
Theor Chim Acta (1993) 84:271-287 Theoretica
Chimica Acta
© Springer-Verlag 1993

Evaluation of the contribution
from triply excited intermediates
to the fourth-order perturbation theory energy
on Intel distributed memory supercomputers

Alistair P. Rendell 1, Timothy J. Lee 2, Andrew Komornicki 3'*, and Stephen Wilson 4
SERC Daresbury Laboratory, Warrington WA4 4AD, UK

2 NASA Ames Research Center, Moffett Field, CA 94035, USA
3 Polyatomics Research Institute, Mountain View, CA 94043, USA
4 SERC Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, UK

Received October 1, 1991/Accepted January 3, 1992

Summary. Three previously reported algorithms for the evaluation of the fourth-
order triple excitation energy component in many-body perturbation theory have
been compared. Their implementation on current Intel distributed memory
parallel computers has been investigated. None of the algorithms, which were
developed for shared memory computer architectures, performed well since they
lead to prohibitive IO demands. A new algorithm suitable for distributed
memory machines is suggested and its implementation on two Intel i860 super-
computers is described. A high level of parallelism is obtained.

Key words: Fourth-order triple excitation energy Many-body perturbation
theory Intel distributed memory parallel computers

1. Introduction

Over the last decade there has been significant interest in the role of triple
excitations in a many-body perturbation theory expansion for the electron
correlation energy and in the related coupled-cluster theory [1-36]. Early
calculations [3-8, 10] established that the fourth-order triple excitation energy
component is: (i) frequently just as important as the other fourth-order energy
components and should, therefore, be included in any treatment which aims to
go beyond third-order; (ii) observed to be particularly sensitive to the quality of
the basis set employed and, therefore, requires the use of large systematically
constructed basis sets; (iii) particularly important for multiply bonded systems;
(iv) capable of extending the range of applicability of expansions based on a
single determinantal reference function.

The purpose of this paper is to explore potential algorithms for the evalua-
tion of the fourth-order energy component involving triply excited intermediate
states on distributed memory parallel processing computers, such as the Intel

* Mail ing address: 1101 San Antonio Road, Suite 420, Mountain View, CA 94043, USA

272 A.P. Rendell et al.

i860 GAMMA and DELTA machines. For all of the algorithms included in this
study, each of the processors may be performing different operations at the exact
same time since, e.g., matrix multiplies being performed on each processor will in
general consist of matrices of different sizes. Therefore, we limit our current
study to MIMD distributed memory parallel computers since it will be much
more difficult to map conventional quantum chemical algorithms onto a SIMD
architecture.

Algorithms [9] devised to evaluate the fourth-order many-body perturbation
theory triple excitation energy component scale as n 7, where n is the number of
basis functions. The evaluation of other fourth-order energy components leads to
algorithms which scale as n 6 or less and thus a full fourth-order calculation is
dominated by the triple excitation component. In many-body perturbation
theory calculations the fourth-order triple excitation energy component is some-
times heuristically neglected [37] or approximated using a truncated set of virtual
orbitals [18]. Cullen and Zerner [38] and Alml6f [39] have suggested novel
algorithms which scale as n 6.

For calculations based on the coupled-cluster expansion (for a recent review
see reference [40]), in which certain classes of diagrammatic terms are summed
to high-order, the computational difficulties are compounded. It should be noted,
however, that the first coupled-cluster calculation to include contributions from
triply excited intermediate states was reported nearly twenty years ago by Paldus,
Ci~ek and Shavitt [40], although to obtain a tractable algorithm these authors
employed a minimum basis set. Whereas the cluster expansion based on all
connected single and double excitation amplitudes (CCSD) gives rise to an
algorithm which scales as n 6, when triple excitations are included an algorithm
scaling as n 8 is obtained. It is, therefore, not surprising that a number of
procedures for estimating the effects of triple excitations in coupled-cluster
calculations have been developed. Lee et al. [12] simply added the fourth-order
perturbation theory energy component arising from triply excited intermediate
states to the correlation energy obtained from a CCSD calculation.
Raghavachari [13] made a perturbative evaluation of the fourth-order energy
associated with singly and triply excited intermediate states based on the wave
function obtained from a coupled-cluster expansion involving only the connected
double excitation amplitudes. Urban et al. [14] followed a similar procedure but
employed the amplitudes obtained from a CCSD wave function. More recently
a similar procedure, denoted CCSD(T) [21], has been shown to give very good
results for a number of "difficult" systems [22-24]. All of these calculations can
be carried out with algorithms which are modifications of those used for
fourth-order many-body perturbation theory and which, therefore, scale as n 7.

Recent years have seen the proliferation of new computer designs that
employ parallel processing in one form or another in order to enhance perfor-
mance. The advent of concurrent computation is already having a significant
impact on molecular electronic structure calculations (for a recent review see
[42]). In electron correlation studies, the linked diagram theorem of many-body
perturbation theory effectively decouples a many-electron system involving a
large number of electrons into a series of smaller problems each of which can be
treated concurrently during a calculation. A number of algorithms for multipro-
cessor computers with shared memory have been proposed for the evaluation of
the fourth-order energy component associated with triply excited intermediate
states [28 32, 34 36]. In Sect. 2, we review and compare these algorithms. In
Sect. 3, an algorithm suitable for implementation on a distributed memory

Fourth-order perturbation theory energy 273

computer is described and its performance characteristics on the Intel i860
GAMMA and DELTA machines are presented. In Sect. 4 we compare the
performance measured on the Intel machines with those observed on other
contemporary supercomputers. Section 5 contains our conclusions.

