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Summary. Three previously reported algorithms for the evaluation of the fourth- 
order triple excitation energy component in many-body perturbation theory have 
been compared. Their implementation on current Intel distributed memory 
parallel computers has been investigated. None of the algorithms, which were 
developed for shared memory computer architectures, performed well since they 
lead to prohibitive IO demands. A new algorithm suitable for distributed 
memory machines is suggested and its implementation on two Intel i860 super- 
computers is described. A high level of parallelism is obtained. 
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1. Introduction 

Over the last decade there has been significant interest in the role of triple 
excitations in a many-body perturbation theory expansion for the electron 
correlation energy and in the related coupled-cluster theory [1-36]. Early 
calculations [3-8,  10] established that the fourth-order triple excitation energy 
component is: (i) frequently just as important as the other fourth-order energy 
components and should, therefore, be included in any treatment which aims to 
go beyond third-order; (ii) observed to be particularly sensitive to the quality of 
the basis set employed and, therefore, requires the use of large systematically 
constructed basis sets; (iii) particularly important for multiply bonded systems; 
(iv) capable of extending the range of applicability of expansions based on a 
single determinantal reference function. 

The purpose of this paper is to explore potential algorithms for the evalua- 
tion of the fourth-order energy component involving triply excited intermediate 
states on distributed memory parallel processing computers, such as the Intel 
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i860 GAMMA and DELTA machines. For all of the algorithms included in this 
study, each of the processors may be performing different operations at the exact 
same time since, e.g., matrix multiplies being performed on each processor will in 
general consist of matrices of different sizes. Therefore, we limit our current 
study to MIMD distributed memory parallel computers since it will be much 
more difficult to map conventional quantum chemical algorithms onto a SIMD 
architecture. 

Algorithms [9] devised to evaluate the fourth-order many-body perturbation 
theory triple excitation energy component scale as n 7, where n is the number of 
basis functions. The evaluation of other fourth-order energy components leads to 
algorithms which scale as n 6 or less and thus a full fourth-order calculation is 
dominated by the triple excitation component. In many-body perturbation 
theory calculations the fourth-order triple excitation energy component is some- 
times heuristically neglected [37] or approximated using a truncated set of virtual 
orbitals [18]. Cullen and Zerner [38] and Alml6f [39] have suggested novel 
algorithms which scale as n 6. 

For calculations based on the coupled-cluster expansion (for a recent review 
see reference [40]), in which certain classes of diagrammatic terms are summed 
to high-order, the computational difficulties are compounded. It should be noted, 
however, that the first coupled-cluster calculation to include contributions from 
triply excited intermediate states was reported nearly twenty years ago by Paldus, 
Ci~ek and Shavitt [40], although to obtain a tractable algorithm these authors 
employed a minimum basis set. Whereas the cluster expansion based on all 
connected single and double excitation amplitudes (CCSD) gives rise to an 
algorithm which scales as n 6, when triple excitations are included an algorithm 
scaling as n 8 is obtained. It is, therefore, not surprising that a number of 
procedures for estimating the effects of triple excitations in coupled-cluster 
calculations have been developed. Lee et al. [12] simply added the fourth-order 
perturbation theory energy component arising from triply excited intermediate 
states to the correlation energy obtained from a CCSD calculation. 
Raghavachari [13] made a perturbative evaluation of the fourth-order energy 
associated with singly and triply excited intermediate states based on the wave 
function obtained from a coupled-cluster expansion involving only the connected 
double excitation amplitudes. Urban et al. [14] followed a similar procedure but 
employed the amplitudes obtained from a CCSD wave function. More recently 
a similar procedure, denoted CCSD(T) [21], has been shown to give very good 
results for a number of "difficult" systems [22-24]. All of these calculations can 
be carried out with algorithms which are modifications of those used for 
fourth-order many-body perturbation theory and which, therefore, scale as n 7. 

Recent years have seen the proliferation of new computer designs that 
employ parallel processing in one form or another in order to enhance perfor- 
mance. The advent of concurrent computation is already having a significant 
impact on molecular electronic structure calculations (for a recent review see 
[42]). In electron correlation studies, the linked diagram theorem of many-body 
perturbation theory effectively decouples a many-electron system involving a 
large number of electrons into a series of smaller problems each of which can be 
treated concurrently during a calculation. A number of algorithms for multipro- 
cessor computers with shared memory have been proposed for the evaluation of 
the fourth-order energy component associated with triply excited intermediate 
states [28 32, 34 36]. In Sect. 2, we review and compare these algorithms. In 
Sect. 3, an algorithm suitable for implementation on a distributed memory 
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computer is described and its performance characteristics on the Intel i860 
GAMMA and DELTA machines are presented. In Sect. 4 we compare the 
performance measured on the Intel machines with those observed on other 
contemporary supercomputers. Section 5 contains our conclusions. 

