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Abstract 

A closed-shell coupled cluster program specially designed to run efficiently on massively parallel computers is presented. 
The input/output bottleneck present in an earlier implementation has been circumvented by solving the coupled cluster 
equations in a direct manner. Sample calculations on glycine, cytosine and serine have been run on the CRAY T3D and 
T3E. The results show good scalability up to 256 processors. 

1. Introduct ion  

With the increasing power of modern-day computers more large and high-level ab initio calculations have 
become feasible. It is now possible to calculate energies and gradients for hundreds of atoms with thousands 
of basis functions at the self-consistent field (SCF) level [ 1,2], and correlated calculations have been achieved 
for hundreds of basis functions [3]. Implementations for such large-scale calculations fall into two categories: 
those targetting shared memory machines (symmetric multiprocessors or SMPs) and those targetting massively 
parallel processors (MPPs). The strategies required for programming in each environment are very different. 
At the highly correlated level the most notable work on SMPs is that of Koch and co-workers [4] ; they have 
run single and double excitation coupled cluster (CCSD) calculations with more than 500 basis functions on a 
CRAY C90 by exploiting its large memory and disk. To our knowledge the only coupled cluster program for 
MPPs is the molecular orbital (MO)-driven code developed in part by one of us [5,6]. 

In this Letter we extend the previous work on MPPs and present an atomic orbital (AO)-driven CCSD(T)  [7] 
algorithm for MPPs that has minimal input/output ( I /O)  requirements. This algorithm has been incorporated 
into the NWChem program package [8], making extensive use of  the Global Array (GA) tools [9]. The 
GA tools constitute an efficient "shared memory" programming interface that greatly eases the handling and 
manipulation of distributed data items. Thus, whereas in the previous implementation [6] the double excitation 
amplitudes, for example, were stored in a distributed fashion and retrieved from remote processors by interrupt 
messages, they are now placed in a global array and manipulated using calls to the GA library. Encapsulating 
the complicated machine dependent interrupt programming in a library greatly enhances portability between 
platforms. Furthermore, an added benefit of using the GA tools is that they provide a variety of higher level 
functionality, e.g. a parallelised GA matrix multiplication routine. 
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Sample calculations using the new code are presented for glycine, cytosine and serine run on a CRAY T3D 
and CRAY T3E using up to 256 processors. 

2. Theory and implementation 

The coupled cluster method, in the form it is used today, was introduced to chemistry by (~l~ek and Paldus 
[ I0] ,  and first implemented at the singles and doubles level by Purvis and Bartlett [ 11 ]. The theory behind 
the method has been discussed many times and so we will only sketch a brief outline here. 

The coupled cluster wavefunction is written as an exponential of excitation operators acting on the Hartree- 
Fock reference, 

I~cc) = erl 'I '0), (1) 

where T is a sum of singles, doubles, etc. excitation operators, 

T--  T~ +7" 2+ . . .  (2) 

that when truncated at the singles and doubles level gives rise to the CCSD method. 
Substituting the wavefunction into the Schr6dinger equation and projecting onto the subspace defined by the 

truncated excitation operator gives a set of coupled non-linear equations that are solved iteratively to yield the 
coupled cluster energy and amplitudes, 

l T% (~01(7-( - E0)(1 +7"1 +T2 + ~ I , l~0)  = Eccso,  (3) 

l-T2 ~r3) Iq'0) O, ( q t a [ ( 7 - / - E 0 ) ( l + T l + T 2 + 2  1 + T 1 T 2 +  = (4) 

(q'Tfl(7¢ - E0)(1 + rl + T2 + ½T? + ½T] + r, r2 + ~T 3 + ½T?T2 + ~T(l ) lxtr0)=0. (5) 

In terms of integrals and amplitudes we obtain the following form for the equations, taken from the paper 
by Scuseria et al. [ 12], on which we base our implementation. We assume canonical orbitals. 