2. Algorithms for the evaluation of the fourth-order correlation energy component
associated with triply excited intermediate states

In this section we consider three algorithms for the evaluation of the fourth-
order energy associated with triply excited intermediate states. All three algorithms
have already been considered for parallel implementations on multiprocessor
shared memory computers. However, no realistic calculations have been performed
to explore the potential of these methods on distributed memory parallel
computers. The first algorithm is based on a diagrammatic partitioning of the
fourth-order triples energy and has recently been demonstrated by Moncrieff et
al. [30] to run very efficiently and at near peak performance on multiple processors
of a CRAY Y-MP/8. The second algorithm was developed by Rendell et al. [29]
within the context of a triples correction to the CCSD energy and computes the
total fourth-order triples energy. This method has also been implemented on
multiple processors of a CRAY Y-MP/8 and showed similar performance
characteristics to the diagrammatic approach of Moncrieffet al. The final algorithm
was developed by Dupuis et al. [19] for the calculation of the total fourth-order
perturbation theory energy. A brief discussion concerning the applicability of this
latter method to a multiprocessor environment has been given by Watts and Dupuis
[20], although to the best of our knowledge this has yet to be implemented.

Each of the three algorithms considered involves a sum over three occupied
orbital indices (ijk) and three virtual orbital indices (abc), together with an
additional sum over an occupied or virtual orbital index. The algorithms differ in
the order in which the ijk and abc summations are performed and the extent to
which the triple excitation energy is analysed in terms of its diagrammatic
components. These two factors determine: (i) the total number of floating point
operations; (ii) the memory requirements; (iii) the efficiency of implementation
on a vector processing machine; (iv) the efficiency of implementation on a
parallel processing machine; (v) the input/output (IO) requirements for calcula-
tions which use disk storage for the two-electron integrals. To distinguish
between the three algorithms we shall label them by the order in which the ijk
and abc summations are carried out, thus the bcjkia algorithm of Moncrieff et al.
performs the summation over index a first (the inner fortran loop) and index b
last (the outer fortran loop).

2.1. The bcjkia algorithm of Moncrieff et al.

The bcjkia algorithm of Moncrieff et al. [28, 35] forms the part of a concurrent
computation Many-Body Perturbation Theory (ccMBPT) program that evalu-
ates the energy associated with each of the 16 fourth-order diagrams that involve
triply excited intermediate states (ccMBPT-4t). Such a diagrammatic analysis
can be important; for example, for the beryllium ground state it is possible to
perform a detailed angular momentum analysis of the different diagrammatic
components using graphical methods [32, 33].

274 A.P. Rendell et al.

Assuming real orbitals, fourth-order diagrammatic many-body perturbation
theory gives 12 unique terms involving triply excited intermediates. Although
these terms have been given previously [9] they are repeated here [Eqs. (1) (12)]
for discussion purposes:

where

E4(AT) = - 1E 2 fijk;abc x f i j k ; acb /D~j bc , (1)
ijk abc

E4(Br) = -- 1 2 E fijk;ab c X fiikj;abc/D~j bc, (2)
ijk abc

abc E4(CT) = _ 1 E E gijk;abc X gijk;abc/Oijk, (3)
ijk abe

abc E4(DT) = _ 1 E E gijk;abc × gikj;abc/Dijk, (4)
ijk abc

E4(Er) = 2 E fjk;abc abc X f ik j ;acb /Di jk , (5)
ijk abc

1 E4 (Fr) ~ 2 Z fijk;abc abc = X f i jk ;abc /Di jk , (6)
ijk abc

1 / /3 abc E4(Gr) = ~ • Z gijk;abc X g i jk ;abc /~ i jk , (7)
ijk abc

/ /3 abc E4(HT) = E E gijk;abc × gikj;acb/~'ijk , (S)
ijk abc

/ / 3 abc E4(/r) = -- ¼ 2 E fijk;abc X gikj;acb/Z.,ijk , (9)
ijk abc

/ /~ abc (1 O) E4(JT) ~-E E fijk; abc x gijk;abc/~,i jk ,
ijk abc

/FI abc E4(MT) = 1 E E fijk;abc N gijk;acb/JJijk , (11)
ijk abc

1 /FI abc E4(OT) =2 E 2 fiijk; abc X gikj;abc/a.,ijk , (1 2)
ijk abc

fijk;abc = 2 ([idljb] - [ib / Jd])([da I kc] - [dclka])/D db (13)
d

g0k;abc = ~ ([jblla] -- [jalbl])([illkc] - [iclkl])/D~ b, (14)
1

D ;b.. " = ei + q + e~ -- eb'" ', (15)

indices i j k . . . / a b c . . , are used to denote occupied/virtual spin orbitals, e are the
orbital energies and the two-electron integrals are in charge density notation.
Spin integration leads to 9 terms for the f [E q . (13)] and g [Eq. (14)] intermedi-
ates. Using the italic indices O ' k . . . / a b c . . . for occupied/virtual spatial orbitals,
we have for example for the f intermediates:

fijk;abc = T1 q- 7"2 + T3 + T4, (16)

f ~ ; ~ ¢ T~ + T3, (17) ijk;abc

Fourth-order perturbation theory energy 275

f~,~fb~ ~= T2 + T4 (18)

~jk;~bc = T1 + T2, (19)

f~;~b~ ~ = r I , (20)

f ~ ' ~ = r2, (21) ijk;abc

f§](~b~ ~ = T3 + T4, (22)

f ~ ; ~ T3, (23) ijk;abe

f ~ ; ~ " = T4, (24) ijk;abc

where the secondary intermediates T are defined as follows:

T, = 2 [id Ijb][da [kc]/D db, (25)
d

7"2 = - 2 [idljb][dc Ika]/Ddb, (26)
d .

