I welcome a
smaller _alternative_ API for new
development >150 methods is too much.
One possibility to have both is 'mpi2.h'
for the legacy API and 'mpi.h' for the new
one or vice versa.
the programme should be able to run
under mpi-3 as it did under mpi-2,
however I would be willing to change
parts of the source code to improve the
parallel performance.
There should be compatibility as f90
stands to f77

There should be no changes to existing
APIs that would break codes that have
used those existing APIs in conformance
with the existing standard. MPI-3 might
propose alternative APIs and
deprecate old ones, but changes should
only be forced for good reason (e.g. the
change from MPI_Address to
MPI_Get_Address deprecated the old 32-
bit routine in favour of the 64-bit routine,
but didn't force this with a change to the
MPI_Address routine for 32-bit
applications which didn't need the new
functionality. On the other hand, 64-bit
applications would typically break if they

Seite 18 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 9

didn't use the new routine, and in this
case it would have been reasonable to
force the change when compiling to run
64-bit [by not including the 32-bit routine
in the 64-bit library]).
This is badly worded. I actually think old
source should compile clean and work
with an MPI-3 library, but I don't mind
requiring source changes to access new
features of the MPI-3 library.

I guess I would expect any dramatic new
features to be either automatic (no source
code changes necessary) or optional (if
necessary source code changes are not
implemented, use the previous and less
efficient method.) I don't mind 'paying' for
better performance with a source code
change.
This would be a quite nice feature but it
shouldn't include keeping all deprecated
stuff with the new standard, so I'm willing
to account for source code changes as
long as there is a good documentation
and maybe a replacement list as a
starting point.
This would be nice ... as an advantage I
expect that it would help getting people to
switch to the new version - but at the
other hand it might prevent some more or
less 'radical' changes that might be
necessary.
As a tradeoff, maybe it is possible to
provide a compatibility library that
translates MPI-1/2 calls to MPI-3. This
way, old applications could still compile
unchanged or with little changes - but
probably with a performance impact.
This would be the easiest way for me. But
I do not expect that the API will never
change.
unless the use of new available functions i
would like keep my original source code
Upgrading with no source code changes
is imperative.
without recoding I assume an 'compatible
mode' (offering NOT all new, but all OLD
functionalities) ...
With time everyone get a better
understanding about message passing,
the MPI library developer included, so it
is normal to make small changes, in MPI
API or its semantic if it is for a good
reason, especially for a major release.
would be nice...

What ONE THING would you like to see added or improved in the MPI standard?

Seite 19 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

 Show/Hide Open Answers

Seite 20 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

A appropriated multi-thread safe semantics implemented as multi-thread manner for the
new thread model to be used in POSIX (the one proposed for the new version of C++)
ABI compatibility on any given platform. Would greatly simplify testing, comparisons, etc.
Ability to include the parameters of interconnection network.
Some basic debugging.
ability to work with other programming models such as openMP.
Active messages.
Active messages whose reception is signalled by user-registered callbacks. Callbacks
should be allowed to re-enter MPI progress engine to do more communication, possibly for
long periods.
add 'const' to arguments of the MPI function if the communication buffer is not modified in
the MPI function
adding the following features to one-sided communication:
- combining multiple transfers into a single MPI call / network transfer
- strided accesses
- collective communications
A decent C++ binding.
A dummy MPI module (Fortran). It is useful to be able to run teh code on a scalar
workstation for testing, and this may not have MPI installed. Yes, I can use the CPP to
comment out every MPI call in every source file, but it would be better if I could simply
change one line in a dummy module.
If I include this rather than module mpi, then I can compile the code with no further source
changes to run on a scalar machine (which may not have MPI). I have since written my
own, but it is very rough and ready. The dummy module provides all the MPI subroutines,
but they behave exactly as if there was only one node.

I can supply a better explanation and my template file if required. Email me at:
a.hart@ed.ac.uk
a function to return in a Cartesian grid the rank of the neighboring processes at corners
(as needed for Lattice Boltzmann applications), i.e. if a processor has choords (0,0), what
is the rank of the process is at (1,1)?
A global timestamp. Please contact me for how it
can be implemented (nmm1@cam.ac.uk).
All arguments to MPI calls should be declared as MPI specific entities (handles if you will)
so as to enable the use of such things as eight-byte count arguments without having to use
different api calls. This would help our fortran users that autopromote
variables (yes that's a horrible thing to do yet most of them do).
All arguments to MPI routines are declared with a type defined in an mpi header file so
that auto promoting FORTRAN or just increasing functionality by changing types (8 byte
counts for example) is managed by modifying one header file.
Allow read access to send buffer between MPI_ISEND and MPI_WAIT
ALL-To-ALL management
a memcpy operation, where the source and destination format can be specified using
mpi_datatypes
A more comprehensive C++ interface
An implementation of Master Last (Google for 'Minimizing Startup Costs for Performance-
Critical Threading' as presented in Rome, Italy) and/or processor affinity control for tasks,
perhaps a core-assignment vector or something like that, to improve performance.
a possibility to check if a node is failing and if yes to switching to another node, i.e. one
could run a job on 1026 proc and have 2 backup procs on on which to switch in case one
proc fails
A process waiting in MPI_recv should not consume 100% of a CPU (at least this happens
in openmpi and seems difficult to circumvent).
A real C++ interface with no pointers and some (basic) support of std containers.
A simple and fast possiblity to do RMA with minimal synchronisation requirements.
a simplified one-sided communication
A standard ABI, please.

A standardized and portable mechanism for inquiring topology-related information at

Seite 21 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

application level.
A strict limit of memory consumption in each MPI call. For example, the standard should
clearly specify that an in-place communication function cannot consume a memory space
propotional to the size of user's buffer.
asynch. communication, thread model
Asynchronous collective calls.
asynchronous collectives
Asynchronous collectives
Letting applications deal with process crashes (with MPI returning an error message and
adjusting the relevant communicators)
Asynchronus communication being truly effective
atomic get and accumulate operations for remote memory access
At present I do not see _any_ benefit to using one-sided communications as opposed to
MPI_Send/MPI_Recv. I do know of some codes that rather ambitiously decided to use
MPI_Put/MPI_Get instead of MPI_Send/MPI_Recv and were surprised to learn (from me)
that plain old MPI_Send/Recv works better.

I would also like the MPI-3 forum to take the lead in standardizing the functionality (APIs)
of parallel I/O packages like HDF5, netCDF and CGNS. If the HDF5, netCDF and CGNS
folks want to continue with their developments, then that's fine with me. But they could still,
perhaps, adhere to a common set of APIs.

One more thing: stay out of the threads model. Its a waste of time. Its unlikely that there
will ever be a meeting point between MPI and OpenMP. If the MPI-3 forum is still
interested in finding a via media between message passing and shared memory, they'd be
better off pursuing a library based approach (as opposed to a compiler based approach).
OpenMP is overly conservative w.r.t synchronization.

Now, I know that with multicore being the latest buzzword, there is considerable interest in
getting MPI to interoperate with threads in an 'efficient' manner. I am not sure this
approach is the right one. The purported advantages to the thread based approach is
outweighed by the problems of concurrency and ensuring that the resulting implementation
is deterministic.

Instead, I'd suggest concentrating your efforts on MPI+OpenCL and MPI+CUDA. Better
interoperability here would have higher dividends.

To those who berate MPI to be the assembly language of parallel programming my
response is: so what? After years of compiler design, we still resort to assembly level
programming to get better performance! Ha, Ha!! Those who know me will recognize this
comment!!!
A Waitany() function,
which waits for an arbitrary incoming MPI communication WITHOUT giving it an array
of all possible request-handles
better c++ integration
better compatibility with Fortran
Better control of affinity and handling of multi core.
Maybe it should be possible to have a standarized
way on how applications should run (i.e. on as few cpus as possible to use the cache, or as
spread as possible to get memory troughput on numa system)
better fault tolerance
better Fortran bindings
Better Fortran compatibility, in particular non-blocking MPI - although it is clear that the
Fortran standard itself sets strong limitations for this
better handing of one-sided communications
Better implementation of one-sided communication
(on all machines I use it is unexpectedly slow and sometimes unreliable).
Better integration with C++

Better integration with multithreading libraries and extensions like posix threads and
OpenMP. We have seen huge differences in the asynchronous communication routines

Seite 22 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

between different implementations. Thread safety is not enough
better interaction with shared memory paradigms like OpenMP
Better one-sided communications, I use that a lot.
Better process creation/destruction like PVM

Taking into account specialized hardware/network for all-to-all or broadcast
communications
better process management -> simpler batch use within queueing systems
Better semantics
Better specification of RMA behavior (and/or more flexible options, such as preference for
batch transfers or as-soon-as-possible).
Better specification of what constitutes one-sided communications. The MPI-2 standard is
somewhat vague on this matter and implementors(vendors) can actually avoid providing
'true' one-sided comms.
Better standardization of toolchain (mpirun not named or behaving different in different
implementations etc.)
better support for fault tolerance
Better support for fortran 95/2003
Better support for hybrid multi-processing/multi-threading (core pinning, shared cache
control).
Better support for inferring language structured types into MIP types (i.e. without
explicitly coding the same information twice)
Better support for one-side communication. I am using MPI_lock and MPI_unlock which
mean a process waits for all ongoing communication when calling MPI_unlock. It should
be possible to wait for a particular communication like with MPI_Isend and MPI_Irecv.
- better support for threads inside an MPI app
- MPI_lock(), MPI_unlock(), MPI_condvar, etc
- MPI_atomic_add(), etc
- machine queries:
- int MPI_get_info(int machine, int info_type);
where info_type can be sth like NUM_CORES, CPU_SPEED, NET_SPEED, etc
- one-way RPC support:
- MPI_rpc_one_way(dest, function_pointer, argument_array, etc)
- MPI library of standard algorithms:
- distributed queue, list, etc
- distributed termination alg
- load-balanced hash
- etc
(better) support/tools for debugging MPI applications
Binary compatibility between all MPI implementations
Binary compatibility between different MPI implementation
Binding for Java
can't think of anything off hand
C examples instead of (or inaddition to) Fortran examples
Clarification of how environment variables (should) get provided to each MPI process by
the launcher
clarify MPI_Abort()/MPI_Finalize()
Clear regulation WHEN and HOW OFTEN data is sent depending on (or rather regardless
of) in which order sends and receives/probes are issued.
Coexistence with Threadsystems for hybrid programming - hints passed down to the
process/thread schedulers that avoid competing for resources in a hybrid application and
facilitate pinning
(collective) communication routines between neighbours in virtual topologies (i.e. as
proposed in www.unixer.de/publications/img/hoefler-topocolls-mpi3.pdf)
collectives
Collectives for data exchange between neighbors in a topology (say, a 3D grid)
common ABI
Communicators that can overlap
Consistent support for both 32-bit and 64-bit integers throughout C and FORTRAN.

Seite 23 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

- correct and performant working parallel IO
CUDA interface.

as a minor detail, fortran integer size..
Currently, we're having problems cleaning up after the mpi job is finished. An official
cleanup script/exe would be nice.
Debugger
debugging
debugging possibilities
Derived datatypes are extremely difficult to code and debug. Perhaps add a collection of
commonly occurring predefined types -- e.g., block-cyclic array distributions.
Description of C++ support
Differentiation between node-internal processes and those on another node.
dynamic communication
dynamic creation of processes ?
Dynamic creation of processes
Dynamic MPI tasks and clean job exit when one of the MPI ranks fails.
Dynamic process management, especially the shutting down of processes.
Ease of code generation and debugging is strongly needed.
easier management of rankfiles
Easy spawning of new MPI processes from within an MPI application (e.g. as in PVM)
Easy to handle parallel IO.
effective one-sided communication
>>Efficient<< one-sided communication
Efficient one sided communication to replace pt2pt communication on Infiniband networks.
enhanced graphs
Enhanced support for running hybrid models (MPI + threads/OpenMP)
error handling
Error messages or better handling when large numbers
of messags are sent to one process.
f2003 binding, hybrid support
failover
fault tolerance
fault tolerance
Fault tolerance
Fault tolerance
Fault tolerance.
Fault Tolerance
Fault tolerance and the ability for an MPI application to adapt to faults and continue
running without have to do checkpoint/restart
fault tolerance including error detecting, process restarting, environment rebuilding and
configurable checkpointing
Fault Tolerance infrastructure
Fault Tolerance in large scale, say, over one thousand nodes.
Fault tolerance! MPI *MUST* be able to survive losing a process even if it means the # of
ranks has to decrease. We cannot rely on transparent checkpointing/migration from
predicted failures - we have to be able to unplug power to a node (simulate HARD failure)
and survive in some capacity.
Fault tolerance on node crash. MPI program must be alive when node crash and process
should migrate to another node. It seems for me very important because many thousands of
processors in modern clusters are available.
fault tolerance / resilience
Fault tolerant feature, more control in the spawned jobs (skill, status), more node control
(alive, crashed, busy)
fault tollerance

Fortran-77 forever!!!

Seite 24 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Fortran90 bindings
Fortran 90 interface for all MPI routines (Iknow it's a lot of interfaces...)
Fortran assumed-shape array support
Fortran Support
full 64-bit support (i.e. consistent use for INTEGER*8 in Fortran)
improved one-sided communication routines
Full bproc integration and maintenance.
Tighter opencl integration.
Full support of one-sided comms and MPI-IO by all MPI providers.
Function description should give a more detailed idea about internals
Get rid of MPI_Cancel!
Get rid of MPI::SEEK_* (you could strip out the rest of the C++ bindings while you're at
it ;-)
get rid of the 'busy wait' in MPI. Poll wait is bad, interrupt driven wait is good.
give control or hinting to the underlying protocol (example 'I will reuse this buffer later so
keep memory pinned')
Global arrays
Global counter for dynamical load balance
Good Fortran 90+ API
Good thread support
hardware-independent MPI-IO
Having more complex splitting policies of datasets
Heterogeneous support
higher performance of one-sided communication
Hints for mixed multithreading/multiprocessing paralleization (I dont't know how this
should look like).
homogeneous bandwidth between all processes of all communicators even if some of them
were instantiated later (adaptivity)
Hooks to support transparent fault tolerance (drain messages, coordinated checkpoint
indication).

Fault return codes (FT-MPI) are of less interest to me.
How about some sort of 'error tolerance', in the sense that there is some possibility to
recover from a communication problem - a feature which seems vital once we hit really
large numbers of processes.
I_Collectives
I'd like the one-sided communication to work more like SHMEM's one-sided
communication
I'd like to see an 'MPI Light' definition -- a minimal set of functions and a reduced
semantics (re: datatypes, tags, etc.) upon which most/all of the rest of MPI can be
implemented. This would be useful for running MPI on accelerators or embedded systems.
I'd like to see bindings for the Java language included. Authors/Designers of parallel Java
MPI libraries like MPJ Express (http://mpj-express.org) and mpiJava may also be involved
in the process.
I'd love to see a peruse-like interface being integrated to allow low-level tools to reliably
separate syncronisation time and data transfer time, especially in collective
communication.
I believe that this is an enabling facility for efficient performance tuning tools on tightly
coupled many-core many-CPU architectures.
I like the standard, and learn from it when I read it. Keep up with the 'Advice to...' and
'Rationale' sections.
Implementor support.

Yeah, that's not in the standard. But we still don't have access to everything in MPI-2...