ECCSD = [2( ial jb)  - ( ibl ja)  ] r~ b , (6) 

k a  k ca c a ~r a = hac tc - h i tk + h c (2t7, a - t ik  + t i tk) 

S1 $2 $3 

+ [2(cklai )  - ( ik lac)  ] tck + [2(ck lad)  - (dk[ac)]  rckai 

$4 $5 

- [2(ckl i l  ) - (c l l ik)]  rckT, 

$6 

kl a b -  - a b  cd n a b  ¢ a - cb  _ k . a b  
Ov~j b = ( ia]jb)  + a i j T k t  ~ Ocb'l ' i j  dr- l ' i j  ~ g c t i j  - -  g i  t k j  

D 1 D2 D3 D4 D5 

+ [( ialbc)  - ( iklbc)t~] t~ - [ (a i l jk )  + (ailck)t~] t~ 

D6 D7 
~ .ak 1_ k k a  "~ cb bc 1 l . ka tbc  b k b t  ac l 
[Jic - -  2 "*ic ~ (2tkj -- tkj ) -- ~ i c  ~kj - -  ~ic "kj J 

D8 D9 D10 

(7) 

(8) 
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where P is a permutation operator defined as 

p~b[ . . . ]T jb  = [ . . . ]ab + [ . . . ] j~  (9) 
tJ tJ 

and the intermediate quantities are 

h~ = [2( k c l l d )  - ( k d l l c )  ] ~'7~ t , (10) 

ha~ = - [2( k c l l d )  - ( k d l l c )  ] ~ d  , (1 1) 

- [2(kclld) (kd l lc ) ] t  d, (12) h c ~  

gk = h k + [ 2 ( i k l c l )  - ( i l l c k ) ]  t 7 , (13) 

gc  a _ _ h c  a .~_ [2(acldk) - (adlck)] t g , ( 1 4 )  

kt ( i k l c l ) t  ~ ( c k l j l ) t  c ( k c l l d ) r C f  , aij = ( i k l j l )  + + + ( 1 5 )  

bcdab _- (aclbd) - (acldk) t b - ( b d l c k )  tg, ( 1 6 )  

j~ f  = ( a i l ck  ) - ( i l l ck  )t~ + ( a d l c k  )tdi -- ½ ( c k l d t )  ( t da + 2tdi t~) 

+½ [2( c k l d l )  - ( d k l c l )  ] tTt a , (17) 

k ~  = ( i k l a c )  - ( i k l c l ) t 7  + (dk]ac)tdi  -- 1 ( d k l c l ) ( t d ~  + 2tdi t~) , (18) 

ab .ab a b ~'ij = tij + ti t j .  ( 1 9 )  

Throughout this work we will use the convention that i, j, k, l... label the occupied orbitals, a, b, c, d . . .  label 
the virtual orbitals, p, q, r, s... label the whole range of molecular orbitals and a,  fl, 3', 6... label the atomic 
orbitals. The number of occupied, virtual and atomic orbitals are denoted as no, nv and n respectively. 

Typically, the coupled cluster amplitude equations dominate the cost of a CCSD calculation, and so it is 
important to program them efficiently. With respect to operation count the most expensive terms are those 
labeled D2, D3, D8, D9 and D10 in Eq. (8), and the intermediates a, j and k that go towards forming them. 
These scale as n 6. With respect to storage requirements the most severe is associated with the two-electron 
integrals that have three or four virtual orbital indices. In the previous implementation [6] these were written 
to disk and read during each iteration of the CCSD. Of the other four indexed quantities, those with four 
occupied indices were replicated in local memory (i.e. the memory associated with a single processor), and 
those with one or two virtual indices were distributed across the global memory of the machine (i.e. the sum of 
the memory of all the processors). Processing the integrals with three and four virtual orbital indices gave rise 
to a major I /O  bottleneck that limited the scaling of the previous code. Although this experience was specific 
to the Intel hypercube, the issue of scalable parallel I /O remains a major problem for MPPs. Hence in this 
work we have decided to circumvent the problem by evaluating those terms involving integrals with three and 
four virtual orbital indices in a "direct" fashion. 