T3 = - 2 [ib]jd][da I kc]/D ~b, (27)
d

T4 = 2 [ib Ijd][dc Ika]/D~ ~. (28)
d

Inspection of Eqs. (1)-(12) reveals that for a given ijkabc index combination it
is necessary to have access to:

f ijk;abe , f ijk;acb, f ik j;abc , f ik j;acb , (29)

as well as the corresponding permutations of the g intermediates, before all the
diagrammatic contributions can be evaluated. These four f and g permutations
are also those required if the summations in Eqs. (1)-(12) are restricted
according to:

22--,2 2 2 2 (30)
ijk abc b > c j > k i a

This restricted summation will decrease the number of floating point operations
by a factor of four. Hence for a fixed bcjk index combination the four different
permutations [Eq. (29)] of the f and g intermediates are evaluated for all ia
indices, denoted FbCJk(ia), FCbJk(ia), FbC'ki(ia) and FCb'kJ(ia). This is achieved at
near optimal efficiency on a CRAY Y-MP/8 using matrix multiplications to
obtain the secondary T intermediates [Eqs. (25)-(28)], e.g.:

r~ = 2 [da Ikcl[idljbl/D~ b = ~ A lk'C(a, d)BJ'b(d, i), (31)
d d

rg = 2 [il Ijbl[lalkc]/DT[~ = 2 Bk'C(a, l)A 2J'b(l, i), (32)
l d

(where the denominator is incorporated into the quantity B) and summing these
to produce the spin f reefand g intermediates shown in Eqs. (16)-(24). The final
algorithm, as shown in Fig. 1, contains four matrix multiplications to form the
spin free f intermediates for a given bcjk index permutation and four more to
obtain the equivalent g intermediates. These matrix multiplications are repeated
four times for the different permutations of bcjk shown in Eq. (29). Without
restricting the summations according to Eq. (30), the number of floating point
operations in the part of this algorithm which scales a s n 7 is 16(non~3 4 _[_ nonv),4 3

276 A.P. Rendell et al.

inode = 0
do 100 b = 1, nvirt

read [by [vo], [vv [bo], [bo [vo]
do l O O c = l , b

read [cv Ivo], [vv Ico], [co [vol
do 100 j = l, nocc

do 1 0 0 k = l , j
inode = inode + 1

if (mod(inode,nodes).ne.me) go to 100

I
200 continue

Form FbC;]k(ia)

t f = • [da]kc][idljb]/D} b ~ mxm(v:v:o) Eq. 25

ts2 = - ~, [dc [ka][idlJb]/D~ b =- mxm(v:v:o) Eq. 26

t~ = - Z [da [kc][ib [jd]/D} b =- mxm(v:v:o) Eq. 27

tf4 = Z [de [ka][ib [jd]/D~ b ~ mxm(v:v:o) Eq. 28

Formation of spin free intermediates

f~]k;abc = Z t f Eqs. (16-24)

I
Form GbCJk(ia)

t~ = ~ [illjbl[lalkc]/D7~ =- mxm(v:o:o)

t~ = - ~ [jl[ib][ka [lc]/D 7f = mxm(v:o:o)

t g = -~[i l lJbl[la IkcJ/DT# =_ mxm(v:o:o)

t g = y, [jl[ib][ka [lc]/DTf~ =- mxm(v:o:o)

Formation of spin free intermediates

g,:k;a~c = ~ t~

I
REPEAT 200 for f/yk;ac,, fkj;~bc, fkS;o~b

I
Sum ff~;~C(ia)/gJk;~C(ia) to E~,4 (me) E q s . (1 - 12)

I
100 continue

I
global sum over nodes to give E~4 Fig. 1. The bcjkia (ccMBPT-4t) algorithm

where no/nv is the number of occupied/virtual orbitals. Employing the restricted
summation reduces this to 3 4 4 3 4(non~ + non~). The memory requirements for the
storage of the intermediates scales as non~.

Moncrieff et al. obtained a parallel version of the bcjkia algorithm by
assigning tasks defined by different bcjk indices to different processors. This was
accomplished on machines such as the CRAY Y-MP and IBM 3090 by the
technique of "dynamic load balancing" using "global indices" under the control
of a "lock" [32, 43]. The kernel of each of the tasks assigned to a single processor
is a series of matrix multiplications. Each processor accumulates 12 partial sums
corresponding to the different diagrammatic contributions given in Eqs. (1) -
(12). These partial energies are summed across the different processors once all
bcjk index combinations have been processed. Since parallelism is utilized at the
nZn 2 level, given naon 2 processors the limiting computational rate would be that
of a process of order n3.

Fourth-order perturbation theory energy 277

The ccMBPT-4t code developed by Moncrieff et al. has been employed in a
study of macro-tasking in a multi-job environment on a CRAY Y-MP/8
computer. It has been demonstrated that there is no degradation in the perfor-
mance of the system as the proportion of multitasked jobs is increased [31].
Further work has demonstrated that on a heavily loaded CRAY X-MP/4 system
a multiprocessed job running at low scheduling priority using the dynamic load
balancing technique employed in the ccMBPT-4t program is an effective "scav-
enger", consuming almost all potentially idle cycles [44].