Otherwise, merging GASnet as a replacement for the current remote memory bits.
Improved compatibility with storage interfaces (file I/O)
Improved debugging and error/exception handling. I am tired of looking at meaningless

Seite 25 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

messages telling me 'Oh sh*t, something went wrong!' Granted concurrency and other
parallel logic bugs will always remain the developer's problem but when something on the
MPI library (or ib library, etc.) side of the house goes pear shaped, it would be nice to be
able to figure out what it is that is acting up and how to fix it.
Improved fault tolerance interfaces
Improved Fortran bindings
Improved Fortran interfaces and integration of up-to-date Fortran standards.
improved interaction/functionality with OpenMP.
improved non-blocking communication
improved one-sided communication
improved support for multicore processors -- although maybe this is a hardware issue
more than an MPI issue
Improvement in dynamic process management
Improvements for Fortran which makes it easier to debug.
improve: MPI-IO
improve parallel I/O
improve the performance of one-sided communications
Imrpoved the support for Hybrid implementation OpenMP/MPI or Thread/MPI
include fault tolerance
In clusters made of multi-core nodes, ability to communicate processes in the same node
with shared memory and processes in different nodes via sockets.
In my experience MPI I/O has to be improved and is pretty much essential. Especially with
applications that run on tens of thousands of processors, there has to be a very good I/O
infrastructure. So I hope to see the biggest improvement for MPI 3 in I/O!
In my opinion the MPI standard misses an interface for platform specific information
which helps to tune the application behaviour. E.g. to find out interconnect information or
the cluster topology.
inquire/log functions for getting more insight what the MPI calls below the surface are
doing.
Eg. is RDMA used, or FIFO type messaging, buffer sizes used, number of copies
performed, ...
Integrated checkpointing! (with little or no source code changes - if possible)
Integration of multi-threading.
Inter communicator.
interface check by prototypes, e.g. modules in F95
Inter-node and intra-node threads.
Interoperability with OS (like waiting for both MPI and kernel events in
select/WaitForMultipleObject)
Introduce some more utils library to MPI standard.
It should be possible to dynamically link an MPI application such that different MPI
implementations can be used with the same binary. This is important in particular for OS
distributions that otherwise have to define a standard MPI implementation and link all
applications against this one, or provide different packages that are linked against
different MPI implementations. (e.g. gromacs-openmpi.deb, gromacs-mpich.deb,)
it would be nice to have asynchronous collective communications within the standard
I use mixed OpenMP and Mpi but sometimes does
not seem the optimal choice. In mpi_3 it would be nice
to define a group of mpi processes belonging to the
same node (using the fast memory access of the single node). I do not think there is this
feature in mpi right now. Next generation of processors have
several cores in the same node and it would be useful to make a different type of
communication.
E.g. suppose that you define an mpi process
and an mpi_subprocess (a subprocess
is done by all
the cores of the node of the machine), it would
be very easy to avoid OpenMP and make a more
efficient code I believe.

I use MPI mostly with Fortran. The FOrtran support of MPI is still basically F77 (mapping

Seite 26 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

of all MPI types to fortran integers, etc.) It would be VERY nice if there would be a
modernized interface which actually makes of F2003 (or at least, say F95) features.
I would like to be able to overlap computation and communication for global operations,
e.g. all-to-all or all-reduce. This is not very important for me, but it would be nice.
I would like to have a tool, which automatically tells me which MPI routine/method is best
suitable (the fastest) for the architecture I'm using it on, i.e. the architecture I will run my
job on.
I would like to see a well-defined standard for being resilient through hardware failures.
I would like to see the dynamic processes (e.g. spawn) removed from the standard.
Just some thoughts:
1. C++ templated reduction operators?
2. support for multi-threading?
3. Using mpi on co-processors?
Kill the existing RMA interface and replace it with something much smaller.
Larger message sizes
Latencies!
Let MPI calculate the average of a given variable (scalar or also array, if possible) over
all ranks, without the need to use MPI_Reduce together with pre-/user-defined operators.
Malleability of used resources
Maybe it already exists: something like 'ANYEXCEPTROOT' variable for targeting to
avoid for loops.
More compact way to define mpi data types
More convinient file i-o
more development of non-Cartesian virtual topology management; e.g., distinguishing
between the 'in' and 'out' neighbors of a given node.
more dynamic management of resources
More efficient memory usage per node (as in openmp)
More flexibility in selecting structure of array to be transmitter in Gather/Scatter routines.
more intuitive (simplified) file io
More language bindings
(more ore less) automatic handeling of non uniforme job communication - as it is e.g. the
case if one does mpi inter-node and openmp intra-node
More powerfull set of instructions for building MPI applications will save time of
developers and may have positive influence on performance of a MPI applications.
More robustness or stability (whatever you want to call it), mpi problems are a frequent
occurrence when porting a tool to a new platform or changing to a new release (of the
application, not mpi).
Moving away from MPI as a programming model and toward MPI as an execution model.
Programming model and execution model are two different things. Programmers should be
encouraged to write at a high level. Adding features to MPI for more elaborate control of
the hardware is the kind of thing you would want in an execution model. The evolution of
MPI should be to make it more suitable as a high-level compiler target which means
orthogonality among concepts, clear cost models. Interestingly this could allow MPI to
have more features as long as the orthogonality is respected.
mpdboot should work more reliable when using a large number of nodes. I often had to
execute mpdclean and try again.
MPI-2 one-sided operations
MPI_Comm_connect/accept/join/open_port/etc not depending on the MPI process
manager used and not depending on the MPI implementation used. This at the moment
does not allow the use of these functions on BG/Cray XT5/etc which is really annoying. An
improvement of the spawn/comm function set would be really great.
MPI_Connect/MPI_Accept to not require dodgy features that are unsupported by vendors
mpi_finialize statement is very much dependent on the system: if used it crashes on one
system, while if not used another system may crash. Please define a better standard!
MPI_GATHERW/SCATTERW
MPI_IBcast
MPI-IO

mpi-io and parallel file system integration. Support for many fortran compiler in one build,

Seite 27 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Scali MPI had this feature using weak symbols.
MPI_PUT and MPI_GET more easy to use
external32 format for MPIIO
asynchronous collective operation
possibility to send with a MPI_SEND directly a F95 type or a struct, without define a MPI
type
MPI standard should have backward compatibility, since it will save softwares without
upgrade or maintenance for long time.
Multicore support
multithreading
Nicer standards for C++ bindings, especially data types for C++ objects.
No name clashing with SEEK_SET, SEEK_END, and SEEK_CUR
non blocking all-to-all communication would be very useful
NON-BLOCKING COLLECTING OPERATIONS!
I REALLY MISS IT!
There are really a lot of application that will benefit from it including various Math
operations like FFT or Matrix factorization. There are a lot of BROADCAST's
ideologically. And now they are implemented only in a blocking way. It is a pain since I
can't force customers to use my MPI implementation...

I'm really really looking forward to it!
Non-blocking collective communication.
non blocking collective communications
Non-blocking collective communications.
non-blocking collective operations
Non-blocking collective operations.
non-blocking collective operations (e.g., MPI_IBcast)
non-blocking collectives
Non-blocking collectives
Non-blocking collectives?
Non-blocking collectives.
Nonblocking Collectives
Non-Blocking collectives
non-blocking con
Non-blocking reduce
Non-blocking & sparse collectives
Non-blocking versions of the specialized MPI routines like MPI_BARRIER and
MPI_BCAST to make it easier to implement communication time-outs (for debugging
parallel hangs).
Nothing in particular
NUMA awareness
Object passing, memory window access between mpi processes
Off the top of my head: RMA capability
One-sided comms done right - the mpi2 spec for them is very limitted.
one-sided communication
one-sided communication?
One sided communication.
Make it as easy as in SHMEM or UPC.
One-sided communications
One-sided must no longer suck.
one-sided operations
one-sided should be simpler to use, and the performance implications should be more
simpler (given a basic understanding of the level of system support for remote memory
access)
one-side (RMA) communication with an easier interface
one sides communication should have the same performance as classical mpi-1
communications

Seite 28 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

the receiver. This feature could be enabled by an environment variable, and determined
only once, at the time MPI_Init is called. It could be a accessed by the receiver in the
status variable, say via a call like MPI_Timestamp(status). It is intended for use by
profiling tools, to measure the time between when a message is sent and when it was
received. The timestamps need not require a coordinated time across ranks; it could be left
to the tool to make the necessary adjustments. Note that this feature would not require a
change to any library function prototype.

Optional relaxation of ordering constraints for implementations that do not require strict
MPI pair-wise ordering.
Parallel File I/O
parallel i/o built in.
Parallel I/O which non computer science people can easily implement into existing MPP
Fortran codes
(user should not have to understand the filesystem)
(no extra overhead infrastructure beyond call open, call write or read, call close)
Pattern matchin on receive statements similar to erlang
performance
Performance
please add benchmark programs to evaluate the performance of every feature/concept
(e.g., 1-sided communication)
Pleas improve fault tolerance and error handling.
This is necessary to run MPI Applications in Cluster environments.
Possibly, an interface with OpenMP
Predefined expectations of integration so all MPI child processes terminate if the spawning
process is killed or dies in an irregular fashion.
Profiling directly included in the standard, latency, bandwidth etc
profiling / latency measurements
Programmers error determination
python binding
Querying capabilities in the MPI implementation.
RDMA onesided calls
recommondation what functions to use in code that scales to 1000 s of cpus
Recover from failing nodes and/or unexpectedly dying processes..
Reduce the number of MPI functions. (Smaller API) But its to late. Having MPI-2 as a
subset of MPI-3 avoid that.
Reduce the proliferation of different functions.
Relaxed one-sided semantics in order to use one-sided to improve performance
reliability of network communication
Remove mpif.h build error in the Intel versions of MPICH mpif90
remove the one-sided thing which does not fit into MPI altogether
representation (for efficient use) of 'local' memory and accelerators/GPUs
resilience and fault tolerance
resiliency
Restrictions on passive-target one sided communication primitives should be removed. It
should potentially be possible to pin any memory area.
RMA but that's addressed
scaling for hybrid parallelized OpenMP/MPI applications, such that concurrent calls to
MPI from multiple-threads effciently overlap. If this requires certain restrictions, e.g. not
all threads are able to take to each other, so be it.
Scaling to very high number of cores (esp on Cray XT5/6 and BG/P)
Separate subroutines for sending integers, real, double precision, etc., instead of the
MPI_INTEGER, MPI_REAL, etc. Errors in the latter are not caught by the compiler.
Shared memory access operations.
Should be save to use in multithreaded programes and should be able to get an overlap
computation/communication for function calls like MPI_Isend (i.e. not waiting for an
MPI_Wait call to start the communication, although the receiving process already issued a
receive call meanwhile).

Seite 29 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

simpler
- Simpler calling sequence in basic MPI instructions
- Simplify synchronicity between send and receive
Simpler one-sided message passing.
Simplified one sided communicatoion
Some capacity for mapping collections of pointers between processes (e.g. the GtsSurface
data structure in the GNU Triangulated Surface library)
Some limits seem unnecessary in today's computers. For instance why have the message
tag only guarantee to 32k, why not use the whole integer? The 32k is impractical for any
large application today.
Some mechanism for fault tolerance
Some operations which help to make 'autonomic computing' on MPI applications
sorry I don't know.
space partitioning should be able to optimize for the properties of the interconnect
network.
Standard binary interface - i.e. no mpich vs. intel MPI vs. PMPI .h. My application can be
compiled with 'any' mpi.h, and would have to at most relink to the mpich vs. intel vs. pmpi
libraries and it will work.
standardised options for compilation and program runs
Standardization / improvement of dynamic process management (i.e. MPI_Spawn...)
Standardized and simplified launch process, especially with respect to intra-process
communicating applications (MIMD)
Standardized MPI header files.
Standarized PERUSE (available only on OpenMPI, IIRC)
stay slender
Structure
support for >2GB messages (in particular for MPI IO)
Support for accelerators (GPU, FPGA) with their own memory space. Being able to send
data from a GPU to CPU/GPU on a different node.
Support for Active Messages.
support for asynchronous messaging. My primary interest in MPI is using it as a transport
underlying the implementation of X10 (an asynchronous PGAS language).
support for intra-node parallelization on dedicated hardware components.
Support for migration. The ability to decide the migrate a job from one node to another.
Granted only part of the solution involved MPI.
Support for multiple different compilers simultaneously.

I often have the problem that different applications run only with specific compilers. This
currently requires to build MPI independently for each compiler suite and select the
appropriate MPI environment when starting the calculation. It would be much nicer if I
could just call the different compilers from within the *same* environment by, i. e.:

mpicc_gcc
mpicc_intel
mpicc_pgi
.
.
.
Support for querying system topology. Since we have a multiple level parallelization and
some levels require more communication than others, it would be nice to be able to
optimize the number of processors assigned to each level based on the intercomunication
topology.

So for example, in a cluster of SMP nodes, we could set the number of processors in the
lower level partition equal to the number of processors per node, so all communication in
that level would be carried inside a node.

This can be in part done using topologies, but it is not possible to adapt the partition of
data to the system. A function that return some kind of distance between processes would
be enough, I think.

Seite 30 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

supporting serialization of arbitrary objects)

Support for creating user-defined reduction operations with a user-provided context.

Some way to overcome the 2GB entries limitation.

Nonblocking, cancellable accept() and connect() functionalities.

support of more programming language syntaxes. for example java...
task initiation specification, clarification of dynamic process handling (ok, that is 2, but
they are related)
that would be good to have a stl like operations, like vector, list and set containers
The ability of a compiler to optimise the MPI-calls (compare with PGAS models). Now. in
our HPC applications all communication needs to be hand optimised and application
ported for maximal efficiency.
The ability to find out which processes are on the same node and/or host. Something along
the lines of the experimental topology enquiry functions in MPICH2.
The C++-Interface. Really. C++!
The concept of RMA in MPI2 have to be improved and simplified. Too many exceptions
and restrictions. Consider the example of shmem, simple, performant, clear.
The messages send compressed
The possibility of having non-blocking collective operations. Ie. operations that can be
called, and then later sync'ed
The robustness towrds hardware errors of the MPI standard is a deep requirement.
At a lower priority, the congestion management and time response is important.
The topology interface
thread parallization
Three things come to mind immediately:

- Strong guarantees of deterministic behavior (in reductions for example), as opposed to
the strong worded advice to implementers seen, for example, in MPI-1.1's standard.

- Standardized behavior for the interaction of multiple threads within an MPI process with
the MPI library.

- Portable support for thread-core and memory-thread affinity.
Tightly coupled functionalities with some kind of shared memory programming such as
OpenMP
To allow improving the efficiency of communication on shared memory architectures by
not forcing different MPI 'processes' to make an intermediate copy of each message in
shared memory pool, the standard should relax the requirement of independence of each
MPI 'process' so that is is possible for a standard confirming implementation, to allow, if
the user application accept, that the MPI 'processes' be in fact implemented as quite
independent thread (in addition to a private stack each thread would have its own heap
allocator, but global variables would be shared). This would allow MPI 'processes' to
share the same memory space on one node and copy message directly from send to receive
buffer for intra-node communication (e.g. without an intermediate copy in shared
memory).
To have a command allowing comparing the load of the processors (during the MPI run)
without loosing of the performance. This can help to optimize the processor load
dynamically.
tools for helping me to do dynamic map from process to cores
Topology discover
Topology is clumsy and confusing and usually badly implemented.
transparent access (read-only would already be nice) on buffer sizes.
true asynchronous I/O. mpi_file_iwrite does block in at least one implementation right
now.