The only term that involves integrals with four virtual orbital indices is D3. This is also the costliest of 
2 4 Our new AO-driven scheme for this term is given in Scheme 1. In this the four the n 6 terms scaling as non v. 

outer loops correspond to the atomic shell indices that define a batch of integrals. Parallel tasks are distributed 
according to the first two shell indices. As each batch of integrals is computed it is multiplied with previously 
back transformed 7- amplitudes to generate a partially AO indexed "sigma" vector. When all the integrals 
are complete the partially AO indexed sigma vector is transformed to an intermediate S that corresponds to 
S pq ~ ( p  c lq  d)~'~f. T h e  first part of D3 is then formed by taking selected elements of S, while the remaining 
part is obtained by multiplying the relevant parts of S with the tl amplitudes. The storage requirements for this 
algorithm are a local array of size maxbfsh 4, where 'maxbfsh' is the maximum number of basis functions in a 
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back transform ~ to ~'~o # and ~ to 

do ash = 1,nsh 
do ,Ssh = 1,0tsh 

i f  ((Otsh,]~sh) is my task) then 

do Tsh = 1,nsh 
do 6sh = l,Ysh 

generate a.o. integrals (otfll-y6), (tzTlfl6) 

form tr+ = ½ [(ayl/~6 ) + (~IBT) [~.~8 + r~:'] 
fo rm ~ _  = ½ [ ( aT [ / 36 )  - (a6[ /3Y) t['Yau - 7aY]u J 

accumulate - u  g o% - o'_ into global memory 
enddo 
enddo 

end task 

enddo 
enddo 

synchronise 

transform tr~j # to ~ b  
transform tr~ # to SPq : S ~  = (p clq d) z~) a 
Form o~/'? = Sa? - sa~*tOk - S~f*~ 

Scheme I. Loop structure used for evaluating the D3 term in Eq. (8). 

shell, and a couple of  global  arrays of  size n2o n2. To minimise the n 6 cost associated with this term we have 
taken symmetr ic /an t i symmetr ic  combinations of  the integrals and ampli tudes [ 12] and restricted the loops to 
ot ~> fl, T ~> 6, i /> j .  The operation count is t 2 4 -~non v, but as a consequence of  this loop structure we require 
the integrals to be computed four times the minimal list. In Section 4 we note the relative cost of  the integral 
generation to the rest of  the CCSD procedure for a variety of  test cases. 

The remaining "problem" terms only involve integrals with three virtual orbital indices. These are treated in a 
similar fashion to, and simultaneously with, the formation of  S. For clarity, however, we illustrate the algori thm 
used for these terms in a separate scheme (Scheme 2).  Specifically, using the same integral generation loops 
as for the S intermediate we contract the AO integrals with back transformed singles ampli tudes to form two 
more intermediates X and Y, that are again partially AO indexed. When all the integrals have been generated 
the AO indices on X and Y are transformed to the MO basis to give terms corresponding to X pq - ( a  p l j  q )  t7 

and Yi pq ::_ ( a  j l p  q )  t'~. T h e  formation of  X and Y requires two local arrays of  size maxbfsh2non and two 

global  arrays of  size n2o n2. 
We note that the S, X and Y intermediates can be used in many other parts of  the sigma equations, with 

elements read from global memory as required: 

kl _ kl kl a u - ( i k l j l )  + X~ki + X u + S u , (20) 
hk  _ ock t  lk i -- "" i t  --  Sit , (21)  

hkc = 2X~Ck - X~t c , (22)  

g f  = hki + 2X~ki - Xtk./, (23)  
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back transform ~o~ to r~o # and t~ to 

do ash = l,nsh 
do fish = l,ash 

if ((Otsh,flsh) is my task) then 

do Ysh = l,nsh 
do 6sh = l,Ysh 

generate a.o. integrals (crfllyS), (otylflS) 

form x~ ~v : <,,yl~8)t~ 
form ~,~#r : (aBlyS)tti  

enddo 
enddo 

transform XTB~' to X~ # 
transform tea./~'r to y~e 

end task 

enddo 
enddo 

synchronise 

transform X~j ~, ~Y~.j# : Xi~ 4 =-- (a PIJ q) ta 

Yi~ = (a j lp  q) tail 

Scheme 2. Loop structure used for evaluating the X and Y intermediates. 