For large cases an external storage device will be required for the two-
electron integrals. Since the largest memory requirements in the computation
occurs for the [vvlvo] integrals some means of paging these from disk should be
implemented. Assuming that memory is available to hold quantities of length
non~, the [vv Ivo] integrals can be accessed according to the b and c indices given
in Eq. (30). This requires four buffers of length no n2 to hold the [vv Ibo], [by Ivo],
[vv I co] and [cv I vo] integrals which are read from disk as detailed in Fig. 1. Given
no restrictions on the indices b and c it is obvious from Fig. 1 that the [vvlvo]
integral list will have to be read 2(nv + 1) times. Should it be necessary, the
[ov lov] integrals can also be paged into memory according to the b or c index
simultaneously with the [vvlvo] integrals. The minimum feasible memory require-
ment of the method would appear to be four buffers of length non~, two of

3 for the [oo]or] integrals length non ~2 for the [or]or] integrals, an array of size nonv
and several work arrays of length n 2.

2.2. The ~jkabc algorithm of Rendell et al.

Rendell et al. [29] have presented an algorithm which yields the total fourth-
order triples energy component, E~4 , rather than the individual diagrammatic
components. The expression for E;4 used by these authors is given in terms of
spin restricted orbitals as:

where

Ept4 : g 1 2 ~,--rvv(A [jjabcijk "~- IJzbcavv ijk ~- l/lzcab'~fvr ijkJ\vvljzabCijk __ [J/'cba'~vr ijk J/L"ijk/Flabc, (33)
ijk abc

wabc,, ijk = P abe [bdlai][kcljd]/D~J - Z [ckljl][ia[lb]/D (34) ijk
l

and P abc is a permutation operator defined by: l ijk

The algorithm for evaluating Eq. (33) used by Rendell et al. requires that
3 be held in memory, so that for a given ijk index of W all abc quantities of size n~

were formed, denoted WiJk(abc). As evident from Eq. (34) and the definition of
the permutation operator given in Eq. (35), this requires 6 pairs of matrix
multiplications of the form:

WiJk(abc) ~ ~ A lk(ac, d)BJi(d, b) - ~ Bk(ac, l)A 2J~(l, b), (36)
d l

which can be vectorized over the compound virtual index ac. Since wabc ' ' ijk is
symmetric with respect to permutation of the index pairs ia, jb and kc it is only

278 A.P. Rendell et al.

do 100 i = 1,nocc
read [vv [vi]

do 100j=l,i
read [vv]vj]

do 100k=l, j
read [vv Irk]

Set WiJk(abc) = 0
I

200 continue

WiJ~(abc) ~ ~ [bd]ail[kc]jdl/D~J =- mxm(v2:v:v) Eq. (34)

W~Jk(abc) *-- ~ [ck]jll[ia Itbl/D;? =- mxm(v2:o:v) Eq. (34)
Sort W~Jk(abc) for next contribution

(acb) (cab I (cba) (bca) ibac)
REPEAT 200 with \ ikj }' \k(/ / ' \ kji }' \jki J' \ilk J Eq. (35)

!

Sum WiJ1"(abc) to E~4 Eq. (33)
I

100 continue Fig. 2. The ijkabc algorithm

necessary to form WiJk(abc) such that i > j > k. The final algorithm of Rendell et
al. is outlined in Fig. 2.

Without restricting the indices i, j and k, the presence of the 6 pairs of matrix
multiplications to form W will make the number of floating point operations in

3 4 4 3 the part of the algorithm which scales as/,/7 6(non~ +non~). Restricting i > j > k
reduces this to 3 4 4 3 (non~ + nonv), which is a factor of 4 less than the bcjkia
(ccMBPT-4t) algorithm.

Use of multiple processors on a CRAY Y-MP/8 was achieved by using
a parallel matrix multiply routine and parallelizing the sorting operations
and final energy summation over n~ orbitals. This algorithm would there-
fore appear to tend towards a computational ratio of rt 6 in the limit of nv
processors.

As discussed by Rendell et al., the ideal minimum memory requirement for
3 to store integral lists [vv]vi], [vv]vj] their algorithm is three buffers of length n~

and [vv Irk], and two other scratch arrays of the same length. The [vv]vo]
integrals are read from disk approximately n 3 times. This memory requirement
can be further reduced to only two buffers of length n 3, but at the expense of
increased IO requirements.

2.3. The abcijk algorithm of Dupuis et al.

The algorithm recently described by Dupuis et al. also calculates the total fourth-
order triple excitation energy component. In this algorithm the intermediates
wabc(ijk) and not WiJk(abc) are stored in memory, i.e. the summations are
performed in the order abcijk. This algorithm therefore has a much smaller

3 than that of Rendell et al., but involves the same memory requirement, "~no,
number of floating point operations. However for small values of no the
algorithm is less suitable for vector processing as the vector loop in Eq. (36) is
only of order no 2.

Fourth-order perturbation theory energy 279

3. Parallel algorithms for distributed memory computers

The algorithms described in the previous section have been implemented on
"conventional" supercomputers, machines consisting of a small number of
powerful processors sharing a common memory. In this section we consider the
problem of implementation on "novel" architecture machines with a larger
number of (usually less powerful) processors each with its own local memory.
Such machines are typified by the Intel i860 hypercube, the so-called G A M M A
machine, and the more recent Intel i860 DELTA machine.

These machines consist of a system of tightly coupled processing elements
(processor with associated memory) each performing separate tasks and commu-
nicating via message passing. Disk access is available through a concurrent file
system in which each processing element, or node, can "simultaneously" access
the same file. The relevant specifications of the distributed memory computers
employed in the present study are collected in Table 1.