2. Algorithms for the evaluation of the fourth-order correlation energy component 
associated with triply excited intermediate states 

In this section we consider three algorithms for the evaluation of the fourth- 
order energy associated with triply excited intermediate states. All three algorithms 
have already been considered for parallel implementations on multiprocessor 
shared memory computers. However, no realistic calculations have been performed 
to explore the potential of these methods on distributed memory parallel 
computers. The first algorithm is based on a diagrammatic partitioning of the 
fourth-order triples energy and has recently been demonstrated by Moncrieff et 
al. [30] to run very efficiently and at near peak performance on multiple processors 
of a CRAY Y-MP/8. The second algorithm was developed by Rendell et al. [29] 
within the context of a triples correction to the CCSD energy and computes the 
total fourth-order triples energy. This method has also been implemented on 
multiple processors of a CRAY Y-MP/8 and showed similar performance 
characteristics to the diagrammatic approach of Moncrieffet al. The final algorithm 
was developed by Dupuis et al. [19] for the calculation of the total fourth-order 
perturbation theory energy. A brief discussion concerning the applicability of this 
latter method to a multiprocessor environment has been given by Watts and Dupuis 
[20], although to the best of our knowledge this has yet to be implemented. 

Each of the three algorithms considered involves a sum over three occupied 
orbital indices (ijk) and three virtual orbital indices (abc), together with an 
additional sum over an occupied or virtual orbital index. The algorithms differ in 
the order in which the ijk and abc summations are performed and the extent to 
which the triple excitation energy is analysed in terms of its diagrammatic 
components. These two factors determine: (i) the total number of floating point 
operations; (ii) the memory requirements; (iii) the efficiency of implementation 
on a vector processing machine; (iv) the efficiency of implementation on a 
parallel processing machine; (v) the input/output (IO) requirements for calcula- 
tions which use disk storage for the two-electron integrals. To distinguish 
between the three algorithms we shall label them by the order in which the ijk 
and abc summations are carried out, thus the bcjkia algorithm of Moncrieff et al. 
performs the summation over index a first (the inner fortran loop) and index b 
last (the outer fortran loop). 

2.1. The bcjkia algorithm of Moncrieff et al. 

The bcjkia algorithm of Moncrieff et al. [28, 35] forms the part of a concurrent 
computation Many-Body Perturbation Theory (ccMBPT) program that evalu- 
ates the energy associated with each of the 16 fourth-order diagrams that involve 
triply excited intermediate states (ccMBPT-4t). Such a diagrammatic analysis 
can be important; for example, for the beryllium ground state it is possible to 
perform a detailed angular momentum analysis of the different diagrammatic 
components using graphical methods [32, 33]. 
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Assuming real orbitals, fourth-order diagrammatic many-body perturbation 
theory gives 12 unique terms involving triply excited intermediates. Although 
these terms have been given previously [9] they are repeated here [Eqs. (1) (12)] 
for discussion purposes: 

where 

E4(AT) = - 1E 2 fijk;abc x f i j k ; acb /D~j  bc , ( 1 )  
ijk abc 

E4(Br) = -- 1 2 E fijk;ab c X fiikj;abc/D~j bc, (2) 
ijk abc 

abc E4(CT) = _ 1 E E gijk;abc X gijk;abc/Oijk, ( 3 )  
ijk abe 

abc E4(DT) = _ 1 E E gijk;abc × gikj;abc/Dijk, ( 4 )  
ijk abc 

E4(Er) = 2 E fjk;abc abc X f ik j ;acb /Di jk  , ( 5 )  
ijk abc 

1 E4 (Fr)  ~ 2  Z fijk;abc abc = X f i jk ;abc /Di jk  , ( 6 )  
ijk abc 

1 / /3  abc E4(Gr) = ~ • Z gijk;abc X g i jk ;abc /~ i jk  , (7) 
ijk abc 

/ /3  abc E4(HT) = E E gijk;abc × gikj;acb/~'ijk , (S) 
ijk abc 

/ / 3  abc E4(/r)  = -- ¼ 2 E fijk;abc X gikj;acb/Z.,ijk , (9) 
ijk abc 

/ /~  abc ( 1 O) E4(JT) ~-E E fijk; abc x gijk;abc/~,i jk , 
ijk abc 

/FI abc E4(MT) = 1 E  E fijk;abc N gijk;acb/JJijk , (11) 
ijk abc 

1 /FI abc E4(OT) =2 E 2 fiijk; abc X gikj;abc/a.,ijk , ( 1 2 )  
ijk abc 

fijk;abc = 2 ([idljb] - [ib / Jd])([da I kc] - [dclka])/D db (13) 
d 

g0k;abc = ~ ([jblla] -- [jalbl])([illkc] - [iclkl])/D~ b, (14) 
1 

D ;b.. " = ei + q + . . . .  e~ -- eb'" ',  (15) 

indices i j k . . . / a b c . . ,  are used to denote occupied/virtual spin orbitals, e are the 
orbital energies and the two-electron integrals are in charge density notation. 
Spin integration leads to 9 terms for the f [ E q .  (13)] and g [Eq. (14)] intermedi- 
ates. Using the italic indices O ' k . . . / a b c . . .  for occupied/virtual spatial orbitals, 
we have for example for the f intermediates: 

fijk;abc = T1 q- 7"2 + T3 + T4, (16) 

f ~ ; ~ ¢  T~ + T3, (17) ijk;abc 
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f~,~fb~ ~= T2 + T4 (18) 