gc a = h a + 2Yffk c - X ~ ,  (24)  

$4 = 2X~ a - X f f ,  (25)  

$5 = 2 S ~  - ~ ,  (26)  

D6 = X~tfl vbk,o - -  "xji "k' (27)  

D 7 =  [ (ai l jk)  + X ~ ] t ~ ,  (28)  

J3 = X~{, (29)  

K3 = Yi~ c . (30)  

Once all the terms involving integrals with three and four virtual orbital indices have been computed the 
remaining terms just involve intermediates, amplitudes and integrals with at most two virtual indices. These can 
be evaluated via multiplications local to a processor (e.g. for hCa, J1-J3, K1-K3,  S1-$3 ,  $6, D1, D4, D5)  or 
globally across processors (e.g. for D2, D 8 - D 1 0 )  by invoking the parallel GA matrix multiplication routine. 
Note that J1-J5 and K1-K4 refer to the respective terms of  the j and k intermediates. 

Being able to manipulate whole matrices in global memory has the advantage of  allowing us to reduce the 
3 3 operation count associated with terms D8, D9 and D10. These terms scale as non v and involve the intermediates 

3 3 giving an overall cost o f  3 3 j and k whose J4, J5 and K4 terms also all scale as non v 6non v. D10, however, is 
similar to D9 so we only need to form one in a global array with the other being obtained by a simple index 

3 3 permutation. Furthermore, for D8 instead of  forming j (at cost 2n3on3~) and k (at cost nonv) separately we can 
accumulate j - ½k directly into global memory. 
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' [2(ck ld l )  + (dk lc l )  ] t~l d -q- ¼ ( d k i c l ) ( t d a +  2tdit~) J4  + J5 - ½K4 = -½(ckldl)(tdil a + 2tdit]) + g it 

= _' [2(ck ld l  ) _ (dk lc l ) ]  L~.titro ,d _ td , ,_  2tdit;] 4 

3 3 Thus the cost has been reduced from 6 to 4non v. 

(31) 

3. The perturbative triples correction 

Within our CCSD implementation we have also programmed the perturbative triples correction given by 
Raghavachari et al. [ 7]. This correction, denoted (T),  is an estimate from perturbation theory of the contribution 
from triple excitations to the coupled cluster energy and is evaluated using the optimised cluster amplitudes 
at the end of a CCSD calculation. The computational cost of the triples calculation scales as  n 7, making 
it considerably more expensive than the CCSD calculation. However, the triples are non-iterative and only 
require two-electron integrals with at most three virtual orbital indices. In this work we have used the "a i jkbc  
algorithm" of Rendell et al. [ 13]. The important advantage of this algorithm is that it permits the three virtual 
indexed integrals to be formed and processed in blocks depending on how much global memory is available, 
the disadvantage is that the n 7 computational cost is 4 times the minimum. 

The triples calculation proceeds by forming blocks of three virtual indexed integrals of the form (ao]vv)  
and (av lov ) ,  where the range of the virtual index a is determined by the available global memory. Given 
this batch of integrals intermediates of the form: f ( b ,  c) = ~d(bd[a i ) t ck  d -- ~-~t(ckljl)t~t b are evaluated locally 
on each processor. A contribution to the triples energy is obtained by taking products of these intermediates 
and accumulating the result. When this is complete a new batch of three virtual integrals is computed and 
the procedure is repeated until all three virtual two-electron integrals have been computed. The algorithm is 
illustrated in Scheme 3. Parallelisation is achieved both in the formation of the batches of three virtual indexed 
integrals (in a similar manner to that described by Wong et al. [3] ) and in the computation of the triples 
energy. 