We run a lot of Monte-Carlo applications and it would be nice to be able to add and
remove nodes, especially failed ones, without crashing MPI. We can work around a node
failure using data from the other nodes without having to take everything back to a

Seite 31 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 10

previous checkpoint.
What about processes migration from one node to another. Some kind of virtualization with
moving process with all it's data for rebalancing workload on the fly.. Sorry for too crazy
idea :)
Whatever is needed to enable efficient hybrid programming (MPI +
OpenMP/Pthreads/PGAS/CUDA/OpenCL)
Would be nice if the next generation of MPI has nice interface.

How much are each of the following sets of MPI functionality used in your MPI
applications?

Not
used

at
all

Trivially
used in

some
places

Used
moderately

in
conjunction

with other
MPI

functionality

Used
heavily in

conjunction
with other

MPI
functionality

Comprises
the

backbone
of my

application

Point-to-point
communications 27 57 159 339 214

Collective communications 19 50 190 388 151

Derived / complex datatypes 228 169 219 99 41

Communicators other than
MPI_COMM_WORLD 210 160 221 127 55

Graph or Cartesian process
topologies 363 139 146 62 42

Error handlers other than the
default
MPI_ERRORS_ARE_FATAL

466 168 80 27 11

Dynamic MPI processes
(spawn, connect/accept, join) 530 107 73 30 16

One-sided communication 376 154 158 39 19

Generalized requests 474 106 83 23 7

Parallel I/O 314 107 180 129 36

"PMPI" profiling interface 440 82 118 53 31

MPI_THREAD_MULTIPLE
(multiple threads
simultaneously using MPI)

474 77 92 65 36

Multiple threads, but only one
in MPI at a time 384 100 140 81 37

Show/Hide Open Answers

Seite 32 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

1. In theory, cartesian communicators would help but somebody already did it the hard
way. I also have an unusual problem of mapping a 4D (and higher) communication
problem to a 3D torus network.
2. The interface to one-sided communication interface is difficult to use.
3. My application has no threading.
1-sided, gen.req. - what for?
1. Unnecessary for our applications
2. Not gotten around using it
3) Too complicated, and most clusters either all 32 or all 64 and all big- or all little-
endian, so sizeof() will do. 4,5,6) Too advanced for our purpose. 7) Not used YET, but
thought of. 8-9) No idea what that is. 10) Only master does IO. 11) Used VampirTrace
once, never profiled since. 12) Only node master does MPI.
Academic use. Small tests, research, etc.
actually i do just use the mpi-1 methods
All 'Not used at all' features where not necessary for my needs so far
All questions marked in this way are interesting for me, but seems to me too complicated
for real implementation, with not enough expected benefits. Maybe, I should learn more
about these issues?
Application is tightly coupled and generally cannot proceed without blocking on data from
other processes, so the standard blocking point-to-point and collective communications
suffice.
Applications concern only pure high performance computing
Applications tended to in HPC user support don't use
apps not written by myself
A simple set of features to transfer data is sufficient in my application.
A thread-safe implementation is critical to me
(at the time) lack of MPI_THREAD_MULTIPLE functioning MPI implementations
Basicaly because I don't know it.
because a very basic set of MPI functionalities is enough for the applications I currently
write
Because I don't use them much or at all.
Because I have to support platforms that don't support them efficiently (or at all). It'd be
nice if grequests were file descriptors, so this would play well with other software...

Except the thread foo. Constraining MPI to one thread is natural to me.
Because I'm not very familiar with MPI.
Because it is sufficient to achieve the program functionality that I desire; because I havn't
used some of the functionalities.
because some codes needs do be entirely rewritten and too many people are involved in.
No time and/or money to do the upgrade.
because that's how they are used. Please explain how/why I should explain.
Beyond my scope of knowledge or the application state of development
By using the data types provided by MPI or the topology by default, it is enough for my
applications
Cartesian: more straightforward programmed oneself
Error handling: no tradition of using these, might be a good idea.
Generalized requests: leads to more convoluted code
Dynamic MPI processes: leads to more convoluted code, not necessarily appropriate for
app.
PMPI: profiling done with TAU, other tools
Collective Communcation: Because the slaves may use different strategy/application.
Derived/complex datatype: We have our own way to describe data, the MPI is too
restrictive and complex di use.
Graph or Cartesian process topologies: We don't have application that require such
process layout.
One-sided communication. We don't have application using it.
Multiple threads, but only one MPI: Our application run always in a Multithreaded way

Collectives : MPI_Init and MPI_Finalize
Communicators: With message tags, source, destination and message content groups seem

Seite 33 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

unecessary.
Topology: Not so useful in irregular nonuniform geometric distribution of data.
Error handlers: Just unaware of this. Will look into as this would be extremely useful.
Dynamic MPI processes: again, unaware of this should be interesting.
One-sided communication: Very important IF it works.
Parellel IO: still doesn't work well.
MPI_THREAD_MULTIPLE: Don't Do THAT (ever).
communicators, topologies, error handlers, PMPI: not neccessary in my application

dynamic processes, one-sided communication, generalized requests, parallel I/O, multiple
threads simultaneously using MPI: will be used in the future
complex code and theory behind
Concerning topologies, we think it is a very good feature. We however don't use it since it
is not supported by the MPI implementation we have. With our new cluster (Nehalem
Myrinet), we are thinking of permuting rank id to minimize communication by hand (e.g. by
using knowledge specific to our cluster).

Concerning error handler. In our applications, communication is so fundamental, a
communication error is like a memory error and therefore there would be no point in
trying to cope with it.

Concerning the one-sided communication, we think it is a good feature, however we don't
use it. This is maybe more for traditional reasons but we think that in what we are doing on
our hardware (we are not using Infiniband) it wouldn't bring any improvements.

Concerning the generalized requests, we are not sure what it is. We use only non blocking
communication and only blocking I/O. We therefore use only one type of request.

The profiling interface is a good thing. Maybe we should but we do not.
Currently I'm using mpirun to distribute
Posix-thread parallelized SMP jobs over different nodes in an 'embarrassingly parallel'
way.
datatypes, process topologies: not necessary
rest: too less knowledge or haven't thought about using it yet
Derived / complex datatypes - a lot of code and not efficient in my experience.
Groups - never needed.
Custom error handlers - I just check error codes, but this could be actually useful.
Dynamic processes - if I want mallability I go to higher leverl parallel libraries like ibis or
proactive.
Generalized requsts and one-sided communication - not sure what these are.
Parallel IO - never needed so far (using NFS and splitting files).
mpi-thread-multiple - been told this isn't efficient, I run 4 MPI processes on a quad node.
Derived / complex datatypes:
Most are floating point tensors, only few modules use compex numbers.

Communicators other than MPI_COMM_WORLD:
Only in few cases MPI_COMM_X/Y/ZBEAM is used.

Dynamic MPI processes:
The number of processes stays constant during a simulation run (no adaptive mech
refinement).

MPI_THREAD_MULTIPLE/Multiple threads:
There is only one thread running per MPI rank (which corresponds to a dedicated CPU
core).

Derived / complex datatypes: explicit buffering practically always faster.
Communicators other than MPI_COMM_WORLD: very useful in rare cases.
Graph or Cartesian process topologies: never used.
MPI_ERRORS_ARE_FATAL is a most practical default handler.
Dynamic MPI processes: most of the time, resources need to be claimed ahead of time
anyway (e.g. batch queuing system).
One-sided communication: would only be used if a lot simpler (Cray shmem-like).
Generalized requests: don't even know what these are.

Seite 34 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Parallel I/O: strong preference for Fortran/C I/O support.
MPI_THREAD_MULTIPLE: interesting feature, but anticipated benefits did not
materialize (true computation/communication overlap not faster)
Derived complex datatypes - I prefer contiguous sequences of bytes for efficiency reasons.

Communicators other than MPI_COMM_WORLD - seems to have been a major source of
problems for Global Arrays, with message tags, source, destination and message content
it's easy enough to live comfortably without communicator groups.

Graph/Cartesian process topologies - rarely - most of my design is for irregular structure
or things that even if on a regular grid would suffer too much load imbalance if distributed
that way.

Dynamic MPI processes, haven't used them yet but that sounds interesting - I could be
persuaded.

Generalize Requests - not sure what's being referred to here.

Parallel I/O - rarely works well if at all too much lock contention. One is frequently better
off having each proc control its own writing/ or managing the collection to select writer
procs oneself.

MPI_THREAD_MULTIPLE -why would you want to do that?

Multiple threads but only one in mpi at a time - already do that with programmer
discipline (unix fork and shmem)
Derived / complex datatypes: We tried to used them for non-contiguous memory access,
but implementations normally have a high overhead in memory and time for datatypes.

Error handlers other than the default MPI_ERRORS_ARE_FATAL: for the moment we
don't need them

Dynamic MPI processes (spawn, connect/accept, join): They are not supported in the
enviroment we run (suppercomputers).

For the other, we might be interested in using them. But we haven't had the resources
needed to implement them in our code.
Derived data types are a real bother to use. I prefer my own way of implementation.
Graph and Cartesian topologies add an extra layer of complexity while I have never seen I
help in performance.
No need (yet) to use dynamic MPI processes, generalized requests or
MPI_THREAD_MULTIPLE.
MPI I/O only seldomly needed.
I use better tools than PMPI
Derived data types are not required for my numerical simulations. Complex variables, for
example, are handled by two double variables.
Derived datatypes are only used for parallel IO,
MPI-Errors are not handled, therefore the handlers are not used at all.
Dynamic MPI processes would be nice, but unfortunately the application is not ready to
use it yet, nor is the common scheduling system.
One-sided communication might be helpful in some places, but it is not implemented in the
application.
The profiling interface is currently of no use for the application, though it might be useful
in conjunction with some more informations (a online evaluation library).
The application is MPI only, so there are no threads involved.

- Derived datatypes. My developers and I have seen enough bugs and inefficiencies in MPI
implementations in the wild (including in fundamental point-to-point operations like
blocking MPI_Send / MPI_Recv ... data corruption, incorrect handling of zero byte sends,
hanging when making too many communicators, improper handling of message tags,
broken heuristics for selecting all-to-all communications algorithms, broken command line
parsing, unreliable/untested MPI_Init for large jobs ...) that we barely trust basic MPI-1
functionality when encountering new platforms, much less more advanced MPI features.
Thus, for portability and reliability, we are forced to use the most stripped down basic

Seite 35 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

features of MPI and then do so only with great trepidation. In short, virtually the only MPI
data type used is MPI_CHAR.

- Graph or Catesian processes: See above. We MPI_Comm_dup to MPI_COMM_WORLD
to create a sandbox comm that our application will use and then use MPI_Comm_split to
create additional communicators for our application within this sandbox.

- Error handlers other than the default: See above.

- Dynamic MPI processes: Our applications do not need it.

- One-side communications: Rarely supported efficiently in the wild (which is not
surprising given state of hardware and OS support for the underlying operation on
commodity clusters).

- Generalized requested: See above.

- Parallel I/O: See above. (In practice, we have always have to write our own parallel I/O
due to deficiencies and bugs in all parallel file systems and 3rd party parallel I/O libraries
we have encountered.)

- PMPI profiling interface: See above.

- MPI_THREAD_MULTIPLE: See above. Would love to use it. But, as far as I can tell, the
MPI standard explicitly does not require MPI implementations to support this; our ability
to exploit this in the wild is minimal.
Derived data : we do our own packing
Communicators : used experimentally
Topologies : not bothered; assuming non-blocking switches
Dynamic mpi processes: not implemented in our code. Would be non-trivial.
One-sided comms: no use for that but then not familiar with it.
PMPI: might use that but not at the moment
threads: ,,
Developping an out-of-core library, we prefer write operations local to disks than Parallel
I/Os.
For the other features, there are plans to use them, not time.
Did not get around to do it ? ;)
Did not need them
Didn't know of their existence
Didn't need it, cause 90% of parallelization in m program is done by the FFT-routine
(FFTW)
Do not see any need for or (mostly) do not know the feature.
Don't know the functionality
don't know what Generalized requests means
don't know where to make use of it
Don't need any of those complicated features and/or don't know how I can benefit from
them
Don't need complex types, do N-to-N I/O.
Don't use process topologies as data is often unstructured and process count is arbitrary.

Would have used more MPI_THREAD_MULTIPLE coding but implementations didn't
support this when we started the project and hence were forced to used semaphores to
serialize MPI calls amongst threads. Still not complete support across all our target
platforms
Do't know
Due to the structure of the application, only one communicator is needed, the topology is
simple cartesian, number of processes and their jobs are known at start, currently no
profiling needed

Dynamic MPI processes -- not helpful for my applications, interact poorly with standard
queue systems. Could disappear completely and I wouldn't care.

Seite 36 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Error handlers -- I'm a bad and lazy programmer of dissolute practices. But even if I
weren't, any MPI error in my applications is generally non-recoverable.

Generalized Requests -- I like the idea, have yet to find a compelling reason to use it in my
applications.
Dynamic MPI processes - not used because this feature is hardly ever provided.
PMPI - not aware of this feature
MPI_THREAD_MULTIPLE - feature often not provided.
Dynamic MPI processes: We don't leave spare processors around for spawned processes,
and we have no need to join other applications as with connect/accept join etc.
Gerenalized requests: current blocking collectives fulfil our blocking collective needs.
PMPI profiling: we don't use this explicitly, as there are already many tools that use this
interface and that already provide the functionality for which we would wish to use the
interface.
MPI_THREAD_MULTIPLE: as the provision of this functionality can cause extra
overhead in the MPI library implementation, we don't use this for our hybrid
MPI/OpenMP codes.
Dynamic MPI threads not yet supported on our MPI implementation, if it was better
supported will use it more.

In stead of PMPI we use our own profiling tools. Nevertheless PMPI is useful if there is no
alternative.