~jk;~bc = T1 + T2, (19) 

f~;~b~ ~ = r I , (20) 

f ~ ' ~  = r2, (21) ijk;abc 

f§](~b~ ~ = T3 + T4, (22) 

f ~ ; ~  T3, (23) ijk;abe 

f ~ ; ~ "  = T4, (24) ijk;abc 

where the secondary intermediates T are defined as follows: 

T, = 2 [id Ijb][da [kc]/D db, (25) 
d 

7"2 = - 2 [idljb][dc Ika]/Ddb, (26) 
d . 

T3 = - 2 [ib ]jd][da I kc]/D ~b, (27) 
d 

T4 = 2 [ib Ijd][dc Ika]/D~ ~. (28) 
d 

Inspection of Eqs. (1)-(12) reveals that for a given ijkabc index combination it 
is necessary to have access to: 

f ijk;abe , f ijk;acb, f ik j;abc , f ik j;acb , (29) 

as well as the corresponding permutations of the g intermediates, before all the 
diagrammatic contributions can be evaluated. These four f and g permutations 
are also those required if the summations in Eqs. (1)-(12) are restricted 
according to: 

22--,2 2 2 2  (30) 
ijk abc b > c j > k i a 

This restricted summation will decrease the number of floating point operations 
by a factor of four. Hence for a fixed bcjk index combination the four different 
permutations [Eq. (29)] of the f and g intermediates are evaluated for all ia 
indices, denoted FbCJk(ia), FCbJk(ia), FbC'ki(ia) and FCb'kJ(ia). This is achieved at 
near optimal efficiency on a CRAY Y-MP/8 using matrix multiplications to 
obtain the secondary T intermediates [Eqs. (25)-(28)], e.g.: 

r~ = 2 [da Ikcl[idljbl/D~ b = ~ A lk'C(a, d)BJ'b(d, i), (31) 
d d 

rg = 2 [il Ijbl[lalkc]/DT[~ = 2 Bk'C( a, l)A 2J'b(l, i), (32) 
l d 

(where the denominator is incorporated into the quantity B) and summing these 
to produce the spin f reefand g intermediates shown in Eqs. (16)-(24). The final 
algorithm, as shown in Fig. 1, contains four matrix multiplications to form the 
spin free f intermediates for a given bcjk index permutation and four more to 
obtain the equivalent g intermediates. These matrix multiplications are repeated 
four times for the different permutations of bcjk shown in Eq. (29). Without 
restricting the summations according to Eq. (30), the number of floating point 
operations in the part of this algorithm which scales a s  n 7 is 16(non~3 4 _[_ nonv),4 3 
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inode = 0 
do 100 b = 1, nvirt 

read [by [vo], [vv [bo], [bo [vo] 
do l O O c = l ,  b 

read [cv Ivo], [vv Ico], [co [vol 
do 100 j = l, nocc 

do 1 0 0 k = l , j  
inode = inode + 1 

if (mod(inode,nodes).ne.me) go to 100 

I 
200 continue 

Form FbC;]k(ia) 

t f = • [da ]kc][idljb]/D} b ~ mxm(v:v:o) Eq. 25 

ts2 = - ~, [dc [ka][idlJb]/D~ b =- mxm(v:v:o) Eq. 26 

t~ = - Z [da [kc][ib [jd]/D} b =- mxm(v:v:o) Eq. 27 

tf4 = Z [de [ka][ib [jd]/D~ b ~ mxm(v:v:o) Eq. 28 

Formation of spin free intermediates 

f~]k;abc = Z  t f  Eqs. (16-24) 

I 
Form GbCJk(ia) 

t~ = ~ [illjbl[lalkc]/D7~ =- mxm(v:o:o) 

t~ = - ~ [jl[ib][ka [lc]/D 7f = mxm(v:o:o) 

t g = -~[i l lJbl[la IkcJ/DT# =_ mxm(v:o:o) 

t g = y, [jl[ib][ka [lc]/DTf~ =- mxm(v:o:o) 

Formation of spin free intermediates 

g,:k;a~c = ~ t~ 

I 
REPEAT 200 for f/yk;ac,, fkj;~bc, fkS;o~b 

I 
Sum ff~;~C(ia)/gJk;~C(ia) to E~,4 (me) E q s .  (1  - 12) 

I 
100 continue 

I 
global sum over nodes to give E~4 Fig. 1. The bcjkia (ccMBPT-4t) algorithm 

where no/nv is the number of occupied/virtual orbitals. Employing the restricted 
summation reduces this to 3 4 4 3 4(non~ + non~). The memory requirements for the 
storage of the intermediates scales as non~. 