4. Sample calculations 

We have parallelised every aspect of the CCSD(T) code as much as possible. The main body of the CCSD 
code (Figs. 1 and 2) is distributed over nsh 2 tasks, where 'nsh' is the number of shells. The perturbative 
triples correction (Scheme 3) is also distributed over nsh 2 tasks in the computation of blocks of three virtual 
indexed integrals, and then over nona tasks in processing these integrals (where n~ is the number of virtual 
orbitals that can be treated in a given batch). Three molecules of varying size have been used to assess 
the performance of our code: glycine, cytosine and serine. The geometries for these have been taken from 
the Cambridge Crystallographic Database [ 14], and the basis sets used are the correlation consistent sets of 
Dunning [ 15]. We note that Cartesian polarisation functions were used throughout, that symmetry was not used 
and that all orbitals were included in the correlation procedure. Our initial calculations used the CRAY T3D 
at the Edinburgh Parallel Computing Centre. The CRAY T3D is based on DEC 21064 chips (capable of 150 
Mflops peak performance) connected in a 3D torus. At the time of this work the machine had 256 processors 
each with 8 MW of local memory. 

We first consider glycine [ 16]. Locally imposed time limits restricted the CCSD calculation to a minimum 
of 16 processors and the (T) to 64 processors. The times for one CCSD iteration and the triples calculation 
are given in Table 1 and plotted in Fig. 1. Between 16 and 256 processors the CCSD speeds up by a factor 
of 11.4, while between 64 and 256 processors the triples speeds up by a factor of 3. This corresponds to a 
parallel efficiency of 71% and 75% respectively. Considering that this is a relatively small test case the results 
are surprisingly good. 
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Determine range of index "a" according to available memory 
Parallel direct transformation to form (aolvu), (avlou) 

do a = alo, ahi 
get t~  from global memory 
get integrals (a~,lt,o), (aoluv) from global memory 
do j = l,nocc 

get t~: L' from global memory jo 
get integrals (jvloo), (jolL,o) from global memory 

if ((a.j) is my task) then 

do i = l,nocc 
do k = l,i 
do b, c = l,nvir 

= (bdlai)tcd_ ( • ,,t, form f tn(b ,c)  ~'~d I~j E l  ckljl)til 
( adlbi)t ca f°nn f2n(b'c)  ~'~d kj - ~ , (ck l j l ) t~"  

form f3n(b,c) ~-]~a(bdlai)t)'~, - ~t(cj lk l ) t} 'p  
form f4n(b,c)  ~-~d(adlbi)t~d -- ~-]~t(cj]kl)t~" 
similarly form f i t ,  f2t, f3t, f4t as i *--* k 
evaluate contribution to the triples energy from products of f 

end task 

end all loops 

Repeat as necessary for next batch of (aoluu) and (aulov) integrals 

Scheme 3. Loop structure used for "direct" evaluation of the perturbative triples correction to the CCSD energy. 

Table 1 
Wall clock time (in s) obtained on the Cray T3D for various parts of a CCSD(T) calculation on glycine (C202NH5) using the cc-pvdz 
basis set and with no frozen orbitals (no = 20, nv = 80) 

Number of processo~ 

16 32 64 128 256 

CCSD - one iteration 
main AO block 330.7 169.6 87.2 46.6 26.4 
- integral generation 167.6 86.3 41.6 20.6 10.6 
- formation of  S 49.6 24.7 12.8 6.4 3.3 
- formation of  X and Y 53.6 25.6 13.3 6.8 3.7 
remaining sigma terms 44.8 24.4 14.7 9.8 6.1 
total 381.8 197.6 104.0 57.5 33.5 

(T) 
integrals+transformation 69.9 37.5 65.0 
total 1010.4 527.1 329.7 

SCF energy: --282.793141 Eh. MP2 energy: --283.635433 Eh. CCSD energy: -283.661272 Eh. CCSD(T) energy: -283.689261 Eh. 

