
D R A F T

Document for a Standard Message-Passing Interface

Message Passing Interface Forum

December 26, 2010
This work was supported in part by NSF and ARPA under NSF contract

CDA-9115428 and Esprit under project HPC Standards (21111).

This is the result of a LaTeX run of a draft of a single chapter of the MPIF Final
Report document.

ii

Chapter 14

Profiling Interface

14.1 Requirements

To meet [the]the requirements for the MPI profiling interface, an implementation of the MPI ticket0.
functions must

1. provide a mechanism through which all of the MPI defined [functions]functions, except ticket0.
those allowed as macros (See Section 2.6.5[)]), may be accessed with a name shift. This ticket0.
requires, in C and Fortran, an alternate entry point name, with the prefix PMPI_ for
each MPI function. The profiling interface in C++ is described in Section 16.1.10.
For routines implemented as macros, it is still required that the PMPI_ version be
supplied and work as expected, but it is not possible to replace at link time the MPI_
version with a user-defined version.

2. ensure that those MPI functions that are not replaced may still be linked into an
executable image without causing name clashes.

3. document the implementation of different language bindings of the MPI interface if
they are layered on top of each other, so that the profiler developer knows whether she
must implement the profile interface for each binding, or can [economise]economize ticket0.
by implementing it only for the lowest level routines.

4. where the implementation of different language bindings is done through a layered
approach ([e.g.]e.g., the Fortran binding is a set of “wrapper” functions that call the ticket0.
C implementation), ensure that these wrapper functions are separable from the rest
of the library.

This separability is necessary to allow a separate profiling library to be correctly
implemented, since (at least with Unix linker semantics) the profiling library must
contain these wrapper functions if it is to perform as expected. This requirement
allows the person who builds the profiling library to extract these functions from the
original MPI library and add them into the profiling library without bringing along
any other unnecessary code.

5. provide a no-op routine MPI_PCONTROL in the MPI library.

Unofficial Draft for Comment Only 1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

2 CHAPTER 14. PROFILING INTERFACE

14.2 Discussion

The objective of the MPI profiling interface is to ensure that it is relatively easy for authors
of profiling (and other similar) tools to interface their codes to MPI implementations on
different machines.

Since MPI is a machine independent standard with many different implementations,
it is unreasonable to expect that the authors of profiling tools for MPI will have access to
the source code that implements MPI on any particular machine. It is therefore necessary
to provide a mechanism by which the implementors of such tools can collect whatever
performance information they wish without access to the underlying implementation.

We believe that having such an interface is important if MPI is to be attractive to end
users, since the availability of many different tools will be a significant factor in attracting
users to the MPI standard.

The profiling interface is just that, an interface. It says nothing about the way in which
it is used. There is therefore no attempt to lay down what information is collected through
the interface, or how the collected information is saved, filtered, or displayed.

While the initial impetus for the development of this interface arose from the desire to
permit the implementation of profiling tools, it is clear that an interface like that specified
may also prove useful for other purposes, such as “internetworking” multiple MPI imple-
mentations. Since all that is defined is an interface, there is no objection to its being used
wherever it is useful.

As the issues being addressed here are intimately tied up with the way in which ex-
ecutable images are built, which may differ greatly on different machines, the examples
given below should be treated solely as one way of implementing the objective of the MPI
profiling interface. The actual requirements made of an implementation are those detailed
in the Requirements section above, the whole of the rest of this chapter is only present as
justification and discussion of the logic for those requirements.

The examples below show one way in which an implementation could be constructed to
meet the requirements on a Unix system (there are doubtless others that would be equally
valid).

14.3 Logic of the Design

Provided that an MPI implementation meets the requirements above, it is possible for the
implementor of the profiling system to intercept all of the MPI calls that are made by
the user program. She can then collect whatever information she requires before calling
the underlying MPI implementation (through its name shifted entry points) to achieve the
desired effects.

14.3.1 Miscellaneous Control of Profiling

There is a clear requirement for the user code to be able to control the profiler dynamically
at run time. This is normally used for (at least) the purposes of

• Enabling and disabling profiling depending on the state of the calculation.

• Flushing trace buffers at non-critical points in the [calculation]calculation.ticket0.

• Adding user events to a trace file.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

14.4. EXAMPLES 3

These requirements are met by use of the MPI_PCONTROL.