Moncrieff et al. obtained a parallel version of the bcjkia algorithm by 
assigning tasks defined by different bcjk indices to different processors. This was 
accomplished on machines such as the CRAY Y-MP and IBM 3090 by the 
technique of "dynamic load balancing" using "global indices" under the control 
of a "lock" [32, 43]. The kernel of each of the tasks assigned to a single processor 
is a series of matrix multiplications. Each processor accumulates 12 partial sums 
corresponding to the different diagrammatic contributions given in Eqs. ( 1 ) -  
(12). These partial energies are summed across the different processors once all 
bcjk index combinations have been processed. Since parallelism is utilized at the 
nZn 2 level, given naon 2 processors the limiting computational rate would be that 
of a process of order n3. 
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The ccMBPT-4t code developed by Moncrieff et al. has been employed in a 
study of macro-tasking in a multi-job environment on a CRAY Y-MP/8 
computer. It has been demonstrated that there is no degradation in the perfor- 
mance of the system as the proportion of multitasked jobs is increased [31]. 
Further work has demonstrated that on a heavily loaded CRAY X-MP/4 system 
a multiprocessed job running at low scheduling priority using the dynamic load 
balancing technique employed in the ccMBPT-4t program is an effective "scav- 
enger", consuming almost all potentially idle cycles [44]. 

For large cases an external storage device will be required for the two- 
electron integrals. Since the largest memory requirements in the computation 
occurs for the [vvlvo ] integrals some means of paging these from disk should be 
implemented. Assuming that memory is available to hold quantities of length 
non~, the [vv Ivo] integrals can be accessed according to the b and c indices given 
in Eq. (30). This requires four buffers of length no n2 to hold the [vv Ibo], [by Ivo], 
[vv I co] and [cv I vo] integrals which are read from disk as detailed in Fig. 1. Given 
no restrictions on the indices b and c it is obvious from Fig. 1 that the [vvlvo] 
integral list will have to be read 2(nv + 1) times. Should it be necessary, the 
[ov lov ] integrals can also be paged into memory according to the b or c index 
simultaneously with the [vvlvo ] integrals. The minimum feasible memory require- 
ment of the method would appear to be four buffers of length non~, two of 

3 for the [oo ]or] integrals length non ~2 for the [or]or] integrals, an array of size nonv 
and several work arrays of length n 2. 

2.2. The ~jkabc algorithm of Rendell et al. 

Rendell et al. [29] have presented an algorithm which yields the total fourth- 
order triples energy component, E~4 , rather than the individual diagrammatic 
components. The expression for E;4 used by these authors is given in terms of 
spin restricted orbitals as: 

where 

Ept4 : g 1 2 ~,--rvv(A [jjabcijk "~- IJzbcavv ijk ~- l/lzcab'~fvr ijkJ\vvljzabCijk __ [J/'cba'~vr ijk J/L"ijk/Flabc, (33) 
ijk abc 

wabc,, ijk = P abe [bdlai][kcljd]/D~J - Z [ckljl][ia[lb]/D (34) ijk 
l 

and P abc is a permutation operator defined by: l ijk 

The algorithm for evaluating Eq. (33) used by Rendell et al. requires that 
3 be held in memory, so that for a given ijk index of W all abc quantities of size n~ 

were formed, denoted WiJk(abc). As evident from Eq. (34) and the definition of 
the permutation operator given in Eq. (35), this requires 6 pairs of matrix 
multiplications of the form: 

WiJk(abc) ~ ~ A lk(ac, d)BJi(d, b) - ~ Bk(ac, l)A 2J~(l, b), (36) 
d l 

which can be vectorized over the compound virtual index ac. Since wabc ' '  ijk is 
symmetric with respect to permutation of the index pairs ia, jb and kc it is only 
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do 100 i = 1,nocc 
read [vv [vi] 

do 100j=l,i 
read [vv ]vj] 

do 100k=l, j  
read [vv Irk] 

Set WiJk(abc) = 0 
I 

200 continue 

WiJ~(abc) ~ ~ [bd]ail[kc ]jdl/D~J =- mxm(v2:v:v) Eq. (34) 

W~Jk(abc) *-- ~ [ck ]jll[ia Itbl/D;? =- mxm(v2:o:v) Eq. (34) 
Sort W~Jk(abc) for next contribution 

(acb) (cab I (cba) (bca) ibac) 
REPEAT 200 with \ ikj }' \k(/ / '  \ kji }' \jki J' \ilk J Eq. (35) 

! 

Sum WiJ1"(abc) to E~4 Eq. (33) 
I 

100 continue Fig. 2. The ijkabc algorithm 

necessary to form WiJk(abc) such that i > j  > k. The final algorithm of Rendell et 
al. is outlined in Fig. 2. 

Without restricting the indices i, j and k, the presence of the 6 pairs of matrix 
multiplications to form W will make the number of floating point operations in 

3 4 4 3 the part of the algorithm which scales as/,/7 6(non~ +non~). Restricting i > j  > k 
reduces this to 3 4 4 3 (non~ + nonv), which is a factor of 4 less than the bcjkia 
(ccMBPT-4t) algorithm. 