Expect that MPI_THREADS_MULTIPLE will perform worse than multiple threads in one
MPI task, but have never test it.
Dynamic processes - Don't fit well with schedulers
One-sided - MPI2 standard is close to useless
Thread multiple - Don't trust implementations
Dynamic processes have been unnecessary, so far, and frequently have problems with
operating systems and scheduling practices. I use parallel HDF5 in preference too MPI
I/O directly. I may use more one-sided communication, but I expect to move more towards
UPC or OpenSHMEM.
* Dynamic processes - It's generally difficult for a library to pack the data as efficiently as
an informed user.
* Error Handlers - Until MPI implementations have better resiliency features, this isn't
particularly useful. I suspect it will be much more useful once implementations are more
fault-tollerant.
* Dynamic processes - I've never found a use for this.
* One-sided communication - In general, MPI implementations have not produced a one-
sided implementation that is performant enough to make this viable.
Dynamic processes: Not needed on dedicated cluster. One-sideds: Terrible semantics make
these useless. Threading: Single-threaded codes are simpler to write; convenient to use
MPI within the box.
Dynamic processes: not scalable. MPI_THREAD_MULTIPLE: too complex of a
programming model
Dynamic processes: not supported
Process topologies: rarely useful
Error handlers: applications are not fully robust
One sided: Inefficient implementations
Generalized requests: not sure what this is
THREAD_MULTIPLE: lower performance
dynamic processes would be nice to use, but have been discarded due to inhomogeneous
bandwidth between different communicators / processes spawned later.
either don't know what it means or I don't use them, eg Parallel I/O - I have my own :-)
Either I don't know what it means, or it isn't necessary for my application (high
performance computing on multi-core systems).
Either I have no need to use these features or I don't understand them well enough to use
them.
Either my application does not demand these features or I do not know how to use them or
my hardware does not support them (dynamic MPI processes).
Either no need or unawareness of that specific feature

Either too complex to use, or too bad performance-wise

Seite 37 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

either too complicated to be used or don't reflect applications needs
Either too hard to use or not applicable to our program
Encapsuled MPI communication with always the same scheme.
Error handlers and process topologies: not much value without better vendor support
(such as better process mapping)
error handling: would be nice to implement it but takes a bit of time.
parallel I/O: I need my processes to write single unique files and for my stuff I don't see the
point in parallel I/O
Error: No way to go on. Most Applications can't just reconnect to the other process in case
of an error.
dynamic: conflicts with batchsystem resource allocation.
Generalized: No need
PMPI: Should not be part of MPI.
Multiple threads: All threads are mostly symmetric to each other.
For Dynamic MPI processes, because it is not implemented by IBM.
For Graph or Cartesian process topologies, Error handlers other than the default and
'PMPI' profiling interface, because I do not need it
For most, not needed by the application. For MPI_THREAD_MULTIPLE, something to be
investigated further.
For one-sided, we use SHMEM or Co-Array Fortran instead of MPI. Derived datatypes
are not well-supported across all platforms of interest. For performance portability, we
have avoided its use. We have not had a need for dynamic MPI processes, generalized
requests, or MPI_THREAD_MULTIPLE (yet).
For self developed applications, I try to use only the simple communication functions to
simplify the MPI part.
From my user point of view: simply because it is not implemented.
functionality is not needed for the target application (DFT code)
- Functionality not needed
- No time yet to use it (e.g. one-sided-comm, parallel IO, profiling)
Functionality not required.
functionality unknown to me
Generalised requests-
Don't know enough about them to use them with confidence.
MPI_THREAD_MULTIPLE-
Previous experience shows that most of the codes perform no better using a single MPI
process per core.
Generally because not required.

We did try single-sided communication at one time, but found it was not portable, (some
MPIs didn't have it at the time) so moved back to point-to-point. So we tend to avoid
'cutting-edge' features.
Generally only use functionality when it's appropriate and use less common functionality
when it's necessary
good file system support lacking for mpi i/o, only recent additions of one-sided
communications, and too restrictive interpretation of dynamic process
Graph or Cartesian process topologies: For current scaling not important; Error
handlers: Errors are mostly fatal - and data to recover is written per-iteration numbered
file; DynamicMPI: Not used so far.

(Or I missed it, I have only contributed to a small part of the program)
Graph or Cartesian process topologies not applicable to the program;
MPI_THREAD_MULTIPLE is uncertain to work properly on all different available
machines (right now)

Graph or Cartesian topologies offer no advantages to this application -
MPI_COMM_SPLIT plus application-managed point-to-point are sufficient. Support for
dynamic MPI processes to date has not been widespread enough to make applications
depend on it; this has prevented some otherwise promising avenues of experimentation.
MPI one-sided communication is not used by this application (although it can be compiled
under SHMEM), because it is not thought likely to offer any performance benefits, and the
interface is more awkward than SHMEM's. Multiple threads have not been used in this

Seite 38 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

application to date, partly because the anticipated effort of trying out hybrid OpenMP/MPI
is estimated to be quite large, for little, or no, reward.
hard question. how to explain why I *don't* use something.
Has not been needed / useful yet.
Haven't had time yet to learn about these features or to check whether they would benefit
my applications.
Haven't needed these features much yet.
I am just a beginner in this topic.
I am not an expert in MPI and do not want to be: I aim to use the most standard basic
functions which will, I assume, be those which are most reliable and most highly optimized
for the cluster geometry.
I am not familial with Cartesian toplogy, I only have experiences with small size nodes
with direct connections.
I am not familiar with those.
I am unfamiliar with this.
I am usually just applying existing codes (i. e. hydrodynamics, radiation transport), and it
is just my impression that these features have not beeen used, although I am not an expert
on this.
I believe that keeping things simple gives you the best performance. The scientific problem
I solve only requires a reduced set of MPI functionality. However, I have also run code
that uses other communicators than MPI_COMM_WORLD and derived/complex data
types. These codes only scale to about 100 CPUs. My code scales to more than two
magnitudes higher numbers of processors.
I cannot answer these questions, the model is set up by a collegue and I just run it.
I debug with write statements
I don't understand dynamic processes
--------- need one-sided communication or the other things
I would like to do parallel I/O but don't do so yet
I define complex data types within my application and use only mpi send, receive,
broadcast and their derivatives. The applications has a non-variable processor space once
started.
I did not needed it
I did not need those features.
I didn't need any further error handles so far.
one-sided communications are only needed during initialisation process.
dynamic MPI processes are not needed. the programme is designed to run with a fixed
number of processes.
I do not have the need of any of these functionality in my application. For the last point, I
had to develop a MPI_THREAD_SINGLE version of the application to use any MPI
implementation.
I do not know most of the cammands.
I do not know this functionality. I will check if it solves my problem.
I do not need it
I do not need some of the above functions. Regarding derived/complex datatypes: I find it
easier to communicate them 'by hand' than using the MPI function.
I don't expect a strongly improved scaling of the problem using those stuff. Some of them
are also unknown for me.
I don't know
I don't know and don't need all MPI functionality.
I don't know most of the features I markes as 'Not used at all' and neither do my
colleagues, the code we are using is quite old and changes are done mainly when they
become immediately necessary.
I don't know of any place where they are used.
I don't need it; my favorite app (time explicit finite differencing on a grid) is boring, and I
don't use fancy stuff to implement it.
I don't need them
I don't need them.

Or, rather, I don't understand them well enough/at all to know that they could be used to

Seite 39 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

do what I am trying to do in a much neater way.
I don't need this fuctionality at this time, but I am very glad that it is implemented and I
may well use it in the future
I don't see how they help in my situation
I don't use one-sided communication because I don't find MPI-2's support rich enough to
warrant it; so I build my own one-sided communication routines using two-sided
communication.

For the other things, I have simply never needed/investigated them sufficiently to use them.
I found one sided communications were so restrictive as it was more straightforward to
redesign the algorithms.
Spawning also didn't really suite dedicated HPC platforms where resources are request
from outset. Hard to see how this could have a future.
I found the learning curve too steep, and my problems were solvable without resorting to
those functionalities.
I got no experience in MPI and just reused another developers code, so I only use the MPI
functions I'm familiar with.
I had no need for this functionality.
I had not enough time to learn how to use some of the more sophisticated MPI concepts.
I have already had a working solution using MPI and OpenMP, and I am reluctant in
changing dramatically the running system.
I have began to use MPI only a short time.
I have coarse grain parallelized program so its not necessary to use topologies or complex
data types and communication pattern. By the way as a 'beginner' in MPI programming its
relatively hard to learn such functionality.
I have not yet investigated process topologies, I think it isn't so useful on the clusters I use.
Error handling is not well specified in the MPI standard, it isn't clear that error handlers
are useful (but if they were specified, it could be extremely useful for robust applications).
My application doesn't use dynamic processes or one-sided communication, although they
look very useful for some tasks. Also when I developed this application, these facilities
were not reliably available. The advantages of MPI parallel I/O, versus handling I/O at
each process, is not clear to me. I use MPI_THREAD_MULTIPLE, except in (fortunately
nowdays) rare cases when this is not available. Multiple threads but only one in MPI at a
time is a terrible programming model!
I haven't explored yet that functionality
I'm a student :-) My projects aren't really large-scale.
I'm just speculating about what could be needed for my application if it were based on MPI
I'm not very familiar with these features.
In all cases for Not used at all is because there is no apparent need to use them. In some
cases, like complex datatypes or dynamic processes, that this reduces the portability of my
code (complex datatypes are often slower on some machines than others while dynamic
processes would not be supported on most machines I run on.)
I need not them for my implementations and applications.
i) no considerable speedup for my applications
ii) if necessary, I would rather use this features indirectly via the use of libraries, e.g. using
the Global Arrays Toolkit instead of dealing with the MPI one-sided communication
function calls myself.
In part lacking knowledge (error handlers, gen requests, threads), or features not
necessary (derived datatypes, communicators, one-sided comm, dynamic processes).
Intermittant errors in most applications are too hard to handle programmatically, so it's
usually not worthwhile to use Error handlers. Most errors indicate either programming
errors or other hard errors, that cannot be fixed automatically.

I woud love to use multiple threads, but there is not a single MPI-2 implementation out
there, that scales well in this mode hence I am stuck with a single thread communicating at
a time.
Internally the library uses point-to-point communication only. Other features are rarely
required. However, users are able to configure the library using some of these features.

I/O handled by hand
communications are wrapped in higher level C++ communication classes that handle

Seite 40 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

buffers, complex types etc...
I only created some introductionary exercises for the students, those had to be kept simple.
I primarily write IO libraries and support IO related activities. These features are not ones
that I have had a need to use based on my communication needs.
Is not needed or appicable in my applications.
I still stayed in MPI1 yet.
I think the functionalities are important, and I expect to use them at some point, but I've
been able to do everything I need to do with the other MPI functionalities.
It is not that I will never used that, is just that I haven't get to he point where I need those
features.
it's not necessary
It was not required.
I use cartesian topologies but my MPI does not make use of it. I don't need other error
handlers. Dynamic MPI processes, one-sided communication and
MPI_THREAD_MULTIPLE is only lousy supported (if at all) by many MPI
implementations but could be useful for me. Generalized requests would be helpful but are
slightly broken in the standard.
I use MPI as basis for a runtime system of another middleware, and these functionalities
just aren't needed there.
I've not the need of specific error handlers and dynamic MPI processes.
I will perhaps use parallel I/O in future versions of my application

Other sets: no need (e.g. instead of using 'PMPI' I use tools like scalasca)
I work on a middleware that couple multiple MPI applications, offering in a higher-level of
abstraction an Hierarchical SPMD-like programming model. The features markes as 'Not
used at all' are features that can be used by users, but within each independent MPI
applications, and 'Trivially used' are those that we provide bindings but don't have few or
any extra supporting code.
I would like to use more threading with interleaved MPI but ...
I would like to use other error handlers, but I don't have confidence in the error handling
of current implementations.
lack of time for improving my programs and use all te potential
legacy code did not make use of it
Legacy code, much of the implementation done
using the MPI-1 standard and very early (and not complete) MPI-2 features. No attempt
has been made at using the full potential of MPI-2
legacy, complexity or not necessary
mainly because it is not needed for my application, which is lattice QCD
multiple threads are not yet used, but are to be used in close future.
master-slave construct, master does all I/O, slaves run independent of each other,
communication only between master and slaves
Monte Carlo calculation: Normally copy input data to every node, every node does the
same job with different random numbers, and at the end the data is summed on one node
More than one communicator adds complexity. MPI2 functions like spawn has not yet been
included. Generalized requests same as above. Profiling rely on Scali MPI built in tools.
Using mpi from more than the master thread is complex and have so far been avoided as it
is perceived as unsafe (I know it is safe in most mpis).
Most applications are large scientific codes of legacy type.
Most features are not needed because just a fixed cubic data structure is distributed to the
MPI nodes.
Mostly because the huge code needs adapting and there is no time. :o) Parallel I/O for
example is a great idea, just not implemented yet.
Collective communications are actually avoided on purpose for the obvious idle-reason.
Mostly only basic MPI subset of functions used
most non used at all features are unnecessary in my context, exept :
- MPI_THREAD_MULTIPLE: would be convenient but is not well supported by many
implementations.
Most not needed or not supported in implementations. MPI_THREAD_MULTIPLE has
been badly implemented.

Seite 41 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

the MPI infrastructure. MPI I/O is just starting to be used in some codes (e.g Fluent and
one user code).

Most of the MPI functionality was not needed in order to get a good performance. It would
just make things more complicated without an obvious reason.
Most of the 'trivial' items above either don't fit in our job launch model or don't provide
important functionality for our uses.
MPI-2
MPI_COMM_WORLD: I don't need another one
Dynamic MPI processes: I'd like to use it but I don'T know how to use it.
Parallel I/O: One of the next things I will implement
MPI_COMM_WORLD sufficient
Dyn processes non necessary
No profiling performed
MPI support is not fully implemented yet. Will investigate some of the above features to
improve performance and robustness in the future.
MPI_THREAD_MULTIPLE is not used in our system because its implementation is not
solid enough, not because it is not required.
MPI_THREAD_MULTIPLE : unfortunately, not available in my MPI implementation
(Please, make it mandatory to support it!). Same for much of the others (PMPI, parallel
I/O, ecc). Make features mandatory, so library vendors all support them!
MPI_THREAD_MULTIPLE: waiting for a stable open source MPI implementation.

Complex data types: in my middleware, I choose to not expose this feature

Other error handlers: I intend to use this to implement a a fault-tolerant version of my
middleware.

PMPI: intend to use in future

Rest: conflict with my middleware programming model.
Much legacy code which has been ported without much expertise
My applications are SIMD or moderatley MIMD type so I don't need process spawning
(however, this will probably change).
In my applications either every process writes its small output to own file or only the
master process does so. Therefore, I didn't need MPI I/O so far.

I use TAU for profiling. Didn't try PMPI.