We are interested in performing calculations on large systems, which may
contain, for example, nv ~ 500 and no "~ 50 and have C, or C2~ symmetry. On
the Intel i860 G A M M A / D E L T A machines used here there are 8/16 Mybtes of
memory on each node (although such machines can support up to 32 Mbytes
of memory per node). This being the case, it would appear prudent not to

3 assume that quantities of the size n~ can be held on each node; a more realistic
maximum would be no n2. Consequently, the bcjkia and abcijk algorithms
which meet this requirement would appear potentially suited to implementa-
tion on the Intel machines. On the other hand, the method of Rendell et al.
does not lend itself to a distributed memory architecture without incurring
a large amount of internode communications. Ideally the Rendell et al. al-
gorithm should distribute the formation of the WiJk(abc) intermediates over the

2 various nodes, but this would necessitate storing quantities of length n v on each
node.

In view of the factor of 4 difference in the n 7 floating point operation count
between the bcjkia and abcijk algorithms, we began by investigating the perfor-
mance of the abcijk scheme on the Intel i860 G A MMA machine. This algorithm
is illustrated in Fig. 3. In cases where the size of the calculation is sufficiently
small, all integrals can be held on each node and there is no need to use external
disk storage. The results obtained using between 1 and 32 nodes are given in

Table 1. Specifications of the Intel i860 distributed memory computers employed in the present
experiments

GAMMA DELTA

Installation SERC Daresbury Laboratory a California Institute of Technology
Topology Hypercube Mesh
No of Nodes 32 16 x 32 (512)
Memory per Node 8 Mbytes 16 Mbytes
CycIe time 40 MHz 40 MHz
Peak Performance 40 Mflops 40 Mflops

per Node
Peak Performance ' 1.28 Gflops 20.48 Gflops

a For further details see Ref. [45]

280 A . P . Rendell et al.

Table 2. The performance of the abcijk parallel
algorithm obtained when all integrals are held in
memory on each node of the Intel i860
G A M M A machine"

No. of Wall clock Speed
processors time (sec) increase

1 139.6 1.00
2 69.9 2.00
4 35.0 3.99
8 17.6 7.93

16 8.8 15.79
32 4.5 31.24

a Number of occupied/virtual orbitals per sym-
metry [4, 3, 2, 1/10, 12, 14, 16]; a total of 10 oc-
cupied and 52 virtual orbitals

Table 2. As expected, the results indicate a near perfect scaling of computation
time with the number of nodes.

When the size of the basis set increases it is no longer possible to hold all
integrals on each node and it is necessary to page through (at least) the [vv]vo]
integrals stored on the concurrent file system. This can conveniently be achieved
by having four buffers of length no n2 for the blocks of integrals [av]vo], [vv lao],
[by I vo] and [vv [bo] which are read from disk as shown in Fig. 3. The final
procedure will effectively read the [vvlvo] integrals 2(n~ + 1) times, which is
identical to the IO requirements of the out-of-core version of the bcjkia proce-
dure discussed in Sec. 2.1. The results obtained for the same calculation reported
in Table 2, but now reading the [vvlvo] integrals from disk, are given in Table 3.

do 100 a = 1,nvirt
read [av I vo] and [vv]ao]

do 1 0 0 b = l , a
read [by I vo] and [vv I bo]

do 1 0 0 c = l , b
Set W°bC(ijk) = 0

I
200 continue

WabC(ijk) ,-- ~ [bdlai][kc Ijd]/D ~] =-- mxm(o2:v:o)

WabC(ijk) ~- ~,[ck Ijl][ia I lb]/D~ b =- mxm(o2:o:o)

Sort wabc(ijk) for next contribution

Repeat 200 with , \ k j i J ' \ j k i J ' \ j i k J Eq. (35)

Sum WabC(ijk) to E~4 Eq. (33)

I
100 continue Fig. 3. The abcijk algorithm

Fourth-order perturbation theory energy 281

Table 3. The performance of the abcijk parallel algorithm obtained when the
[vv Ivo] integrals read from the concurrent file system using synchronous IO on
the Intel i860 GAMMA machine a

No. of Max IO Max CPU Wall clock Speed
processors time (sec) time (sec) time (sec) increase b

l 238.7 155.4 394.1 1.00
2 147.5 72.1 219.5 1.80
4 136.1 36.1 172.1 2.29
8 107.2 18.1 125.3 3.15

16 124.4 9.4 133.4 2.95

a Number of occupied/virtual orbitals per symmetry
total of 10 occupied and 52 virtual orbitals
b Based on the wall clock time

[4, 3, 2, 1/10, 12, 14, 16]; a

It is immediately apparent that even on 1 node the process is totally IO bound,
and while there is some gain from using multiple nodes the asymptotic
computational rate is quickly reached. Furthermore, the relative ratio of the
CPU (central processing unit) to IO time suggests that no great improve-
ments can be made by using asynchronous IO, but rather that the inherent
IO requirements of the algorithm substantially exceed the current capabilities
of the Intel i860 G A M M A machine. Although future releases of the operat-
ing system and associated improvements in the IO subsystem may lead to
improved IO transfer rates, it would be necessary to increase the IO transfer
rate by at least one order of magnitude before this algorithm would become
viable.