Use of multiple processors on a CRAY Y-MP/8 was achieved by using 
a parallel matrix multiply routine and parallelizing the sorting operations 
and final energy summation over n~ orbitals. This algorithm would there- 
fore appear to tend towards a computational ratio of rt 6 in the limit of nv 
processors. 

As discussed by Rendell et al., the ideal minimum memory requirement for 
3 to store integral lists [vv ]vi], [vv ]vj] their algorithm is three buffers of  length n~ 

and [vv Irk], and two other scratch arrays of the same length. The [vv ]vo] 
integrals are read from disk approximately n 3 times. This memory requirement 
can be further reduced to only two buffers of length n 3, but at the expense of 
increased IO requirements. 

2.3. The abcijk algorithm of Dupuis et al. 

The algorithm recently described by Dupuis et al. also calculates the total fourth- 
order triple excitation energy component. In this algorithm the intermediates 
wabc(ijk) and not WiJk(abc) are stored in memory, i.e. the summations are 
performed in the order abcijk. This algorithm therefore has a much smaller 

3 than that of Rendell et al., but involves the same memory requirement, "~no, 
number of floating point operations. However for small values of no the 
algorithm is less suitable for vector processing as the vector loop in Eq. (36) is 
only of order no 2. 
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3. Parallel algorithms for distributed memory computers 

The algorithms described in the previous section have been implemented on 
"conventional" supercomputers, machines consisting of a small number of 
powerful processors sharing a common memory. In this section we consider the 
problem of implementation on "novel" architecture machines with a larger 
number of (usually less powerful) processors each with its own local memory. 
Such machines are typified by the Intel i860 hypercube, the so-called G A M M A  
machine, and the more recent Intel i860 DELTA machine. 

These machines consist of a system of tightly coupled processing elements 
(processor with associated memory) each performing separate tasks and commu- 
nicating via message passing. Disk access is available through a concurrent file 
system in which each processing element, or node, can "simultaneously" access 
the same file. The relevant specifications of the distributed memory computers 
employed in the present study are collected in Table 1. 

We are interested in performing calculations on large systems, which may 
contain, for example, nv ~ 500 and no "~ 50 and have C, or C2~ symmetry. On 
the Intel i860 G A M M A / D E L T A  machines used here there are 8/16 Mybtes of 
memory on each node (although such machines can support up to 32 Mbytes 
of memory per node). This being the case, it would appear prudent not to 

3 assume that quantities of the size n~ can be held on each node; a more realistic 
maximum would be no n2. Consequently, the bcjkia and abcijk algorithms 
which meet this requirement would appear potentially suited to implementa- 
tion on the Intel machines. On the other hand, the method of Rendell et al. 
does not lend itself to a distributed memory architecture without incurring 
a large amount of internode communications. Ideally the Rendell et al. al- 
gorithm should distribute the formation of the WiJk(abc) intermediates over the 

2 various nodes, but this would necessitate storing quantities of length n v on each 
node. 

In view of the factor of 4 difference in the n 7 floating point operation count 
between the bcjkia and abcijk algorithms, we began by investigating the perfor- 
mance of the abcijk scheme on the Intel i860 G A MMA  machine. This algorithm 
is illustrated in Fig. 3. In cases where the size of the calculation is sufficiently 
small, all integrals can be held on each node and there is no need to use external 
disk storage. The results obtained using between 1 and 32 nodes are given in 

Table 1. Specifications of the Intel i860 distributed memory computers employed in the present 
experiments 

GAMMA DELTA 

Installation SERC Daresbury Laboratory a California Institute of Technology 
Topology Hypercube Mesh 
No of Nodes 32 16 x 32 (512) 
Memory per Node 8 Mbytes 16 Mbytes 
CycIe time 40 MHz 40 MHz 
Peak Performance 40 Mflops 40 Mflops 

per Node 
Peak Performance ' 1.28 Gflops 20.48 Gflops 

a For further details see Ref. [45] 
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Table 2. The performance of the abcijk parallel 
algorithm obtained when all integrals are held in 
memory on each node of  the Intel i860 
G A M M A  machine" 

No. of  Wall clock Speed 
processors time (sec) increase 

1 139.6 1.00 
2 69.9 2.00 
4 35.0 3.99 
8 17.6 7.93 

16 8.8 15.79 
32 4.5 31.24 

a Number of  occupied/virtual orbitals per sym- 
metry [4, 3, 2, 1/10, 12, 14, 16]; a total of 10 oc- 
cupied and 52 virtual orbitals 

Table 2. As expected, the results indicate a near perfect scaling of computation 
time with the number of nodes. 