Never needed use non-default error handlers.
My applications don't have a need for most of the features that are marked unused. There
are a couple of noteworthy exceptions: Dynamic MPI processes are of interest to me, but
the last time I looked at them they were not usable on very many MPI implementations
running on machines we use. I _should_ be making use of communicators other than
MPI_COMM_WORLD, but had encountered performance bugs in the distant past and
haven't taken the time to retry this again with current implementations. I haven't yet tried
MPI_THREAD_MULTIPLE, but this may be end up being of interest to me in some cases
going forward.
my code does not need them for the time being, but I may consider such as 'Graph or
Cartesian process topologies', 'Dynamic MPI processes', 'Parallel I/O', 'Multiple threads'
later.
my code is not currently threaded, but I do plan to use MPI_THREAD_MULTIPLE if
possible when it is
My programs do not require them.
My research is not focused on multithreading.
I am not used to PMPI.
I have not used dynamic process management yet.
All these features, I hope to use in the future.
Never had a case that I could use it. Also, as a consultant helping to develop user's MPI
code, I need to keep things as simple as possible.
Never had the need

Seite 42 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

No complex datatypes because too complicated in Fortran to be useful for my application.
Cartesian topologies: not well suited for problem.
Error handlers: I should use them more, but other developments have precedence due to
deadline constraints.
Dynamic MPI processes: My programming model is MPI on top of OpenMP threads, this
is not well suited for the way I do this.
One sided comm.: I couldn't find a benefit so far in my app.
Generalized requests: Haven't looked into it.
PMPI: I use third party profiling software.
Mult threads, one MPI at a time: Not useful for my app
no experience / skill
No MPI IO because of parallel file system and external (non MPI) libraries. This allows
the use of non parallelized applications working on the resulting data platform
independently without the need of MPI Libraries. --> Post processing
no need
No need and no gain.
No needed in my applications
No need for certain features.
Computation time vs. development time.
no need for the application
No need for them
No need from the application.
No need/no sufficient knowledge of MPI
no need, no time to implement yet
no need or benefit is still unknown
No need to accomplish the aim
No real need demonstrated for those features.
No reason to use is most of our applications, though I don't have access to most of our
users applications, so they may be used more.
Not all implementations provide all features, not all are efficiently implemented, and some
don't fit to the application.
Not available on systems I use, or not needed by the application. But note that I am a tool
developer, so these are applications I use for testing, not ones that I develop myself.
not enough performance gain on my system or feature not needed or no performance info
available
Not essential for the applications.
not familiar or my app is not thread-safe
Not familiar with most of them;parallel I/O not needed as my application does not perform
heavy I/O;
threading not implemented in my application;
use TAU for profiling
Not familiar with the Graph or Cartesian process terminology
Dynamic MPI processes were no working well when tried but the desire to have them is
there.
Not familiar with them. Only a few functionality is actually needed.
Not familiar with these
not necessary
Not necessary
Not necessary, additional complications, implementation problems
not necessary for my application
not necessary, some not known
not necessary to use this option
not needed
Not needed

Not needed at this point:
-- Dynamic MPI processes
-- PMPI
-- MPI_THREAD_MULTIPLE

Seite 43 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Must ensure majority of MPI implementation support it:
- One-sided communication

Not needed, basic features/calls meet my needs.
Not needed by the application.
There is no need to try to use all
eleventeen thousand MPI-2 functions.
Not needed for my applications
not needed in my application
not needed in my application.. but usable sets..
Not needed in my applications
not needed in the code
not needed / not yet tested
Not needed or too damn complicated or not performance portable.
not needed up to now
Not needed up to now (will probably change soon, at least for parallel I/O). Special
features often have bugs in implementation (even MPI_Probe is not robust in most
implementations), thus one never can trust really special features.
not required by the respective implementations
Not required or not suitable for my application.
Not supported by the currently developed library. This might change in the future.
- Not supported by the System
- derived types not performing better than copying itself
-performance of MPI_THREAD_MULTIPLE not there yet
'Not used at all', because problem does not need this kind of communication
Not used at all: These features are currently not needed in our application
not used to the functionality of these procedures
Not used, when teaching only a subset of the standard is chosen. This thus reflects my
(students') prevalent use of MPI.
not useful for what I am doing or too complex to impliment
not worth thinking about hybrid mode
Not (yet) necessary for our application (highly parallel CFD using DG discretisation)
No used at all because this funtionality are disabled in many computer that i use.
One-sided and multi-threading capability would be used more frequently if their
performance were better. (As for multi-threading, I just says MPI/OpenMP hybrid
implemantation is not so efficient that I dare to do making my code heavily complicated.)
As for other functionalities, simply I don't need them so far.
One sided barely used because they suck - would like to use more
One sided comms are not fully support by all MPI implementations and thus fully portable
code can't be generated using them.

Not familiar with dynamic MPI processors so haven't used them.
one-sided comm: the concepts/api are not the ones I'd prefer
dynamic processes: not sure about the usefulness in an environment where jobs are
submitted to a batch system where the job gets a fixed number of cpus
One-sided communication is badly design and cannot be implemented well.
Multithreading in MPI is not implemented well and most of the time turned off in
production builds.
I don't use profiling tools so I don't use PMPI that much.
One sided communications are a pain to use in MPI - so I don't.
One-sided communications are used heavily, but MPI-2 one-sided sematics are not
sufficient so other libraries are used for the one-sided communications (ARMCI, LAPI,
etc).

one-sided: difficult to use vs,. SHMEM/UPC
derived: too much hassle and benefits unclear
Dynamic spawn: not supported on many machines I have run -- or messes up parallel
scheduler

Seite 44 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Generalized: hmmm.. don't know what they are.
One-sided I/O potentially useful but not supported on current HPC comms hardware. (Eg
cray)
Same with dynamic processes. Potentially very useful but not usable in any current HPC
batch environment.
One sided routines perform poorly.
Creating dynamic MPI processes does not fit into the way people use our cluster. Hybrid
programming doesn't help performance.
Only check that implementation standard-confirm. We have no many requests from users to
fix bugs
Our applications heavily relies on MPI_ISEND and MPI_IRECV calls, all is asynchronous
and we manage a cyclic buffer for send buffers. We are used to work with
subcommunicators but not groups. We may be interested in the use of
MPI_THREAD_MULTIPLE in the future.
As the number of MPI processes is fixed by the user of our library, we do not spawn new
processes. One-sided communications could be interesting for a process to know the state
of other processes (current memory usage, amount of work ready to be done) but at the
moment we still use MPI_ISEND / MPI_IRECV for that purpose too, with a dedicated
communicator. I am not familiar with generalized requests.
Our codes from a computer science point of view are simple: rectangular domains, fftw,
and I/O operations from time to time. Nevertheless the codes are eager resource
consuming. We just need to compute massively in each core and do transposition where
communications take place (over 30-50% of the time code) (and we use indeed a
MPI_send_receive... working better than the MPI_alltoall, at least in Mare Nostrum). So
we just use few MPI calls.
Our data topology is simple enough to keep messages trivial. At the same time we need to
transpose all our data between nodes, this means that we need to communicate between
nodes (not cores) to keep message sizes above the latency threshold.
Parallel I/O - not portable
'PMPI' profiling interface - done with timings
MPI_THREAD_MULTIPLE - either MPI or OpenMP
parallel IO performance is horribly bad.

don't really know what to do with the other sorts of things, or simply don't need them.
Performance is the reason we use MPI. Eg derived types can add clarity, ease
programming requirements, but if doesn't provide a performance benefit, in a portable
manner, we don't use it.
point-to-point: for developping/debugging only
parallel I/O: hardly needed

rest (= 'not used at all'): too less knowledge
Poor support in vendor MPI
porting costs
probably, because U use an old application based on MPI 1
Process topologies have not really caught on at all; to be useful, they'd need to be
dynaimcally adaptable and extend to hybrid applications.

Since there is no consensus across implementations on which errors are recoverable, most
apps assume that an MPI error kills the whole application. Generalized requests are a
solution in search of a problem.
Regarding Cartesian and graph topologies, my end-user applications are related to solving
PDE's on unstructured grids. The Cartesian topologies have no application; the graph
topologies seems to have little use beyond storing neighbor info and it is unclear that MPI
implementations take any advantage of them.

Regarding RMA features, they have too complex semantics, and benefits are unclear on
distributed memory architectures (which are the main target of my applications).

Regarding generalized requests, the lack of MPI-provided mechanisms to make progress
are a major drawback. I do have thread support in my everyday working platforms, but that
is not enough to motivate the usage of Grequest's in general scenarios.

Seite 45 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Regarding parallel I/O, it has not been a strong requirement for my applications, though
I'm not actually using them because of my laziness to update the scarce places where C
stdlib I/O is performed.
Regular data structures can be used directly in MPI routines.

I/O through other API layers.
Same answer in all cases: some of the functionality of MPI is not (yed needed) in my code.
Communicators other than MPI_COMM_WORLD, Cartesian topologies and parallel I/O
will be used in the code within the next 1-2 years, however.
sending datatypes is a little bit hard to do it
error handlers i used them when i had made a fault tolerance application
Generalized requests - first time i heard about them
'PMPI' profiling interface - i used other profilers
simply not required
So far, they were not needed, partly because there were simple equivalent MPI-1
constructions.
However, one or the other of these features may be used in the future, in particular
multiple threads, when entering the era of hybrid programming.
so far we had no need for such functionality
Some are not needed in my application, others are not known enough to see them as helpful
Some features not known, some not needed
Some of the features appear interesting for large applications designed by large
professional teams, though certainly things like MPI-I/O and hybrid
OpenMP/CUDA/OpenCL/etc. stuff is becoming more interesting for smaller apps as well.
One-sided comms might be useful when integrated into the language (e.g. PGAS), but in
MPI itself it seems useless except maybe for implementing PGAS runtimes.
some of the functionality is not needed for the code, others is 'too new (i.e. not in MPI 1.1)',
others we would like to adopt, but have had no time to implement yet (e.g. parallel IO)
Something I do not know, something is not useful for me.
spawn is difficult on micro-kernel machines that are batch based
derived datatypes are too non-performing
most mpi implementations don't handle other errors well
one-sided operations are too cumbersome in their current format
other I/O librarires are better
most mpi implementations are not portable with MPI_THREAD_MULTIPLE
still using MPI 1
Support for MPI I/O seems spotty, we don't use it. I wasn't aware MPI was thread safe, so
we don't use multiples. I never saw the win with one-sided communications since you can't
be sure something has happened til you check (which is two sided). The graph or cartesian
process topologies I usually stick in my code not inside MPI.

The rest I can only say that I don't use them in my MPI code, note that none of our clusters
use them.
teaching
that's just my finding in the benchmark codes I have seen so far.
The bulk of the communication used in my codes is collective exchanging floating point
arrays. I have used one-sided communication, but the performance was worse than a self-
implemented version of it based on standard point-to-point and collective communication. I
think PMPI is used by scalasca, which I use to profile my codes.
The Code is a CFD code, MPI is only for exchange of boundary values (ghost cells) used.
It's a very simple implementation. Actually we are combining OpenMP and MPI.
The code is a particle code that parallelised embarisngly well. As much as possible of the
communication is done in postprocessing. On most of the runs we could work without MPI
at all.
The code I work with is quite old and was developed when most of these functionalities
were not really reliable - and now it's too time-consuming to change this.
The code uses subdomain decomposition parallelism with a cartesian topology, which
requires only a subset of MPI functionality (covered by MPI-1 already)

The most important of the 'not used at all' are:
1) Dynamic MPI processes

Seite 46 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

2) One-sided communication

#1 - Is just not implemented broadly enough.
#2 - One-sided messaging in MPI2 was very poorly designed and doomed from the start.
This entire area needs to be reworked.
The need did not arise
The primitives were not necessary in the application
The problem is really trivially parallel.
The problems that I am concerned with are not well parallelizable and scale well only on a
limited number of processes. The key features of MPI mostly are sufficient.
There is simply no need for it.
There's no error handling in our code. None at all.

There was no need to use these features.
These are not need by my application, which can be implemented using a very small subset
of the MPI standard. Dynamic processes do not have good support in my batch system.
These calls are not needed.
These features are not known to the developers well enough and not implemented.
the usage was not necessary
This roughly corresponds to the usages in the various MPI test suites that are available,
which is the primary 'application' that I run.
Those were simply not needed in my application.
Threading is evil.
- Thread performance for current MPI implementations is really bad as far as I can tell,
especially when trying to overlap communication with communication over a different
network segment.
- Parallel I/O is trivial to implement without MPI in our application.
- Dynamic MPI processes provide only limited flexibility and are not supported by many
production infrastructures (they tend to use fixed-size reservation mechanisms).
Threads: I do not see the advantage of hybrid MPI/OpenMP programming. It buys a one-
time performance advantage at the cost of mixing application code with machine
architecture details. I'd rather write architecture-agnostic applications and require MPI
(automatically or with hints from the user at start-up) to optimize the communication
depending on the process mapping.
to miminaze total computing time.
Too complex, to much deadlocks possibilities
too complicated: one-sided comm., parallel I/O
currently not required: topologies, error handlers, dynamic processes, generalized
requests
Topologies are archaic and a poor match to modern hardware. Dynamic processes are not
much used in my kind of HPC. One-sided communication is not as useful as it appears. I
have never needed generalized requests, nor parallel I/O, but can see uses. And most
current
threading specifications (e.g. POSIX) are a reliability and
performance disaster area.
Topologies: I have no experience.
Error handlers: If there are errors, then the application will need to abort anyway.
dynamic processes: Batch queue handlers do not allow dynamic allocation.
One-sided communication: Was not available everywhere when our application was
developed. I plan to use this (or some other kind of RDMI) in the future.
Parallel I/O: Planning to use this, likely via an existing library such as pHDF5 or ADIOA
PMPI: We use external tools that use this ABI, but we don't have PMPI calls in our
application.
multiple threads: I think this is not available in MPI implementations on the HPC systems
we are using.
Tried some, but didn't find a performance benefit, and sometimes found a degradation (eg
derived types). With performance, this functionality would be valuable.
Typically don't like this functionality so don't use it when I don't have to.
typically, most of our testing is done with traditional non mpi2 constructs.
unknown features for me

Seite 47 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

implementations.

use of MPI-1 standard only, only arrays (but no data structures) are send by MPI
Use other MPI profilers
using MPI v1.2 & fortran77
- usually build my own simple packet structured on top of MPI so I only send/recv
MPI_BYTE and do casts
- the infiniband communication layer is reliable (no err detection required)
- MPI_COMM_WORLD suffices: no need for virtual topologies, usually impossible to
make use of them
- my stuff usually uses 1 MPI process per machine and use multi-threading then internally
very coarse grained parallelization: nodes compute independently for some hours, then
exchange about 5 GB data via MPI_REDUCE/MPI_BCAST, then compute again for some
hours, etc.
Was bedeuten denn die ganzen Abkürzungen?
We are still at the development stage of the physical model we would like to use. So, no
sophisticated MPI function is considered.
We are using an older code where this functionality is not present. We wrote our own posix
shared memory code to do one-sided communication. As we get newer machines with many
cores, we might yank out our code and use mpi.
We are using MPI as a portable abstraction layer above infiniband etc so higher-level
functionality is not needed. Error handlers and dynamic processes we would like to use in
future.
We don't do much I/O. Also, on the HPC platforms we use (BlueGene most notably)
threads are an issue. Further, in parallel linear algebra there is not much need for very
complex datatypes.
We don't use MPI for error handling at all.
I don't even know the dynamic process interface.
We don't use threading -- multiple processes on one CPU are treated like processes on
different CPUs (just that behind the scene they communicate faster)
We have had not had the need, because the execution model is very simple :)
We have hybrid OpenMP/MPI codes. For MPI-IO
we partly had to rewrite the functionality, because the implementations available for MPI-
IO are damn bad.
We have not come to the point of incorporating those features (such as parallel I/O) yet.
Well, they are not needed. Still happy with the basics.
We mainly develop an instrumentation library that intercepts the MPI calls. Although we
have developed simple MPI applications. These applications do not need specific error
handlers, One-sided communications, generalized requests because we found clearer
solutions using the rest of the MPI calls.

Regarding the MPI_THREAD_MULTIPLE, our applications do not call MPI where
threads are spawn, so there's no need to.

Finally, the Dynamic MPI processes is not supported by our environment (batch system
using Slurm/Moab)
We never saw the need for a communicator other than MPI_COMM_WORLD.
We pick out those functions we think are the most useful for our application without
spending too much time on implementation details. We usually start from a serial program
which already works and modify it in order to run it in parallel.
We run monte-carlo codes, so we just scatter the problem, and after a large amount of
time, gather the results.
We used to use process spawning in PVM but the implementation in MPI is too
cumbersome. Many MPI implementations still do not support mutli-theaded applications so
it not feasable to become dependent on them.
We use only MPI 1 features
We use the subset that provides the most useful functionality and we refrain from the more
exotic ones (in our opinion) like one-sided and thread-multiple.
Whether they are not implemented yet (Parallel I/O) or there is no need so far or nor idea
how to improve the code with this mechanisms

Seite 48 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 11

Question 12

Question 13

Would use dynamic spawning if could be used in conjunction with fault tolerance (maybe
I'd spawn off a replacement process). Never had the need for one-sided. Datatypes are OK
but a bit clunky for our scientists sometimes... we do use them though. Do any
implementations allow for multiple threading? We might use it if it performed well... we
really want a separate MPI process that makes process. A lot of our scientists (LANL) get
into iSend/iRecv and then find out no progress is made outside of a Wait and they feel
cheated.
yet not used, because only standard is 1.0

Which of the following do any of your MPI applications use?(Select all that apply)

Threads 336

OpenMP 451

Shmem 117

Global Arrays 107

Co-processors / accelerators 132

PGAS languages 45

I don't know 82

Other 18

Show/Hide Open Answers

ARMCI
BSP
Cell-'threads'
Cilk
computation and communication overlay
CUDA
DDI
I think no one of the above
Math libs (MKL) that themselves use
threading
mmap for trivial in-node shared memory
mpich2
none
none of the above
osiris
TBB
Was ist MPI? Max Planck Institut?