A possible solution to this problem may exist if all [vv]vo] integrals can be
held on the combined memory of all nodes. A systolic loop could then be
envisaged in which blocks of integrals of length non~ are passed around the
loop in sequence with the indices a and b shown in Fig. 3. Since the communi-
cation speed on the Intel is greater than the IO transfer rate, this would
theoretically give improved performance. However, the number of occupied and
virtual orbitals would strongly dictate the minimum number of nodes that must
be used to perform a calculation and this is probably not a desirable feature,
e.g. it may require 100 nodes to perform a calculation containing 100 virtual
orbitals.

As mentioned above and discussed in Sect. 2.1, an out-of-core version of the
bcjkia algorithm has an identical IO requirement for the [vv I vo] integrals as the
abcijk procedure. Thus, despite the potential for being easily implemented on the
Intel i860 machines, it is also liable to suffer from poor IO characteristics. To
achieve a highly scalable method suitable for current Intel computers it would
seem imperative that the IO requirements be reduced to an absolute minimum.
From the formula for E~4 given in Eq. (33) it is difficult to see how this can be
improved, although for the bcjkia algorithm this is not the case. Examination of
Eqs. (1) - (12) reveals that the only indices to remain constant in all the different
permutations of the f and g intermediates are i and a. For the f intermediate the
indices i and a derive from integrals [iv Iov] and [av Ivo]/[vv [ao] respectively and
from [oa I ovl and [io I ovl/[oo l ivl integrals for the g intermediate. Consequently if

282 A.P. Rendell et al.

the summations in Eqs. (1) (12) are reordered such that:

E E ~ E E E E , (37)
i jk abc a i j > k bc

it is possible to read the [vv[vo] integrals from disk in sequence with the outer
index of the summation. The [vv]vo] integrals are effectively read from disk only
twice (in the form [av]vo] and [vv]ao]). Ideally the other integrals ([ov lov] and
[vo [oo]) would be stored in memory on each node. However, as shown above
these can be read from disk in sequence with either index a or i, or alternatively
distributed over the global memory of the machine and retrieved as required. An
algorithm which reads all integrals from disk is illustrated in Fig. 4. We term this
the aijkbc algorithm. The memory requirement on each node is three buffers of
length non~ and three of length nZn~ as well as some///2 buffers.

inode = 0
do 100 a = 1,nvirt

read [av I~o], [~ [ao], [ao I~ol
do 100 i = 1,nocc

read [io]ovl, [oo liv], [vilvo]
inode = inode + 1

if (mod(inode,nodes).ne.me) go to 100
I

do I00 j = 1,nocc
do 1 0 0 k = l , j

I
200 continue

Form FiJk;a(bc)

tf~ = y , Ida]ke][id]jb]/D~ b =- mxm(v:v:v)

t r = - • [dc [ka][id]jb]/D~b ==- mxm(v:v:v)

K3 = - Z [da]kc][ib]jd]/D@ - mxm(v:v:v)

t~ = E [dc Ikal[ib IJdl /D} b = mxm(v:v:v)

Formation of spin free intermediates

~jk~abc = Z tf Eqs. (16 24)
I

Form Giyk;a(bc)

tgl = Z [il Ijbl[la]kc]/D 7f~ ~ mxm(v:o:v)

t g = - ~ [fllib][ka Ilc]/D7~ ' =- mxm(v:o:v)

t g = ~ [illjb][lalkc]/D7[=- mxm(v:o:v)

t~ = ~ [jl[ib][ka IIc]/DTf ~ mxm(v:o:v)
Formation of spin free intermdeiates

I
REPEAT 200 for f~kj;~b~

I
Sumfk;bC(ia)/g/k;bc(ia) to ET4(me) Eqs. (1-12)

I
100 continue

I
global sum over nodes to give E~4 Fig. 4. The aijkbc algorithm

Fourth-order perturbation theory energy 283

T h e n 7 floating point operation count of this new algorithm is the same as
that of the original diagrammatic ccMBPT-4t approach, but the IO requirements
are much improved. Parallelism of the code inside the outermost loop would
ensure that each node operates on a distinct part of the [vv I vo] integral file,
however this could lead to an inefficient load balance if the number of nodes is
not a factor of n~, and would also yield a limiting computational rate of n 6. We
have therefore parallelized the code inside the next loop (as shown in Fig. 4)
which potentially leads to a rate limiting computational rate of n 5. While it
would be possible to parallelize inside the fourth (k) loop of Fig. 4, this could
lead to several processors needing to read the same part of the integral files at the
same time and degrade the overall performance.

In Table 4 we present timings for the new algorithm on different numbers of
nodes for a calculation involving 4 occupied and 112 virtual orbitals. In these
calculations, not only were the [vvlvo] integrals paged into memory, but also the
Joy I or] and [oo I ov] integals. The results show substantially better IO performance
than those presented in Table 3. On a single processor and using synchronous IO
approximately 207 seconds is required to read the integrals from disk. However,
this can be reduced to about 19 seconds if asynchronous IO is used. Although as
the number of nodes increases the asynchronous IO times exhibit a somewhat
random behavior, the results are not as unacceptable as the values found in
Table 3. The variation in the IO time is a consequence of conflicts with other
users wishing to perform IO. For the CPU time alone, a speed increase of 222 is
observed when employing 256 CPUs relative to one CPU, but this factor is
reduced to 183 when the IO time is included.

The results in Table 4 for no = 4 and n~ = 112 also illustrate the effects of
inefficient load balancing. As shown in Fig. 4, the code is parallel at the nvno
level, which in this case corresponds to 448 (4 x 112) tasks. Therefore, if the
number of nodes is not a factor of 448 there will be an inefficient load balance.