When the size of the basis set increases it is no longer possible to hold all 
integrals on each node and it is necessary to page through (at least) the [vv ]vo] 
integrals stored on the concurrent file system. This can conveniently be achieved 
by having four buffers of length no n2 for the blocks of integrals [av ]vo], [vv lao], 
[by I vo] and [vv [bo] which are read from disk as shown in Fig. 3. The final 
procedure will effectively read the [vvlvo] integrals 2(n~ + 1) times, which is 
identical to the IO requirements of the out-of-core version of the bcjkia proce- 
dure discussed in Sec. 2.1. The results obtained for the same calculation reported 
in Table 2, but now reading the [vvlvo ] integrals from disk, are given in Table 3. 

do 100 a = 1,nvirt 
read [av I vo] and [vv ]ao] 

do 1 0 0 b = l , a  
read [by I vo] and [vv I bo] 

do 1 0 0 c = l , b  
Set W°bC(ijk) = 0 

I 
200 continue 

WabC(ijk) ,-- ~ [bdlai][kc Ijd]/D ~] =-- mxm(o2:v:o) 

WabC(ijk) ~- ~,[ck Ijl][ia I lb]/D~ b =- mxm(o2:o:o) 

Sort wabc(ijk) for next contribution 

Repeat 200 with , \ k j i J '  \ j k i J '  \ j i k J  Eq. (35) 

Sum WabC(ijk) to E~4 Eq. (33) 

I 
100 continue Fig. 3. The abcijk algorithm 
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Table 3. The performance of the abcijk parallel algorithm obtained when the 
[vv Ivo] integrals read from the concurrent file system using synchronous IO on 
the Intel i860 GAMMA machine a 

No. of Max IO Max CPU Wall clock Speed 
processors time (sec) time (sec) time (sec)  increase b 

l 238.7 155.4 394.1 1.00 
2 147.5 72.1 219.5 1.80 
4 136.1 36.1 172.1 2.29 
8 107.2 18.1 125.3 3.15 

16 124.4 9.4 133.4 2.95 

a Number of occupied/virtual orbitals per symmetry 
total of 10 occupied and 52 virtual orbitals 
b Based on the wall clock time 

[4, 3, 2, 1/10, 12, 14, 16]; a 

It is immediately apparent that even on 1 node the process is totally IO bound, 
and while there is some gain from using multiple nodes the asymptotic 
computational  rate is quickly reached. Furthermore, the relative ratio of  the 
CPU (central processing unit) to IO time suggests that no great improve- 
ments can be made by using asynchronous IO, but rather that the inherent 
IO requirements of  the algorithm substantially exceed the current capabilities 
of  the Intel i860 G A M M A  machine. Although future releases of  the operat- 
ing system and associated improvements in the IO subsystem may lead to 
improved IO transfer rates, it would be necessary to increase the IO transfer 
rate by at least one order of  magnitude before this algorithm would become 
viable. 

A possible solution to this problem may exist if all [vv]vo] integrals can be 
held on the combined memory  of all nodes. A systolic loop could then be 
envisaged in which blocks of  integrals of  length non~ are passed around the 
loop in sequence with the indices a and b shown in Fig. 3. Since the communi- 
cation speed on the Intel is greater than the IO transfer rate, this would 
theoretically give improved performance. However, the number of  occupied and 
virtual orbitals would strongly dictate the minimum number of  nodes that must 
be used to perform a calculation and this is probably not a desirable feature, 
e.g. it may require 100 nodes to perform a calculation containing 100 virtual 
orbitals. 

As mentioned above and discussed in Sect. 2.1, an out-of-core version of  the 
bcjkia algorithm has an identical IO requirement for the [vv I vo] integrals as the 
abcijk procedure. Thus, despite the potential for being easily implemented on the 
Intel i860 machines, it is also liable to suffer from poor  IO characteristics. To 
achieve a highly scalable method suitable for current Intel computers it would 
seem imperative that the IO requirements be reduced to an absolute minimum. 
From the formula for E~4 given in Eq. (33) it is difficult to see how this can be 
improved, although for the bcjkia algorithm this is not the case. Examination of 
Eqs. (1 ) - (12)  reveals that the only indices to remain constant in all the different 
permutations of  the f and g intermediates are i and a. For  the f intermediate the 
indices i and a derive from integrals [iv Iov] and [av Ivo]/[vv [ao] respectively and 
from [oa I ovl and [io I ovl/[oo l ivl integrals for the g intermediate. Consequently if 
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the summations in Eqs. (1) (12) are reordered such that: 

E E  ~ E E  E E ,  (37) 
i jk  abc  a i j > k bc  

it is possible to read the [vv[vo] integrals from disk in sequence with the outer 
index of the summation. The [vv]vo] integrals are effectively read from disk only 
twice (in the form [av ]vo] and [vv ]ao]). Ideally the other integrals ([ov lov ] and 
[vo [oo]) would be stored in memory on each node. However, as shown above 
these can be read from disk in sequence with either index a or i, or alternatively 
distributed over the global memory of the machine and retrieved as required. An 
algorithm which reads all integrals from disk is illustrated in Fig. 4. We term this 
the aijkbc algorithm. The memory requirement on each node is three buffers of 
length non~ and three of length nZn~ as well as some///2 buffers. 

inode = 0 
do 100 a = 1,nvirt 

read [av I~o], [~ [ao], [ao I~ol 
do 100 i =  1,nocc 

read [io ]ovl, [oo liv], [vilvo] 
inode = inode + 1 

if (mod(inode,nodes).ne.me) go to 100 
I 

do I00 j = 1,nocc 
do 1 0 0 k = l , j  

I 
200 continue 

Form FiJk;a(bc) 

tf~ = y ,  Ida ]ke][id]jb]/D~ b =- mxm(v:v:v) 

t r = - •  [dc [ka][id]jb]/D~b ==- mxm(v:v:v) 