A b r e a k d o w n  o f  t h e  t i m i n g s  a s s o c i a t e d  w i t h  v a r i o u s  p a r t s  o f  t h e  c o d e  is  a l so  g i v e n  in T a b l e  1. T h e s e  t i m e s  

h a v e  b e e n  r e c o r d e d  by  i n s e r t i n g  t i m i n g  ca l l s  in t h e  r e l e v a n t  p o r t i o n s  o f  t h e  c o d e  a n d  a re  t h e  r e su l t s  r e p o r t e d  

by  p r o c e s s o r  0. T h e  r e s u l t s  wi l l  va ry  s o m e w h a t  f r o m  p r o c e s s o r  to  p r o c e s s o r  as  t h e  c o d e  is l o a d  b a l a n c e d  w i t h  

r e s p e c t  to  t h e  i n t eg ra l  c o m p u t a t i o n .  L o o k i n g  at t h e  r e su l t s  f o r  t he  C C S D  i t e r a t ion ,  as  e x p e c t e d ,  t h e  m a j o r i t y  
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Fig. 1. Scal ing o f  one  CCSD iteration and (T)  for glycine.  Insets: speedup curves (normalised to the lowest number of  processors used) .  

(>85%) of the time goes into the main AO driven block that calculates the S, X and Y intermediates. Within 
this roughly 50% of the time is associated with the computation of integrals, about 15% with the computation 
of the partially AO indexed S intermediate and another 15% with the X and Y intermediates. For a large 

2 4 calculation we would expect the formation of S, which scales as non v, to dominate the computation, but this 
is not the case here. After the main AO integral block most of the remaining time is spent in the formation of 
the other sigma vector terms. Although this involves some work which scales a s  n 6 this part of the calculation 
accounts for less than 15% of the total time. 

In comparison with the CCSD, the integral generation in the triples calculation is insignificant, accounting 
for less than 10% of the total time. For this small system it was only necessary to compute the three virtual 
indexed integrals once. In going from 64 to 128 processors the integral generation time decreases, but from 128 
to 256 it increases. This reflects the small size of the calculation in that the transformation component inherent 
in the generation of these integrals is becoming communication bound for a large number of processors [3].  

Results for the slightly larger cytosine [17] test case are presented in Table 2 and Fig. 2. Between 64 and 
256 processors the CCSD shows a parallel efficiency of about 88%, while between 128 and 256 processors the 
triples are over 90% efficient. For this larger system the time required for the integral generation in the CCSD 
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Table 2 
Wall clock time (in s) obtained on the Cray T3D for various parts of  a C C S D ( T )  calculation on cytosine (CnON3H5) using the cc-pvdz 
basis set and with no frozen orbitals (no = 29,  n~ = 116) 

Number of  processors 

64  128 256  

CCSD - one iteration 
main AO block 491 .4  253.5  134.4 
- integral generation 169.9 87.4 43.7  

- formation of S 116.0 57.6 28.9 

- formation of X and Y 92.9 47.2 24.9 

remaining sigma terms 103.6 56.6 33.7 
total 605 .0  315.5  171.2 

(T)  
integrals+transformation 215.5  207.1 

total 5399 .7  2897 .8  

SCF energy:  - - 3 9 2 . 5 9 5 5 5 0  Eh. MP2  energy:  - - 3 9 3 . 8 0 6 6 1 2  Eh. CCSD energy:  - 3 9 3 . 8 3 6 3 2 4  Eh. C C S D ( T )  energy:  - 3 9 3 . 8 8 4 8 5 9  Eh. 

6 ~ '  

.~ 5 ~ '  

4 ~ .  

3 ~  

2 ~ )  

o 

\ 
\ 
\,  o T3D 

1 1 

100 200 30O 

No. of Processors 

Fig. 2. Scaling of  one CCSD iteration for cytosine Inset: speedup curve (normalised to the 64 processor time). 

is now less than 30%, compared with over 40% for glycine. The integral generation time is now only slightly 
greater than the time associated with the S intermediate (the dominant n2o n4 term). 