When answering the following question, please remember that that C++ MPI applications
can use the C++ and/or C MPI bindings. Do you have any MPI applications that are both
written in C++ and use the MPI C++ bindings?

No 551

Yes 165

I don't know 107

The following question refers to the ability to use extremely large count values with MPI
operations such as sending/receiving, file actions, and one-sided operations. It makes the

Seite 49 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

assumption that the largest value that a signed C "int" and a default Fortran INTEGER can
represent is 2 billion. My MPI application would benefit from being able to reference more
than 2 billion items of data in a single MPI function invocation.

Strongly Disagree 53

Disagree 210

Undecided 375

Agree 102

Strongly Agree 62

Show/Hide Open Answers

Seite 50 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

2^31 has caused so many problems
elsewhere, it will be a problem here at
some point.
> 31 bit counts would be nice for the
future, I don't really need it today.
Especially for file operations I'm
convinced I will need it someday.
64-bit IO should be supported by default.
With an OpenMP/MPI combo, having >=
2 GB per MPI process is more and more
common.
All count/index/offset vars should be 64
bit quantities for consistency. Even now,
we have problems with > 1 billion
cells/particles/items/... . We might have
machines that a single process will be
operating on > 1 billion things. Seems to
make sense to make the change now.
A lot of functionality nowadays is
working with large arrays that can be
indexed only using 64-bit integer. It is a
concern regarding Matrix operations -
we do use Integer64 in Intel MKL.
Although I've not required this in my own
home-made applications, I'm the author
of MPI bindings for Python and third-
party users had certainly mailed me
about this (more specifically, how to
workaround the limitation)
Any limit is sooner or later a problem.
A pathological which can be solved by
the apps by blocking up the transfer,
Arrays in my application are easily larger
than 2 billion items and now must be split
up for transfer (or a suitable datatype
created).
As node memories get larger, we're
tending towards sending more data per
call. We're not yet at 2 billion but want to
keep that option open.
assuming 32 bits is restrictive for codes
that are scaling to 200K processors
At the moment we use a grid with roughly
3 million data points. Sometimes the
arrays have another dimension (factor
10-20 more data). At the moment we are
fine, but if computing power is further
increasing, the grid size will also be
increased. So there could be the need in
the future to send such big arrays around.
big arrays of simple data types
big jobs. big memory. big numbres.
By sending such a large arrays you
basically mean streaming? If so, it would
be useful, I'm not aware of streaming in
MPI.
Checkpointing and IO should definitely
use offsets beyond 2 billion.

Computing power increases, so do
meshes and memory used. At one point,
you may need to send more than 2GB in

Seite 51 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

one shot.
Counting elements on systems with
100000 cores may be limited due to the
32bit data type 'int'. Therefore this
feature has to be manually programmed.
Currently I do not need this capability.
Customer requests
data sets get more and more frequently
larger than 2^31
Don't know of a need, but also won't be
happy if I suddenly do and it becomes a
limitation :)
especially in file actions and say global
operations 2GB i.e. 'just' 256 million
double words are at close distance in the
future.
So important to have.
file sizes > 2 GB require pointers this size
no ?
For future use this would be good.
For reading large chunks of data.
For startup routines it is sometimes
necessary to send large amounts of data
and it is easier to not have to do a
buffered sending.
Given the growth of high performance
interconnects, processor power, cost of
RAM, cost of storage, and problem
complexity, applications will only need to
send more data between ranks in the
future.
Huge arrays is more and more
commonplace and suddenly you find
yourself in a position where the vector to
be transferred is 1 TB or more.
huge input data
I am working with large data sets.
I could see some value in this. Current
implementations aside, the ability to track
one-sides ops in these ranges could be
quite useful in future implementations.
I don't have to break an array in small
sub arrays
If I understand this correctly, it means I
could do SendRecv with blocks larger
than 2GB, which in the future (comp
resources allowing) I will need to do.
... if that helps simulating with larger
meshes ... going to smaller number of
processing units?
I have no need for this, but in the lifetime
of the MPI-3 standard this may become
not unusual. Already individual nodes
often have >> 2GB RAM.
I marked 'Undecided', I mean, to be
future proof, maybe I'll have huge arrays
in the far future...

I'm doing numerical simulations. Though
not very likely, it can happen that I have
to communicate more than 2GB at a time.

Seite 52 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

It would be a hassle if I had to break it up
in chunks of 2GB. If I had to, I would just
create wrapper calls around library
functions, which do the breaking up for
me. Since I'm probably not the only one
who needs those wrappers, it would be
best for the library to provide them, or
just make the basic MPI functions work
right in that case.
increasing use of 8-byte integers
throughout application space, making it
awkward to use smaller integers for MPI
communications
in FORTRAN, INTEGER*8 should be
reducable via MPI
In my MPI application I do not send so
large data sets.
In my software, the data structures which
are handled have now well above 2G
data items. If I am to keep data
distribution arrays consistent with MPI
function calls, the latter must accept int's
which are larger than 32 bits. A 64-bit
MPI interface would be just fine to
prevent me from maintaining two sets of
arrays.
In some places (e.g. message tags) a
larger value is desirable. On the other
hand: We link to a lot of legacy libraries.
Changing the size of an int will break a
lot of code!
In the future I can imagine to allocate a
huge vector
with shared memory on future sp6-sp7
that
I want to communicate with other nodes.
Now sp6 has 32 cores a single mpi
process can have
128GByte allocation. A real*8 vector can
easily exceed th2 2 billion number in
future huge calculations. (sp7 will have
probably 128 cores/node ?).
I simulate a small basin having 180
million nodes. To describe completely
physical processes i will have to increase
it by 1000 times. Also the multigrid
solvers increase the number of iterations
to reach the solution thus expanding data
needs.
I suppose we won't need over-2G data
count in the kernel of apllications, but in
initialization, for example, we could do
communications with a huge number of
items. Of course we can code such a
infrequent communications with up-to-2G
counts but it should be simply boring.
It'd be nice to be able to run tests with
larger msg sizes.
I think that mpi is too minute, and we
have to use wrappers to communicate
bigger dqata sets

it will be helpful for running a large

Seite 53 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

simulation that will create huge number
of individuals (such as modeling bacterial
growth)
i use big data on big machines
I use large matrices
I've just spent some time bug fixing a
code that uses integers larger than 2
billion and having to re-cast some
variables to integer*8 and leave others as
integer*4 is a pain. Many compilers can
promote *all* integers to integer*8 but
this means that many MPI calls fail
because the types no longer match.
I want to use more than 4GB memory for
one-sided operations.
I would rather need large message sizes.
Usually, the message size is limited to a
much smaller size than the possible
address range in memory.
Large database distribution to local
disks.
Large data sets to be shared/exchanged
Large matrices.
Large runs of our particle in cell plasma
code can reach particle numbers above 2
Billion.
Many simulations nowadays make use of
datasets that exceed 2 billion elements.
Basically any code with n log n
complexity can pull this off, so this
extension is highly necessary.
Matrices get bigger and bigger :)
Memory of a single node exceeds 2
billion. MPI needs to be able to, for
example, account for 2 billion accesses to
memory. Same for sends/receives etc. By
limiting counters to 2 billion you require
coalescing the MPI calls and the
coalescing layer now has to live outside
of MPI and MPI becomes a heavy library
for large requests that don't exceed 2
billion in count.
Model and problem sizes are growing
and users can unexpectedly specify large
message communications in their codes
without realizing it, so this ability would
act as a fail-safe. This would also provide
a cleaner interface to MPI codes that use
large integers in calls to things like the
AMD Common Math Library.
MPI functions using int argument is not
suitable for large items in 64bit platform
with 4byte int.
My application (quantum chemistry)
typically deals with large
vectors/matrices which need to accessed
efficiently.

My code when running on a large number
of x64 machines, runs very quickly which
is nice! However, extra resolution would
be available should the largest signed

Seite 54 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

integer be converted to a 64 bit variable
My distributed data structures can have
length greater than 2 billion.
My major is Romote Sensing Image
Process. I use the large count value
usually.
My programs are able to manipulate
many and many data
My programs do large file I/O.
Nodes with large amount of memory are
now easily available.
no. of elements to be processed may
reach 2 billion in near/mid-term future
not actually for my application, so i
haven't thought about it
Not currently but it's not crazy to think it
could happen.
Not now, but maybe in the future,
depending of the further development of
hardware.
Not sure if we shouldn't use other
programming models instead for this kind
of situation
Occasional use for distributing large
amounts of
initial data. It's not an important
requirement.
On multicore nodes, often one can use
only one process per node but yet use all
of the nodes memory (like 16 or 32 GB). I
would think it very likely that when a
node is used like this that the count sizes
could approach and surpass 2 billion.
Otherwise it is cumbersome to deal with
huge data sets.
Our grids are 105 Millon nodes (600M
cells). We project that in about 18 months
our grids may approach 2 billion cells.
Our library supports this. It also makes
implementation of algorithms
independent of the problem size
Particle codes, and the number of
particles sometimes is larger than 2
billion items
PDE solvers applied to high dimensional
ensemble runs with frequent master
controlled IO
Probably a useful feature, as long as
there are no major disadvantages to
going to 64 bits.
Problems are getting large fast these days
and 2 billion is not very big. We should
have overloaded API's that allow long or
int for backward compatibility in both c
and Fortran 90.
Remove need to down cast from size_t to
int for MPI calls.
required for MPI IO and perhaps some
data types

Required if MPI is to be a candidate

Seite 55 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

programming/execution model for
exascale systems.
Sending/receiving 2 GB or larger
messages is reasonably common for
loading datasets from bulk storage.
Simulation with 4096^3 mesh cells
Size of my current codes is limited by
available hardware only. As the latter
improves - larger arrays/communications
will be used.
Software engineering.

It's too difficult for many programmers to
mix integer types. They create subtle bugs
that don't occur for months or years...
Being able just to throw 64-bit integers
into sizes would help avoid some classes
of problems.
Sometimes my applications pass large
amount of data through collective
communication.
So so!
Starting up MPI aps I want to distribute
large database files (>2G in size). Then I
want to be able to broadcast (via point to
point communications) those files to
nodes with MPI. It would be nice not to
have to break them into pieces and have
multiple sends.
Systems will not get smaller...
The performance, rather than usability, is
the key here. For functionality, users can
always use distributed data structure to
handle very large data set. However how
to achieve a good performance across
most major systems is quite challenge.
This seems too obvious to me to explain.
We are developing parallel external
algorithms handling
multi Terabyte inputs including the
current record in the Sorting Benchmark
for 100 Terabyte. Furthermore,
even local RAM sizes are in the
multigigabyte range
by now.
We are using much memory: just bought
2 machines with 144GB (2 quadcore
XEONS). But communication is anyway
split up into smaller chunks.
We have a C to Fortran interface for 64-
bit architectures that uses long for the C
part and 64-bit integers in Fortran is the
counterpart
We have occasionally needed to use MPI
to do large rearrangements of data and
needed to work around MPI's restrictions
here. At the same time, these operations
are not dominant in our code and are
most often related to working around
parallel file system deficiencies.

We have to transfer more than 2GB data

Seite 56 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 14

which seems to be the upper limit in most
implementations. This also hurts when we
try to write restart-files, etc in parallel
where each process wants to write more
than 2GB.
well, local memories are growing, aren't
they? With the trend to hybrid
parallelisation there could be one MPI
process for a complete 2-socket node with
a lot of memory, and then ...
well, not yet, but memory get's larger and
larger, so if MPI-3 should be future
proofe ...
We might reach that size in a couple of
years, right now the maximum is ~200
million items.
We never needed this so far
We often have very large files that
require reading on one node and
distributing to processes for processing.
(Wrote fns to send the data in 2GB
chunks). The 2billions item limit has also
been found to be false in some
implentations as at some point the data
gets referred to in bytes and hence for
larger datatypes the amount of data we
can moved at once is less.
We use a self written parallel IO, which
needs longs to denote file offset for
writing, thus we positively need long
integers.
We used to have asynchronous
communications with huge buffers, where
the default Fortran INTEGER may have
become insufficient sometime in the
future. We then decided that this was not
reasonable and those huge buffers are
split into smaller ones (e.g., with several
calls to ISEND), at the cost of higher
synchronizations in the code.
We use radiative transfer programs
where more than 1e9 photons are emitted
for realistic simulations.
Why not? �ssuming the data type is
'char', I can allocate this much memory
on my laptop, let alone a cluster. I can
deal with files of this size. I don't see why
supporting this should impact
performance in the <2B case.
Why not? The monte carlo people here in
my site would love it. ;)
With the emerging of new many-cores
architectures, the 2 billion limit (32 bit)
will become a real problem (for example
when doing checkpoint-restart IO)
working in climate research, for the
currently targeted resolutions we will
need massive parallel I/O of huge files

Seite 57 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

One-sided remote memory access (RMA) is an advanced MPI concept. The following
question assumes familiarity with the complex issues involved and deliberately makes you
choose between two options that may or may not be mutually exclusive. The goal is to find
out which is more important to you, regardless of whether they are mutually exclusive or
not. If you are unsure how to answer and/or are unfamiliar with MPI RMA concepts, feel
free to leave this question unanswered. MPI one-sided communication performance (e.g.,
message rate and latency) is more important to me than supporting a rich remote memory
access (RMA) feature set (e.g., communicators, datatypes).

Strongly Disagree 13

Disagree 59

Undecided 245

Agree 160

Strongly Agree 71

Show/Hide Open Answers

Seite 58 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

After all mpi is about supercomputing
and performance is paramount, in
addition programs are complex enough
as that are. Keep it simple, lean and
efficient.
Agree, but ...
communicators are important, too.
don't know about datatypes.
also non-blocking RMA's thanks!
and collectives via RMA, if possible!
all are equally important
All my friends who ever tried RMA
abandoned it after discovering that
message rate & latency sucked.
A performnace vs usability question is
problem specific, but, if had to
generalise.
a rich feature set can be bolted on top.
performance can't.
At his point, one-sided communication is
too slow to be useful in my application. I
have replaced an attempt to use one-sided
communication by a send/receive pattern
that performed much better.
a true overlay of comm. with calculation
would be very advantageous
Because a user may provide additional
layers of code around RMA requests to
communicate/synchonize if they are not
provided by the core MPI implementation
Because I'm interested in High
Performance Computing.
Because one-sided do not require hand-
shake.
big memory problem
Both are important. Low-latency doesn't
mean much other than for little micro-
benchmarks.
Cannot judge what will become more
important in the future
Communication delay is crutial for
speed-up of our applications.
Communicators and Datatypes are the
most important part of MPI in all my
applications
(among other things, the ease/flexibility
of slicing 1-D lines or 2-D planes out of a
4-D domain decomposition strategy)
Complex feature set will always decrease
performance, while one-sided
communications can help improve both
performance and simplicity of an
application.
Cray shmem :-)
Current code is based on message
passing, though we did at a certain point
unsuccessfully try to exploit RMA.
Although RMA may be useful in certain
cases, message-passing appears to be our
main mode of operation also in the future.