K3 = - Z [da ]kc][ib ]jd]/D@ - mxm(v:v:v) 

t~ = E [dc Ikal[ib IJdl /D}  b = mxm(v:v:v) 

Formation of spin free intermediates 

~jk~abc = Z  tf Eqs. (16 24) 
I 

Form Giyk;a(bc) 

tgl = Z [il Ijbl[la]kc]/D 7f~ ~ mxm(v:o:v) 

t g = - ~ [fllib][ka Ilc]/D7~ ' =- mxm(v:o:v) 

t g = ~ [illjb][lalkc]/D7[ =- mxm(v:o:v) 

t~ = ~ [jl[ib][ka IIc]/DTf ~ mxm(v:o:v) 
Formation of spin free intermdeiates 

I 
REPEAT 200 for f~kj;~b~ 

I 
Sumfk;bC(ia)/g/k;bc(ia) to ET4(me) Eqs. (1-12) 

I 
100 continue 

I 
global sum over nodes to give E~4 Fig. 4. The aijkbc algorithm 
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T h e  n 7 floating point operation count of this new algorithm is the same as 
that of the original diagrammatic ccMBPT-4t approach, but the IO requirements 
are much improved. Parallelism of the code inside the outermost loop would 
ensure that each node operates on a distinct part of the [vv I vo] integral file, 
however this could lead to an inefficient load balance if the number of nodes is 
not a factor of n~, and would also yield a limiting computational rate of n 6. We 
have therefore parallelized the code inside the next loop (as shown in Fig. 4) 
which potentially leads to a rate limiting computational rate of n 5. While it 
would be possible to parallelize inside the fourth (k) loop of Fig. 4, this could 
lead to several processors needing to read the same part of the integral files at the 
same time and degrade the overall performance. 

In Table 4 we present timings for the new algorithm on different numbers of 
nodes for a calculation involving 4 occupied and 112 virtual orbitals. In these 
calculations, not only were the [vvlvo ] integrals paged into memory, but also the 
Joy I or] and [oo I ov] integals. The results show substantially better IO performance 
than those presented in Table 3. On a single processor and using synchronous IO 
approximately 207 seconds is required to read the integrals from disk. However, 
this can be reduced to about 19 seconds if asynchronous IO is used. Although as 
the number of nodes increases the asynchronous IO times exhibit a somewhat 
random behavior, the results are not as unacceptable as the values found in 
Table 3. The variation in the IO time is a consequence of conflicts with other 
users wishing to perform IO. For the CPU time alone, a speed increase of 222 is 
observed when employing 256 CPUs relative to one CPU, but this factor is 
reduced to 183 when the IO time is included. 

The results in Table 4 for no = 4 and n~ = 112 also illustrate the effects of 
inefficient load balancing. As shown in Fig. 4, the code is parallel at the nvno 
level, which in this case corresponds to 448 (4 x 112) tasks. Therefore, if the 
number of nodes is not a factor of 448 there will be an inefficient load balance. 

Table 4. The performance of  the aijkbc parallel algorithm obtained on the Intel 
i860 DELTA machine reading the [vv Ivo], [vo Ivo] and [vo Ioo] integrals from the 
concurrent file system using asynchronous IO. There are 4 (112) occupied 
(virtual) orbitals and no symmetry giving rise to inefficient load balancing (see 
text for details) 

No. of  Max IO Max CPU Wall clock Speed 
processors time (sec) time (sec) time (sec) increase a 

1 18.9 b 12218.7 12237.6 1.00 
4 7.4 3060.1 3067.3 3.99 

16 10.4 765.8 775.2 15.79 
36 3.7 357.4 360.5 33.95 
64 3.8 192.6 196.1 62.40 

100 6.1 137.4 142.6 85.81 
144 14.4 109.9 123.8 98.85 
196 10.9 82.5 92.7 132.01 
256 12.0 55.0 66.7 183.47 

a Based on the wall clock time 
b The equivalent IO time using synchronous IO is approximately 207 seconds 
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Table 5. The performance of the aijkbc parallel algorithm obtained on the Intel 
i860 DELTA machine reading the [vv ]vo], [vo Ivo] and [vo Ioo] integrals from the 
concurrent file system using asynchronous IO. There are 4 (128) occupied 
(virtual) orbitals and no symmetry giving rise to efficient load balancing (see 
text for details) 

No. of Max IO Max CPU Wall clock Speed 
processors time (sec) time (sec) time (see) increase" 

16 5.5 1734.2 1739.5 1.00 b 
32 53.7 866.7 919.7 1.89 
64 5.6 433.4 438.8 3.96 

128 9.3 216.9 225.8 7.70 
256 16.2 108.8 124.8 13.94 

a Based on the wall clock time 
b Note that the 16 node time is the reference point for these ratios 

The results obtained using 4, 16 and 64 nodes are ideally load balanced, and 
based on the CPU time alone the speed up (3.99, 15.96, 63.44) is very good. For 
the other results, the number of nodes is not a factor of the number of tasks, and 
since the number of nodes is tending towards the number of  tasks the effect on 
the speed up is quite drastic. 