MPI_PCONTROL(level, . . .)

IN level Profiling level

int MPI_Pcontrol(const int level, ...)

MPI_PCONTROL(LEVEL)
INTEGER LEVEL

{void MPI::Pcontrol(const int level, ...)(binding deprecated, see Section 15.2) }

MPI libraries themselves make no use of this routine, and simply return immediately
to the user code. However the presence of calls to this routine allows a profiling package to
be explicitly called by the user.

Since MPI has no control of the implementation of the profiling code, we are unable
to specify precisely the semantics that will be provided by calls to MPI_PCONTROL. This
vagueness extends to the number of arguments to the function, and their datatypes.

However to provide some level of portability of user codes to different profiling libraries,
we request the following meanings for certain values of level.

• level==0 Profiling is disabled.

• level==1 Profiling is enabled at a normal default level of detail.

• level==2 Profile buffers are [flushed. (This may be a no-op in some profilers).]flushed, ticket0.
which may be a no-op in some profilers.

• All other values of level have profile library defined effects and additional arguments.

We also request that the default state after MPI_INIT has been called is for profiling
to be enabled at the normal default level. (i.e. as if MPI_PCONTROL had just been called
with the argument 1). This allows users to link with a profiling library and obtain profile
output without having to modify their source code at all.

The provision of MPI_PCONTROL as a no-op in the standard MPI library [allows them ticket0.
to modify their source code to obtain]supports the collection of more detailed profiling
information[, but still be able to link exactly the]with source [same code]code that can still ticket0.

ticket0.link against the standard MPI library.

14.4 Examples

14.4.1 Profiler Implementation
ticket0.

[Suppose that the profiler wishes to]A profiler can accumulate the total amount of data
sent by the [MPI_SEND]MPI_SEND function, along with the total elapsed time spent in ticket0.
the [function. This could trivially be achieved thus]function, as follows: ticket0.

static int totalBytes = 0;
static double totalTime = 0.0;

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

4 CHAPTER 14. PROFILING INTERFACE

int MPI_Send(void* buffer, int count, MPI_Datatype datatype,
int dest, int tag, MPI_Comm comm)

{
double tstart = MPI_Wtime(); /* Pass on all the arguments */
int extent;
int result = PMPI_Send(buffer,count,datatype,dest,tag,comm);

MPI_Type_size(datatype, &extent); /* Compute size */
totalBytes += count*extent;

totalTime += MPI_Wtime() - tstart; /* and time */

return result;
}

14.4.2 MPI Library Implementation
ticket0.

[On a Unix system, in which the MPI library is implemented in C, then]If the MPI library
is implemented in C on a Unix system, then there [there are various possible options, ofticket0.
which two of the most obvious]are various options, including the two presented here, for
supporting [are presented here. Which is better depends on whether the linker and]theticket0.
name-shift requirement. The choice between these two options [compiler support weakticket0.
symbols.]depends partly on whether the linker and compiler support weak symbols.

Systems with Weak Symbols

If the compiler and linker support weak external symbols ([e.g.]e.g., Solaris 2.x, other systemticket0.
V.4 machines), then only a single library is required through the use of #pragma weak thus

#pragma weak MPI_Example = PMPI_Example

int PMPI_Example(/* appropriate args */)
{

/* Useful content */
}

The effect of this #pragma is to define the external symbol MPI_Example as a weak
definition. This means that the linker will not complain if there is another definition of the
symbol (for instance in the profiling library), however if no other definition exists, then the
linker will use the weak definition.

Systems Without Weak Symbols

In the absence of weak symbols then one possible solution would be to use the C macro
pre-processor thus

#ifdef PROFILELIB
ifdef __STDC__
define FUNCTION(name) P##name

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

14.4. EXAMPLES 5

else
define FUNCTION(name) P/**/name
endif
#else
define FUNCTION(name) name
#endif

Each of the user visible functions in the library would then be declared thus

int FUNCTION(MPI_Example)(/* appropriate args */)
{

/* Useful content */
}

The same source file can then be compiled to produce both versions of the library,
depending on the state of the PROFILELIB macro symbol.