Our largest test case is serine [ 18 ]. The basis set used was Dunning's cc-pvtz basis set without the f functions 
on the heavy atoms and d functions on the hydrogens. This gives 238 basis functions with 28 occupied orbitals 
and 210 virtuals. Only 256 processors were used, since global memory requirements prevented the calculation 
from being performed on 128 or fewer processors. This is not surprising as a quantity of size n2n 2 (of  which 
we store several) requires roughly 45MW of memory, and there is only 8MW of memory per processor that 
must be shared between local and global data items and the memory requirements of the operating system. For 
this calculation there are just over 17.2 million independent amplitudes. Timings for the calculation are given 
in Table 3, the perturbative triples correction was omitted as being too time consuming. One CCSD iteration 
was found to take about 15 minutes elapsed time, with about 23% of this time associated with the integral 
generation and 21% with the formation of the S intermediate. 

The next generation MPPs promise faster processors and more memory per processor. During the course of 
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Table 3 
Wall clock time (in s) obtained on 256 processors of the Cray T3D for various parts of a single CCSD iteration on serine 
using a modified cc-pvtz basis set a and with no frozen orbitals (no = 29, nv = 116) 

( C303 NH7 ) 

Time 

main AO block 715.8 
- integral generation 205.3 
- formation of S 188.3 
- formation of X and Y 139.0 
remaining sigma terms 144.4 
total 872.7 

a The f functions on C, N and O and d functions on H were not included. SCF energy: -396.752464 Eh. MP2 energy: -398.162457 Eh 
CCSD energy: -398.185896 Eh. 

Table 4 
Timings (in s) obtained using a Cray T3E for the glycine and cytosine benchmarks a 

Number of processo~ 

8 16 32 64 

glycine 
total CCSD - one iteration 249.9 123.7 ( 381.8 ) 63.4 ( 197.6 ) 30.8 (104.0) 
total (T) 2829.1 1418.0 709.7 341.8(1010.4) 

cytosine 
total CCSD - one iteration 345.2 177.1 (315.5) 

a Times obtained on the T3D are given in parentheses, 

this work we were able to gain access to such a machine, a CRAY T3E located at Cray Research Inc. The 
Cray T3E has a similar topology and programming model to the T3D, but has faster processors (DECchip 
21164 with 600 Mfiops peak performance), a faster interconnect (480Mbytes/s versus 300Mbytes/s on the 
T3D) and potentially more memory per node. The machine available to us had 64 processors each with 16MW 
of memory. Calculations were run for glycine and cytosine. The results are given in Table 4 together with the 
corresponding T3D times when available. The results consistently show a 3-4 times speedup over the T3D 
while maintaining the same scalability. Extrapolating these findings to serine implies that one iteration on a 256 
processor T3E would take roughly 4-5 rain. Assuming 15 iterations are required to converge the calculation it is 
clear that large-scale CCSD calculations are fast becoming routine. Our goal of performing CCSD calculations 
with 500 basis functions will probably soon be viable if the molecule has at least one element of symmetry 
and the core orbitals are frozen. Whether we would be able to perform the (T) calculation for such a system 
is doubtful, due probably to time constraints rather than memory! 

5. Conclusion 

We have successfully implemented an AO-driven CCSD(T) algorithm specially designed to run on MPPs. 
Sample calculations have been presented for glycine, cytosine and serine run on a CRAY T3D with up to 
256 processors. The results show that the program runs quite effectively in parallel, scaling well up to 256 
processors. The main limitation of this algorithm is memory, restricting our largest case to 238 basis functions. 
Preliminary calculations run on the Cray T3E show a 3-4 fold performance increase over those run on the T3D. 
This shows promise for the next generation MPPs to make large-scale coupled cluster calculations routine. 
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