Table 4. The performance of the aijkbc parallel algorithm obtained on the Intel
i860 DELTA machine reading the [vv Ivo], [vo Ivo] and [vo Ioo] integrals from the
concurrent file system using asynchronous IO. There are 4 (112) occupied
(virtual) orbitals and no symmetry giving rise to inefficient load balancing (see
text for details)

No. of Max IO Max CPU Wall clock Speed
processors time (sec) time (sec) time (sec) increase a

1 18.9 b 12218.7 12237.6 1.00
4 7.4 3060.1 3067.3 3.99

16 10.4 765.8 775.2 15.79
36 3.7 357.4 360.5 33.95
64 3.8 192.6 196.1 62.40

100 6.1 137.4 142.6 85.81
144 14.4 109.9 123.8 98.85
196 10.9 82.5 92.7 132.01
256 12.0 55.0 66.7 183.47

a Based on the wall clock time
b The equivalent IO time using synchronous IO is approximately 207 seconds

284 A.P. Rendell et al.

Table 5. The performance of the aijkbc parallel algorithm obtained on the Intel
i860 DELTA machine reading the [vv]vo], [vo Ivo] and [vo Ioo] integrals from the
concurrent file system using asynchronous IO. There are 4 (128) occupied
(virtual) orbitals and no symmetry giving rise to efficient load balancing (see
text for details)

No. of Max IO Max CPU Wall clock Speed
processors time (sec) time (sec) time (see) increase"

16 5.5 1734.2 1739.5 1.00 b
32 53.7 866.7 919.7 1.89
64 5.6 433.4 438.8 3.96

128 9.3 216.9 225.8 7.70
256 16.2 108.8 124.8 13.94

a Based on the wall clock time
b Note that the 16 node time is the reference point for these ratios

The results obtained using 4, 16 and 64 nodes are ideally load balanced, and
based on the CPU time alone the speed up (3.99, 15.96, 63.44) is very good. For
the other results, the number of nodes is not a factor of the number of tasks, and
since the number of nodes is tending towards the number of tasks the effect on
the speed up is quite drastic.

In Table 5 we report results obtained for no = 4 and n~--128, a case for
which the number of nodes is always an exact factor of the number of tasks. The
timing obtained on 256 nodes shows a speed up of 15.9 relative to the 16 node
timing and based solely on the CPU time. This result is to be compared with 13.9
for the no = 4 and n~ = 112 calculation.

4. Discussion

The results presented in Table 5 indicate an 87.1% increase in the efficiency of
the computation for the 256 processor case with respect to the 16 processor
case. With this level of parallelism a 256 processor machine could deliver
8.9 Gflops given a rate of execution of 40 Mflops per node.

The total wall clock times required to carry out calculations with no = 4,
n~ = 112, 128 on the 6 processor IBM 3090/600J VF, the 8 processor CRAY
Y-MP/8128 and the 256 processor Intel i860 DELTA machine are compared in
Table 6. The rate of execution achieved on the CRAY Y-MP for the largest
case was 2.284 Gflops [35] which should be compared with the theoretical peak
performance of 2.667 Gflops. The peak performance of the 256 processor Intel
i860 DELTA machine is 3.84 times that of the CRAY Y-MP/8128. However,
for our largest calculation the wall clock time measured on the CRAY Y-MP/8
is 73% of that obtained for the Intel machine. Although a significant level of
parallelism has been built in to the code the rate of execution observed on each
of the Intel nodes falls well below the peak rate. Each of the tasks assigned to a
given node involves a part which scales a s n 7 involving a series of multiplica-
tions and a part which scales a s 17 6 which is required to assemble the contribu-
tions to the different diagrammatic components. On the Intel machine, this

Fourth-order perturbation theory energy

Table 6. Comparison of the total wall clock times observed in the present
experiments with previous work

285

Machine No. of processors Wall clock time (sec)
n~ = 112 n v = 128

IBM 3090/600J VF a 6 513.1 839.4
CRAY Y-MP/8128 b 8 56.4 91.4
Intel i860 DELTA c 256 66.7 124.8

a Ref. [36]
b Ref. [30]

e Present work

second part is found to demand about 2/3 of the time required for each task, a
situation which does not persist on the CRAY Y-MP where effective vectoriza-
tion is obtained. Using the data given by Moncrieff et al. [35] for the CRAY
Y-MP/8128 and the wall clock times given in Table 6 for the nv = 128 case, we
estimate the rate of execution on 256 nodes of the Intel i860 DELTA machine
to be 1.67 Gflops. This estimated computational rate could be improved by
restructuring the n 6 component of the code specifically for the i860, and by
future releases of the i860 FORTRAN-compiler which will better exploit the
capability of i860.

5. Conclusions

We have compared three different algorithms, originally developed for shared
memory parallel processing architectures, for the evaluation of the fourth-order
triple excitation energy component in many-body perturbation theory and
investigated their implementation on distributed memory parallel computers.
The algorithm of Moncrieff et al. evaluates the energy corresponding to each of
the diagrammatic terms. The other algorithms of Rendell et al. and Dupuis et
al. yield the total triple excitation energy. The algorithms, which can be labelled
by the order in which summation over three occupied orbital indices and three
virtual orbital indices are carried out, differ in: the number of floating point
operations they involve (the algorithm of Moncriefl et al. requires 4 times the
number arising in the other two), the memory requirements (the algorithm of

3 intermediates) and the IO demands Rendell et al. requires the storage of ~nv
when two-electron integrals are stored on disk. None of the algorithms
developed for shared memory architectures performed well when implemented
on a distributed memory machine. All three algorithms were found to lead to
prohibitive IO demands. However, it was discovered that the algorithm of
Moncrieff et al. could be modified to minimize the IO requirements. This
new algorithm and its implementation on two Intel i860 machines has been
described. A high level of parallelism has been obtained, but the rather
poor performance of each node resulted in a disappointing overall rate of
computation.