Seite 59 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

is important for applications in C++.
Depends on the application I'm running
Don't really use too advanced features.
efficient existing one-sided
communication routines would certainly
simplify the development of parallel
algorithms in computational quantum
chemistry
Every case I've seen of someone
attempting 1-sided communication
(whether via MPI or some other
interface) has been for improved latency
and bandwidth.
Experience with one-sided MPI has
indicates that the implementations are not
efficient, the effort in going from two-
sided to one-sided was not worthwhile,
for the meager performance gains (and
often performance losses). Either one-
sided implementation are made more
efficient by relaxing the correctness
constraints OR rich RMA support is
provided. The bottom line is that
application developers don't care about
the paradigm as long as they can get
performance gains.
few communication
First of all, RMA should not be there at
all in a _Message_Passing_Interface.
Having a slow RMA because of data type
conversion is even worse (and I didn't
think there could be anything worse than
the on-sided thing which I really don't
like)
for us, performance and scalability are
the most important factors for using MPI.
Generally, one-sided is used to shortcut
the traditional MPI_Send MPI_Recv
route for message passing. Because of
that, a simpler, but higher performing
interface is generally preferred.
Given good performance, I can overcome
limited features. (But not the other way
around.)
I agree somewhat. I think supporting
communicators for example is important
too, with complex datatypes less
important.
I am very willing to trade better latency
for structured data, as my data type set is
small, static, and I don't have
interoperability requirements.
I can give an opinition about that because
I have nor used it never on my
applications
I can not compare the performance of
these options.
I do not undestand it
I do not use one-sided communications
I don't use one-sided communication.
If I bother coding up one-sided, it is for

Seite 60 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

speed. Usually use shmem instead of mpi
though - I've never go them to mix very
reliably except on quadrics
If its well implemented allows for overlap
of communication and computation better
than nonblocking comm.
if one goes through the effort of adopting
RMA, likely it is because performance is
critical. We have experimented with
RMA, but had to back out the changes
because performance was poor.
If people want to write performance-
sapping stuff on top of the existing basic
RMA functionality, that's well and good,
but if RMA performance starts sucking I'll
have to stp using it.
If performance doesn't matter, one can
use existing MPI features - MPI two-
sided, threads, and probe - to get one-
sided behavior.
If performance isn't great, I wouldn't use
one-sided communication.
If simple operations don't show high
performance, I will not invest more time
in coding complicated (=error-prone)
operations, that might not perform either.
If the fundamentals are correct
(communication performance), the
application can handle the rest.
if we do HPC, performance counts -
otherwise we can switch to java and
ignore optimized blas
if you don't care about performance the
current one-sided implmentation is fine.
The balance between performance and
functionality is important. if it is simple
message injection its useless without a
supporting memory features that allow
for say an accumulate operation
I have no idea of the overall gain when
using RMA in my applications
I have no strong opinion actally but I am
already accustomed to MPI
implementations that only support low
level things efficiently.
I have not tried the RMA features yet, so I
do not know whether our projects can
benefit from it performance-wise.
I like generality, but not if it compromises
performance.
I may have use for one-sided comm in my
app, but i'm not rewriting it for RMA.
IMHO, simpler is better. Optional hints to
improve the performance would be ok.
IMHO, this seems to be the wrong
question - as long as the *semantics* of
RMA remains as contorted as it is in
MPI-2, that keeps most developers from
touching it.

I'm not really using RMA so far, but if I
would, I think that performance is an

Seite 61 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

issue.
I mostly write and teach to write
malleable and portable applications; as
such, being able to define a proper
parallel structure for the app with limites
SW development effort is more important
than the raw performance of one-side
communications. Except for top-scale
supercomputing, the
development/maintaining effort of
applications is more significant than the
performance gain.
I need to map different memory areas as
the same data type.
In my impression, one-sided needs more
careful coding than two-sided. Therefore,
if the performance is not unattractive, I
don't have any reason to dare to use
them.
In our case, I think one-sided
communications could be used to just
'read' some simple data in the memory of
other processes.
In the end, complex datatypes are also
made of bits and bytes. In principle, you
only need the MPI_BYTE data type for all
your communications. However,
communication performance is crucial if
you want to speed up your application.
in the end I'd be (slightly) more interested
in speed.
I see RMA as quick access to well-
structured remotely-resident data and
believe that performance matters most.
Is not more important, but equally
important as RMA such as, for instance,
communincators
is RMA really useful?
I suppose you could have a first
implementation that performs well and
supports the basic functionality and
worry about extending it to more
specialized fields afterwards. Users can
test the current functionality and send
feedback while more features are added.
It depends on application-specific and
running conditions/configuration. For
some cases RMA is not best choise
It depends probably on usage. Both
options should be available.
I tend to favour performance of basic
operations. If performance and features
are mutually exclusive, then it is a
difficult balance and needs to be
answered by someone who actually uses
these features (I currently do not).
I think, algorithms can written in a more
flexible way, when there is a rich RMA
feature set. Of course performance is also
very important, but flexibility is more
important for me

Seite 62 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

the same performance (as high as
possible) if there are richer features
included as well or not. Complex features
might run at a lower performance, but
they should be just as optimized. Ideally,
implementing them in the application
using basic features only should not
provide more performance. You have a
bit more flexibility when implementing
them inside the library.
I think message rate and latency are
overrated. It is often the synchronization
that kills (RMA) performance. However,
rich features may require more sync or
more data copies at lower layers -
therefore I chose undecided.
I think MPI one sided should be easier to
use. There should be a 'minimal layer'
that's very fast and a 'convienience layer'
that sacrifices some performance for ease
of use.
It is essential for every kind of
communication that it is of high
performance.
It's deceptive. In order to know when the
transfer
has completed, you need to add most of
the calls
needed for two-sided, and you don't get
the
advantages of checkability. The language
specification problems are a nightmare
area in
any of the (dozens) of languages I know.
It would be nice to have signaled put and
get operations, but I don't need fancy
datatypes.
I use mainly applications that require
high percentages of long range
communications. Message rate and
latency is a major bottleneck.
I've seen no evidence of a desire for one-
sided communications, but rich RMA
could lead to code that is easier to
understand and support - so an efficient
implementation would be desirable.
I view one side communication as a
convenience rather than a performance
optimization at this point.
I view one sided stuff as a tuning to
reduce communication latency. The only
data type I really care about is a
contiguous number of bytes.
I want RMA operations to be faster then
point-to-point. If one-sided is not faster
than normal send/recv there is not reason
(for my point of view) why they should be
there.

I work as a performance engineer on
Cray systems. To our group, performance
is far more important than functionality
(though I recognize that the reverse is

Seite 63 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

true for many people). Missing
functionality in MPI can be replaced by
other mechanisms, perhaps at the loss of
portability.
I would like to have both
I would not say performance is more
important than features. I will start using
one-sided communcations when it has
both the reasonable performance and
functionality.
I would prefer one-sided communications
to provide the lowest latency possible.
Other functionality can be derived.
Latency for next neightbour point-to-
point communication has the biggest
impact on performance, while the most
complex datatype needed is a subarray.
Latency hiding is very important in
general...I am prepared to go to low level
for performance, even at
the risk of losing portability and good
coding practices.
latency is a big issue for us and is why we
sometimes bypass MPI and use lower
level comms routines sometimes
lattice QCD calculations strongly depend
on MPI communication performance
Main purpose of one-sided
communication is better performance and
simpler programming. Application can
use two sided communication for derived
data types or additional communicators.
Most of my applications are both latency
and message rate critical. RMA is very
useful when using co-
processors/accelerators. RMA has the
potential to provide the performance I
need. However, more features are
welcome, such as remote read-modify-
write. This could be useful for quick
lightweight synchronization
MPI one-sided communication is used for
performance.
Must be fast to be used
My application, lattice QCD, would
benefit more from improved bandwidth
and lower message latency.
never thought about it
not used
Obviously I want both but exposing the
fundamental network operations with
good performance is more important than
building high-level features.
Obviously, performance will be tweaked
(in HW and/or SW) over time IF people
really heavily use provided MPI one-
sided communication functions. However,
doing so will take time and not offering
them in the first place, will stop the
process right at the beginning.
Allow experiments!

Seite 64 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

crucial is some of our applications,
however, often we require it work over
custom communicators. Being forced to
run RMA only over say
MPI_COMM_WORLD could be
problematic.

One-sided operations are typically used
for short (8 byte) messages with less strict
ordering requirements. Limited features
are just fine.
Our application benefits mainly from
highly performing parallel linear
algebra. Thus, message rate and latency
are crucial (also in RMA).
Our applications need to transfer all the
data in each process to the other
processes in each iteration, with each
process receiving an equal portion of the
data transferred. This all-to-all
communication typically takes 25% of the
machine time, so it is paramount for us to
speed up (massive) communications as
much as possible.
Our applications tend to be
communications latency dominated above
all else. MPI design (i.e. any process can
send to any other process a message of
any size at any time) tends to result in
library implementations that are not as
low latency as possible for our
application.

Thus, to improve latency, the
aforementioned communication layer we
use is already designed to wrap thinly
around a to-the-metal RDMA
communications interface if available.
And, we already have successfully used
implementations of it based on hardware
specific RDMA libraries (e.g. Verbs on
Infiniband).

To enable a lower overhead RDMA
protocol than most stock MPI
implementations, our communication
layer is based on packet exchanges and
requires the application to bound the
maximum packet size that can be
exchanged for each link. This is
straightforward to do in our applications.

Thus, if MPI supported very primitive
one-side RMA type primitives efficiently,
we certainly would try to make use of
them and could likely do so very quickly.
Performance always is primary. Features
which have poor performance are not
used.
Performance critical program can be
written using Point-to-Point message
passing, RMA's role is to support another
parallel programming paradigm.

Seite 65 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Performance is certainly extremely
important, but without a one-sided
semantics that avoids excessive
synchronization, there's little point in
using one-sideds versus two-sideds.
Performance is key.
performance is key for one-sided
operations
Performance is most important for my
work
performance is the main motivation for
using this capability
Performance is very important!
performance is very important and a rich
feature set is not necessary for our
application
performance is very important but
features like noncontinuous rma (as
mentioned before) would also be an
improvement
performance is very important, but
without derived datatypes and the
Cartesian communicator it is useless for
my Lattice Boltzmann application
Performance matters
Performance matters most to me.
RDMA APIs are better.
RDMA is mostly important to organize
asynchronous work. So in general
supporting a rich memory access feature
set would be nice.
Rich remote access are quite always not
optimal anyway. Let's stick to the basic
functionality offered by quite a lot of IC
nowadays : RDMA (and really benefit
from it !)
RMA? I'm usually using SHM MPI
Device for communications inside one
node.
And in a nutshell I do need better
communications between remote nodes -
inner communications can be done
without MPI using threading - that's not
an advantage of MPI. Though I hope that
RDSSM will be improved.
RMA is not needed in my applications
RMA needs to be combined with
datatypes. This is more a hardware
capability question than a software
support layer question. Ideal would be
RMA hardware, that supports strided
access patterns with MPI Datatypes.
Only in point-to-point szenarios RMA
with block-windows can beat Datatypes.
In collective operations, where aggregate
bandwidth is key, RMA usually doesn't
pay off, but overlapping gathering &
scattering of data with the actual transfer
pays off huge.
In essence I would not want to sacrifice
one for the other.

Seite 66 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

question. At present MPI_Put/MPI_Get
does not have any advantage to
MPI_Send/MPI_Recv (and all its
variants). I've tested this in quite a few
codes.

Simple, 90% of the users tend to use 10%
of the features. Therefore, it is best to
emphasize on performance of commonly
used features first.
Simple operations that are fast can be
used to model most everything else
effectively. Having the core functionality
work really well would enable any sort of
custom functionality I would want to
build on top.
Since a lot of my work is with discrete
event models
asynchronous messaging is important.
Structure of my remote data is very
simple; only speed is of practical interest.
Structures like communicators, datatypes
make the application much more
readable. I won't give this up for higher
performance.
supporting a rich remote memory access
feature sounds too complicated. Keep It
(MPI) Simple. That way, there may fewer
issues with the implementations. I prefer
solid, stable software to highly featured,
quirky software.
The current performance limitations on
one-sided communication is restricting
adoption of the paradigm. Enabling
better performance as the initial step will
go a long way towards encouraging
usage.
the features mentioned belong to the
(mature) basics of MPI, they should not
be abandoned a priori in favor of
hypothetical performance benefits
the hole point for using DRMA is that it
gets higher performance, so a direct
mapping of functionality to the hardware
seems the best option even if it is a low
level solution.
The main point of this is to reduce
transfer overhead an latency. If it is very
fast you can pass each piece of a complex
data type separately and still get better
performance.
The MPI one-sided routines are difficult
to use. If one had the Cray shmem syntax
for one-sided routines with high
performance, this would be useful.
the need for RMA has not come up so far,
so if/when it does, it is unclear which
factor will be more important
There seems to be much marketing behind
one sided operations, and at first glance
they look attractive. In the real world they
seem to be of little use.

Seite 67 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

The whole point of one-side
communication is performance, but there
interface should be accessible to the
average application developer.
The whole reason to do one-sided comm
is performace!!
They both are important.
This is a hard question to answer, but I
lean towards more flexibility in
programming rather than raw
performance. Maybe there could be a
switch in the code for truly optimal
performance at the cost of some features.
this is difficult. For an expert in MPI this
might not be as crucial, but for people
starting to develop new codes/adapt older
codes performance AND usability is
crucial (rich feature set)
Throughput matters for one-sided, but
there is no point in using one-sided for
latency-critical messages (same for
message rate). I assume that having a
rich RMA feature set may disturb latency
and message rate but not throughput, so
that's OK.
To me, communicators with one-sided
comm are mostly useful for translating to
processes for point-to-point one-sided
communication. But then the MPI RMA
performance is so poor that I avoid it and
use some other mechanism (GASnet, GA).
To me, one-sided should be used in order
to support true asynchronous remote
updates, i.e., you´re either using an old or
a new value of a datum, you do not really
care. The other use is to improve
performance. My take is that neither of
the above can be done using todays one-
sided semantics.
Unfamiliar about the difference.
Up to now, implementors of MPI libraries

appear to have put no effort into
improving one-sided performance, with
the argument 'nobody is using it'. Nobody
will use a poorly performing one-sided
implementation, no matter how rich the
functionality it supports. Minor changes
to the existing chapter of the standard
should be enacted such that
implementations can omit any
unnecessary overhead in checking
overlapping accesses etc. and still remain
standard compliant.
Performance is the most important aspect
in this regard.
Use point to point if you want rich
features.
usual functionality vs efficiency

Various levels of RMA is built in any
hardware these days. MPI should not
mask it with rich API with excessive

Seite 68 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

runtime overhead.
We already use MPI wrapped in a small
number of higher level communication
classes dedicated to our application, we
only expect performance and portability.
We don't want to rely on complex features
that might be unoptimized or bugged in
some vendor libraries.
We are facing the problems of latency in
our communications when trying to scale
an application beyond couple of
thousands cores, so for us it is really
important reduce the effect the latency,
thats why we are porting our codes to
hybrid OMP-MPI in order to reduce the
number of message and the same time
that we increase the size of itself as well.