In Table 5 we report results obtained for no = 4 and n~--128, a case for 
which the number of nodes is always an exact factor of the number of tasks. The 
timing obtained on 256 nodes shows a speed up of  15.9 relative to the 16 node 
timing and based solely on the CPU time. This result is to be compared with 13.9 
for the no = 4 and n~ = 112 calculation. 

4. Discussion 

The results presented in Table 5 indicate an 87.1% increase in the efficiency of  
the computation for the 256 processor case with respect to the 16 processor 
case. With this level of parallelism a 256 processor machine could deliver 
8.9 Gflops given a rate of  execution of 40 Mflops per node. 

The total wall clock times required to carry out calculations with no = 4, 
n~ = 112, 128 on the 6 processor IBM 3090/600J VF, the 8 processor CRAY 
Y-MP/8128 and the 256 processor Intel i860 DELTA machine are compared in 
Table 6. The rate of execution achieved on the CRAY Y-MP for the largest 
case was 2.284 Gflops [35] which should be compared with the theoretical peak 
performance of 2.667 Gflops. The peak performance of the 256 processor Intel 
i860 DELTA machine is 3.84 times that of the CRAY Y-MP/8128. However, 
for our largest calculation the wall clock time measured on the CRAY Y-MP/8 
is 73% of that obtained for the Intel machine. Although a significant level of 
parallelism has been built in to the code the rate of execution observed on each 
of the Intel nodes falls well below the peak rate. Each of the tasks assigned to a 
given node involves a part which scales a s  n 7 involving a series of  multiplica- 
tions and a part which scales a s  17 6 which is required to assemble the contribu- 
tions to the different diagrammatic components. On the Intel machine, this 
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Table 6. Comparison of the total wall clock times observed in the present 
experiments with previous work 

285 

Machine No. of processors Wall clock time (sec) 
n~ = 112 n v = 128 

IBM 3090/600J VF a 6 513.1 839.4 
CRAY Y-MP/8128 b 8 56.4 91.4 
Intel i860 DELTA c 256 66.7 124.8 

a Ref. [36] 
b Ref. [30] 

e Present work 

second part is found to demand about 2/3 of the time required for each task, a 
situation which does not persist on the CRAY Y-MP where effective vectoriza- 
tion is obtained. Using the data given by Moncrieff et al. [35] for the CRAY 
Y-MP/8128 and the wall clock times given in Table 6 for the nv = 128 case, we 
estimate the rate of execution on 256 nodes of the Intel i860 DELTA machine 
to be 1.67 Gflops. This estimated computational rate could be improved by 
restructuring the n 6 component of the code specifically for the i860, and by 
future releases of the i860 FORTRAN-compiler which will better exploit the 
capability of i860. 

5. Conclusions 

We have compared three different algorithms, originally developed for shared 
memory parallel processing architectures, for the evaluation of the fourth-order 
triple excitation energy component in many-body perturbation theory and 
investigated their implementation on distributed memory parallel computers. 
The algorithm of Moncrieff et al. evaluates the energy corresponding to each of 
the diagrammatic terms. The other algorithms of Rendell et al. and Dupuis et 
al. yield the total triple excitation energy. The algorithms, which can be labelled 
by the order in which summation over three occupied orbital indices and three 
virtual orbital indices are carried out, differ in: the number of floating point 
operations they involve (the algorithm of Moncriefl et al. requires 4 times the 
number arising in the other two), the memory requirements (the algorithm of 

3 intermediates) and the IO demands Rendell et al. requires the storage of ~nv 
when two-electron integrals are stored on disk. None of the algorithms 
developed for shared memory architectures performed well when implemented 
on a distributed memory machine. All three algorithms were found to lead to 
prohibitive IO demands. However, it was discovered that the algorithm of 
Moncrieff et al. could be modified to minimize the IO requirements. This 
new algorithm and its implementation on two Intel i860 machines has been 
described. A high level of parallelism has been obtained, but the rather 
poor performance of each node resulted in a disappointing overall rate of 
computation. 

A more general conclusion evident from this investigation is that direct or 
"superdirect" algorithms, or hybrid schemes, will undoubtedly find favor as 
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more sophisticated distributed memory parallel computers are developed. That 
is, algorithms in which a minimum of disk access is used in trade for a more 
CPU intensive load will be essential since currently, advances in processing 
speed are increasing much more rapidly than advances in IO performance. 
For the triples component of the fourth-order perturbation theory energy 
a hybrid scheme whereby the [vv I vo] integrals are computed as needed and 
the [or Joy] and [oo Joy] integrals are stored on disk and read in as needed 
would probably show much better scalable performance with respect to the 
number of nodes than any of the algorithms described here. We will be 
investigating such an algorithm and the results of that study will be reported in 
due course. 
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