It is required that the standard MPI library be built in such a way that the inclusion of
MPI functions can be achieved one at a time. This is a somewhat unpleasant requirement,
since it may mean that each external function has to be compiled from a separate file.
However this is necessary so that the author of the profiling library need only define those
MPI functions that she wishes to intercept, references to any others being fulfilled by the
normal MPI library. Therefore the link step can look something like this

% cc ... -lmyprof -lpmpi -lmpi

Here libmyprof.a contains the profiler functions that intercept some of the MPI func-
tions. libpmpi.a contains the “name shifted” MPI functions, and libmpi.a contains the
normal definitions of the MPI functions.

14.4.3 Complications

Multiple Counting

Since parts of the MPI library may themselves be implemented using more basic MPI func-
tions ([e.g.]e.g., a portable implementation of the collective operations implemented using ticket0.
point to point communications), there is potential for profiling functions to be called from
within an MPI function that was called from a profiling function. This could lead to “double
counting” of the time spent in the inner routine. Since this effect could actually be useful
under some circumstances ([e.g.]e.g., it might allow one to answer the question “How much ticket0.
time is spent in the point to point routines when they’re called from collective functions
?”), we have decided not to enforce any restrictions on the author of the MPI library that
would overcome this. Therefore the author of the profiling library should be aware of this
problem, and guard against it herself. In a single threaded world this is easily achieved
through use of a static variable in the profiling code that remembers if you are already
inside a profiling routine. It becomes more complex in a multi-threaded environment (as
does the meaning of the times recorded[!])[]. ticket0.

ticket0.

Unofficial Draft for Comment Only

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

6 CHAPTER 14. PROFILING INTERFACE

Linker Oddities

The Unix linker traditionally operates in one [pass :]pass: the effect of this is that functions ticket0.
from libraries are only included in the image if they are needed at the time the library is
scanned. When combined with weak symbols, or multiple definitions of the same function,
this can cause odd (and unexpected) effects.

Consider, for instance, an implementation of MPI in which the Fortran binding is
achieved by using wrapper functions on top of the C implementation. The author of the
profile library then assumes that it is reasonable only to provide profile functions for the C
binding, since Fortran will eventually call these, and the cost of the wrappers is assumed
to be small. However, if the wrapper functions are not in the profiling library, then none
of the profiled entry points will be undefined when the profiling library is called. Therefore
none of the profiling code will be included in the image. When the standard MPI library
is scanned, the Fortran wrappers will be resolved, and will also pull in the base versions of
the MPI functions. The overall effect is that the code will link successfully, but will not be
profiled.

To overcome this we must ensure that the Fortran wrapper functions are included in
the profiling version of the library. We ensure that this is possible by requiring that these
be separable from the rest of the base MPI library. This allows them to be ared out of the
base library and into the profiling one.

14.5 Multiple Levels of Interception

The scheme given here does not directly support the nesting of profiling functions, since it
provides only a single alternative name for each MPI function. Consideration was given to
an implementation that would allow multiple levels of call interception, however we were
unable to construct an implementation of this that did not have the following disadvantages

• assuming a particular implementation language[.],ticket0.

• imposing a run time cost even when no profiling was taking place.

Since one of the objectives of MPI is to permit efficient, low latency implementations, and
it is not the business of a standard to require a particular implementation language, we
decided to accept the scheme outlined above.ticket206.

[Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function.]ticket206.

[Unfortunately such an implementation may require more cooperation between the
different profiling libraries than is required for the single level implementation detailed
above.]Note, however, that it is possible to use the scheme above to implement a multi-level
system, since the function called by the user may call many different profiling functions
before calling the underlying MPI function. This capability has been demonstrated in the
PNMPI tool infrastructure [1].

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Unofficial Draft for Comment Only

Bibliography

[1] Martin Schulz and Bronis R. de Supinski. PNMPI Tools: A Whole Lot Greater Than
the Sum of Their Parts. In ACM/IEEE Supercomputing Conference (SC), pages 1–10.
ACM, 2007. 14.5

Unofficial Draft for Comment Only 7

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

Index

EXAMPLES:Profiling interface, 3

MPI_INIT, 3
MPI_PCONTROL, 1, 3
MPI_PCONTROL(level, . . .), 3
MPI_SEND, 3
MPI_TYPE_SIZE, 3
MPI_WTIME, 3

PMPI_, 1

8

	Profiling Interface
	Requirements
	Discussion
	Logic of the Design
	Miscellaneous Control of Profiling

	Examples
	Profiler Implementation
	MPI Library Implementation
	Complications

	Multiple Levels of Interception