We are still afraid of how our application
will run in high core count using MPI at
the node layer and OMP withing the
node.
We can always write our own wrappers
for usability.
We consider it our job to puzzle out and
design parallel algorithms, including
comm, and we can design them to use 1-
sided comm, presuming the recipient can
respond using 1-sided comm when
necessary. We are not afraid of
programming; it is better to have one
highly optimized building block from
which we can build a custom comm
engine, than to have a rich but slow
general purpose machine. Give us
something simple so it can be crazy fast,
and let us worry about complexifying it.
We don't find ourselves limited by MPI's
current RMA feature set, OTOH as we
scale our software up to the hundreds and
thousands of cores the communication
performance is limiting.
While communicators and datatypes can
be very convenient, I can 'fake' them
manually. However, I can not make a
poorly performing put or get fast (without
moving to a different mechanism such as
CAF).
whould be nice if this allows complex
applications crossing borders between
operating systems
Without good performance RMA is pretty
much useless for me as would have to
implement every thing with two-sided
communication in an extra thread without
the nice semantics of RMA.
I would rather implement handling of
complex datatypes myself, should that
need arise.

Would use it only in performance critical
code kernels where all
synchronization/dependency issues are

Seite 69 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 15

Question 16

handled at a rather low level
Yes, would use MPI one-sided ops if they
were faster. We have our own low-latency
comms library using librdmacm

The MPI standard provides certain semantic guarantees that may not be required by a
particular application. It also provides functions that many applications never use. The MPI
Forum is considering an "assertions" interface that would let an application identify specific
functionality it does not depend on, such that an MPI library could improve performance or
reduce memory usage by disabling that specific functionality. The described "assertions"
interface would be valuable to my MPI applications.

Strongly Disagree 7

Disagree 23

Undecided 244

Agree 375

Strongly Agree 110

The following is a broad list of topics that the MPI Forum is considering for MPI-3. Note
that it is probably safe to assume that using any of the new functionality will involve at least
some degree of change to your existing MPI application (e.g., it is unlikely that MPI-3
applications will automatically become fault tolerant; it is much more likely that you will
need to add additional fault tolerant logic using new MPI-3 API functions). If you are
unfamiliar with a given topic, feel free to leave its rating blank. Rank the following in order
of importance to your MPI applications (1=most important, 6=least important):

0
1

(most
important)

2 3 4 5
6

(least
important)

Non-blocking collective
communications 181 243 135 120 86 45 28

Revamped one-sided
communications (compared to
MPI-2.2)

267 50 76 115 90 145 95

MPI application control of
fault tolerance 223 74 129 125 144 95 48

New Fortran bindings (type
safety, etc.) 210 68 72 78 64 99 247

"Hybrid" programming (MPI
in conjunction with threads,
OpenMP, ..)

160 217 175 105 89 59 33

Standardized third-party MPI
tool support 223 32 84 103 132 140 124

Seite 70 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

Question 17

Question 18

Rate the following in order of importance to your MPI applications (1=most important,
5=least important):

0
1

(most
important)

2 3 4
5

(least
important)

Run-time performance (e.g.,
latency, bandwidth, resource
consumption, etc.)

105 397 206 89 27 14

Feature-rich API 162 14 38 70 283 271

Run-time reliability 125 149 201 271 62 30

Scalability to large numbers of
MPI processes 114 158 254 225 70 17

Integration with other middleware,
communication protocols, etc. 170 17 31 55 234 331

Use the space below to provide any other information, suggestions, or comments to the MPI
Forum.

 Show/Hide Open Answers

Seite 71 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

-
;-)
1) quibble: Shouldn't that 'assertions' interface be more like a '#pragma' interface? I.e. let
us specify features we want turned on or turned off?

2) IMPORTANT. We have tested MPI in conjunction with threaded linear algebra libraries
(ATLAS in particular) and it kills the performance of BOTH. You need a switch that lets
you play well with others; we may be calling a threaded linear algebra library (like
ATLAS, Goto, or PLASMA), a threaded graphics library, and other threaded libs all in the
same application.
A consistent implementation of collectives for a given network (latency, bandwidth) would
make my support work a lot easier.
Again.

Rework the One-Sided Communications and give us non-blocking collectives!

And focus on algorithms for performance.
already great work :)
As a matter of fact, I use MPI just as a portable communication layer for middleware
implementations, nothing else.
From that point of view even the current MPI standard is already overspecified and
induces a lot
of unnecessary overhead.

Thus I am not interested at all in complex features, even issues like support for collective
communication or heterogeneity are unimportant, since these problems are solved
elsewhere. Therefor I'd strongly opt for a concise subset of the MPI standard that is just
able to deliver high-level, minimal overhead access to state-of-the-art communication
networks, including networks with user-level communication facilities.
As I have told before, mpi should have two types
of communications say intra node and inter node.
(may be three the noremal one also).
In this way we can tell exactly what has to be communicated and how. And we can easily
optimize.
This would be beatiful and should fit the new supercomputer architectures.
OpenMP is easy and sometimes efficient but makes
a lot of stupid and unnesessary cmmunication intra node. I bet in most cases I could do
better but I do not have the language yet (I think).
As we share subroutines among several developers and research groups, it is very
important that the currently used codes (partly many years old) do not have to be changed
if somebody adds features that require the new standard.
Avoid one-sided functionality in MPI altogether!
Better documentation of the C++ binding would be highly appreciated and would help
with the integration of advanced MPI 2 (or 3) features.

Thanks for this effort in MPI 3
cannot comment since i am not completely familiar with the power of MPI.
clean up interface!
consider MPI to be the corner stone of parallel computing, keep it functional, performant,
understandable.
Don't hasten out the next standard version
Dynamic process management (especially MPI_JOIN) would be infinitely more useful if
the MPI Forum actually made statements about how start-up and peer discovery should
work.
Enforce that FORTRAN mpi module must be provided and for backwards compatibility
also mpif.h.
Make parallel I/O portable.
Fault tolerance please! :)
For multiple mpi processes (pure mpi model) on a single node better shared memory
comm. is needed, L2 only comm. Numa control etc. For hybrid models thread safeness is
needed.

Seite 72 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

defined vocabulary is required. So posing more pressure on documentation giving more
information.

Good Luck!
I am afraid that the mentioned 'assertions' interface may allow to specify inconsistent
subsets of the MPI API. I would strongly suggest that the MPI forum defines not more than
a handful of subsets. Let the MPI implementors make the suggestions for the calls and
features that cause the most trouble in the implementation.
I cannot rank/answer the upper too questions due to lack of knowledge
I'd rather see MPI-3 optimized and faster than 'rich' in more API. Mechanisms for fault-
tolerance and malleability would be extremaly useful. Performance portability is
something you should think about. What if besides all kinds of XSend and YRecv
operations, you'd have one 'default' send and recv, and which is best could be determined
automatically based on hardware/architecture etc.
I hope newly introduced functionalities will be carefully designed paying much attention to
their performance. If perfomance is poor, I'll never use. More importantly, some people
will use new features without being aware of their performance to make their applications
slower.
Important features would be:
- Fault Tolerance!!
- Convenience functions for debugging purposes!
I'm very optimistic about the future of MPI. It seems to be getting a lot of energy from the
OpenMPI project -- wonderful stuff.
In addition to better one-sided communication I'd also like to see active message support
and possibly support for hierarchical communicators to support hierarchical architectures.
I NEED NON-BLOCKING COLLECTIVE OPERATIONS. It's either I'll die without it or
wright my own realization.
In general I'm very happy with MPI, it allows a large set of applications to 'just work' with
a large set of hardware making them into productive research resources. Any support for
migration, or virtualization would allow more flexibility for long running jobs which would
be quite valuable.
In my application I contend against non-repeatable results depending on the number of
processors used (I'm quite sure that this results from an ill-conditioning of my system of
equations but I can't change this) A feature which improves reliability (e.g. sum up values
always in the same order) would perhaps help
In the last question, rank 1 - 3 are pretty much as important as each other.
I strongly appriciate you all time.
I suspect fault tolerance will be outside the scope of MPI.
- I think we should not need OpenCL or the MulticoreAPI (MCAPI) to support multi-core
hybrid heterogeneous computing. MPI should be enough. At least, from the semantics and
syntax perspective. Keep parallel programming as simple as possible by reducing the
number APIs, we already have enough of them out there. Perhaps, introducing 'MPI
profiles', targeting different application segments (large processor count profile, embedded
profile, accelerator profile, grid-computing profile, etc.). This could enable many
optimizations.
- I think one-sided communications can be very y useful for multi-core and accelerator-
based systems. The 'Remote' part in RMA might not be that remote (same chip, shared
memory) and MPI can provide a standard way to access this memory. Simple accelerator
RMA example: CPUs open up the windows, accelerators read the data and put the results
back, then synchronize. No need for point-to-point, and it can be done in the local host or a
remote one.
- Although there is no silver bullet for parallel computing, MPI should be the closest to
that.
It would be nice to access information on semantics provided by an implementation that
are beyond what is required by MPI (for example, message ordering guarantees that are
stronger than the MPI non-overtaking rules).
It would be nice to make the MPI standard more strict. Currently MPI implementations
have too much freedom (e.g. OpenMPI is quite different from say MPICH2 and clones)

I use MPI only with F90, it works but it don't make fun. Compiler optimization sometimes
cuts out dozens lines of code. Wrong usage of subroutine calls (forgotten one argument, ...)
doesn't throw compile errors but throw segmentation faults, why(?), its hard to debug

Seite 73 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

because you expect compile time errors if you call an API in the wrong way. For sure some
errors are not the fault of MPI(-Standard) but in the end the simple programmer don't care
about whose responsible but may stop using MPI.
I was working for Cray, we had shmem, developed by Bob Numrich. It was just simple and
fast. Please keep performance in mind, do not overload the standard with issues which
might be interesting for computer science, those people who are interested in the usage of
computers, but not so much the computational scientist, the person who just wants to use it
and needs to get a difficult task done.
Java applications are starting to be run on HPC resources. It would be valuable to have
some initial standardization or bindings for Java.
Keep It Simple. A high performance scalable reliable core is far more important than the
bells and whistles... and often, an application can create a better/customized version of the
bell&whistle features.
Keep up the good work!
Less would be more.
Memory footprint is an issue - larger core numbers sometimes provoke ridiculos pre-
allocated buffers. Probably not really a standard issue, but control of the max amount of
memory used might help.
MPI is really at a crossroads right now. For fundamental reasons, hybrid programming is
becoming ever more important, and on the other end, Petascale machines drive up the MPI
scalbility requirements. I'm not sure that both constituencies can (or should) be served by
one standard - maybe a bifurcation will, in the ned, provide better solutions for everybody.
MPI is too bloated we should try to look into other message-passing based paradigms like
erlang or scala to make the API simpler to use. A function call with more than 10
arguments scares people. :)
MPI will only survive if it is simplified
My big bugbear with MPI is an implementation issue and not obviously addressible in a
standard, but here goes anyway.
Debugging should be a priority for implementations. Diagnosing hangs and MPI errors is
extremely difficult and unscalable to large number of processes. A 'debugging mode' where
collectives check their arguments and provide usable traces and error reporting woud be a
big boon.
N/A
no comment
Nope. You guys are doing a great job. Thanks.
no suggestions
One this I did not see was overlapping communication and compute. This was one of the
main features of PVM that most MPI implementations ignore.
Please provide benchmark programs to evaluate the vendor MPI-implementations of all
major concepts.
Please publish the results!
Please revisit some early proposed APIs and to make them solid. If some features are so
powerful in spec and most people got trouble to make it right and fast, what's the point?

Put in another way, if some existing APIs don't have a good implementation, maybe it's
time to see what's going on, and why, rather than to include another function set.
Please see earlier suggestion.
- recv with timeout option -- good for fault tolerancy.
- F90 interface.
- a function to detect whether MPI is threadsafe AFTER MPI_init has already been called
(I know there is MPI_init_thread, but if someone already has called MPI_init earlier -- and
I do not have access to that library)
- Keep C++ binding for god sake !
Regarding the last question: I need an MPI that allows me to solve problems using
minimum resources, which also includes development time (cf. usability). I don't
necessarily need a 'feature-rich' API but rather one with the *right* features to enable also
the implementation of complex but more efficient algorithms. Performance should always
be targeted towards the real applications not only to specific parts (like lat or bw) that are
nice for benchmarks but maybe counter-productive for the applications.

Scalability is still THE issue for the upcoming years (10^7 MPI processes) together with

Seite 74 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

fault tolerance.
see earlier suggestions box in here
Some optimization options could be of great help.
Stability and performance much more important than feature-rich API.
Standard utils library, instead of barely needed API.
Processing fault such as one node dead, even if in a big granularity.
Thanks a lot for this good work.
Thanks for involving us in the process !
Thanks for the opportunity to contribute our thoughts about the MPI-3 standard.
Thanks for your efforts.
Thanks to all devoting their time to this effort!
The C++ bindings are virtually useless. All C++ users I know start from the C bindings.
C++ can offer some great advantages (eg, the boost MPI library) but the design of the
C++ bindings is a disaster. I don't think anyone would complain if the C++ bindings were
omitted from MPI-3 (most of the bindings can be implemented on top of C anyway, and
porting a C++ code to use the C++-on-C shim is probably easy in most cases). I doubt
there is enough C++ expertise in MPI-3 to consider a new set of bindings in this round of
standardization. It would be much better to let library developers gain experience with the
new MPI-3 features for some years to learn how best to use these with C++.
The current RMA interface is a non-starter. Get rid of it and start over.
The insistence of MPI to support non-cache-coherent architectures is one of the worst
things to ever happen to the rest of the HPC world.
The last point (integration with other middleware)
can be deferred to additional libraries/wrappers,
so I thought this was not so important.
The mpd job launch mechanism used in MPICH2 has been problematic at my site (does not
work well with job schedulers such as LSF when the scheduler gives overlapping hosts to
the same user running multiple MPI jobs; job launch failures when submitting to more
than 50 hosts). The job launch mechanism in OpenMPI is much better. Perhaps robust job
launching will be addressed in MPI 3?
The standard is too permissive and includes too many features. As a consequence
implementations are bugged or unoptimized...
This is more a hardware request to which MPI could greatly take profit: parallel
computers should have 2 networks:
1 efficient for point to point communications
1 efficient for broadcast, global communications
To me, the most interesting parts of the MPI-3 work is the new Fortran bindings, and
better support for hybrid programming.

I'd also like the new standard to be implementable with a reasonable amount of effort, such
that we might actually see conforming implementations within a reasonable time. Also,
providing an incremental upgrade path for existing MPI applications is, I believe, crucial
to the success of the effort.
Try to minimalize integration with other software from the MPI side. It is a structural time
sink, and introduces the risk of MPI (partially) breaking once one of the other components
receives a major update.
We don't use a lot of MPI's power, but there are a lot of users like us who use simple
almost-batch workloads.
We have a lot of library developed in MFC, So I hope I can make GUI easier
We understand the need for introducing some fault tolerance at large scale (>10,000 MPI
tasks) but we are undecided on the right approach. Anything that MPI can do by way of a
standard would be enormously helpful. While we are looking at PGAS for some parts of
our applications, this is to get around physics issues and hardware limitations, rather than
any dissatisfaction with MPI - I expect we will be using MPI indefinitely (>>10 years).
We were not able to successfully apply asynchronous RMA a while ago. Performance was
very bad and we needed something like a 'Critical Region' to implement our algorithm
efficiently.
Will be following MPI-3 efforts closely. Thanks for your hard work, and Happy New Year.
You do a great job! Thanks for all the heavy lifting.

Seite 75 von 75MPI-3 Survey Data

10.03.2010http://osl.iu.edu/~jjhursey/tmp/survey/mpi3survey.php