A more general conclusion evident from this investigation is that direct or
"superdirect" algorithms, or hybrid schemes, will undoubtedly find favor as

286 A.P . Rendell et al.

more sophisticated distributed memory parallel computers are developed. That
is, algorithms in which a minimum of disk access is used in trade for a more
CPU intensive load will be essential since currently, advances in processing
speed are increasing much more rapidly than advances in IO performance.
For the triples component of the fourth-order perturbation theory energy
a hybrid scheme whereby the [vv I vo] integrals are computed as needed and
the [or Joy] and [oo Joy] integrals are stored on disk and read in as needed
would probably show much better scalable performance with respect to the
number of nodes than any of the algorithms described here. We will be
investigating such an algorithm and the results of that study will be reported in
due course.

Acknowledgments. This work was presented at the Argonne/Battelle Pacific Northwest Laboratories
workshop on "Parallel Computers in Chemical Physics" at Willowbrook, Illinois, 17-19 July 1991.
APR and TJL would like to thank Robert Harrison (Argonne National Laboratory) and Ray Bair
(Battelle Pacific Northwest Laboratory) for invitations to attend the workshop. We would also like
to acknowledge Pacific Northwest Laboratory and the Concurrent Supercomputing Consortium for
providing access to the Intel Touchstone DELTA supercomputer, located at the California Institute
of Technology. We also thank Ray Bair, Rick Kendall and Martin Feyereisen of the Pacific
Northwest Laboratory for assistance in implementing the code on the DELTA.

References

1. Wilson S (1978) in: Saunders VR (ed) Correlated wave functions. Proc Daresbury Lab Study
Weekend. SRC Daresbury Laboratory

2. Wilson S, Silver DM (1979) Int J Quantum Chem 15:683
3. Wilson S, Saunders VR (1979) J Phys B At Mol Phys 12:L403; (1980) ibid 13:1505
4. Wilson S (1979) J Phys B At. Mol Phys 123:L657; (1980) ibid 13:1505
5. Guest MF, Wilson S (1980) Chem Phys Lett 72:49
6. Wilson S, Guest MF (1980) Chem Phys Lett 73:607
7. Frisch MJ, Krishnan R, Pople JA (1980) Chem Phys Lett 75:66
8. Krishnan R, Frisch MJ, Pople JA (1980) J Chem Phys 72:4244
9. Wilson S, Saunders VR (1980) Comput Phys Commun 19:293

10. Wilson S, Guest MF (1981) Molec Phys 43:1331
11. Noga J (1983) Comput Phys Commun 29:117
12. Lee YS, Kucharski SA, Bartlett RJ (1984) J Chem Phys 81:5906
13. Raghavachari K (1985) J Chem Phys 82:4607
14. Urban M, Noga J, Cole SJ, Bartlett RJ (1985) J Chem Phys 83:4041
15. Urban M, Cernusak I, Kello V, Noga J (1987) in: Electron correlation in atoms and molecules,

Meth Comput 'Chem 1:117
16. Noga J, Bartlett RJ (1987) J Chem Phys 86:7041
17. Scuseria GE, Schaefer HF (1988) Chem Phys Lett 152:382
18. Adamowitz L, Bartlett RJ (1988) Phys Rev A37:1
19. Dupuis M, Mougenot P, Watts JD, Hurst GJB, Villar HO (1989) in: Clementi E (ed) MOTECC

modern techniques in computational chemistry. Escom, Leiden
20. Watts JD, Dupuis M (1989) IBM Technical Report KGN-197, August 16, 1989
21. Raghavachari K, Trucks GW, Pople JA, Head-Gordon M (1989) Chem Phys Lett 157:479
22. Lee TJ, Rendell AP, Taylor PR (1990) J Chem Phys 92:489
23. Lee TJ, Scuseria GE (1990) J Chem Phys 93:489
24. Scuseria GE, Lee TJ (1990) J Chem Phys 93:5851
25. Bartlett RJ, Watts JD, Kucharski SA, Noga J (1990) Chem Phys Lett 165:513
26. Baker DJ, Moncrieff D, Wilson S (1990) in: Evans RG, Wilson S (eds) Supercompntational

science. Plenum Press, NY

Fourth-order perturbation theory energy 287

27. Lee TJ, Rice JE (1991) J Chem Phys 94:1215
28. Baker DJ, Moncrieff D, Saunders VR, Wilson S (1991) Comput Phys Commun 62:25
29. Rendell AP, Lee TJ, Komornicki A (1991) Chem Phys Lett 178:462
30. Moncrieff D, Saunders VR, Wilson S (submitted) Int J Supercomputer Appln
31. Moncrieff D, Saunders VR, Wilson S (1991) Parallel Computing 17:773
32. Wilson S (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular

physics. Plenum Press, NY
33. M~.rtensson-Pendrill AM, Wilson S (in preparation)
34. Wilson S, Moncrieff D (submitted) Supercomputer
35. Moncrieff D, Saunders VR, Wilson S (submitted) Comput Phys Commun
36. Moncrieff D, Saunders VR, Wilson S, Rutherford Appleton Laboratory Report RA-91-064
37. Bartlett RJ, Shavitt I, Purvis II G (1979) J Chem Phys 71:281
38. Cullen JM, Zerner MC (1982) Theoret China Acta 61:203
39. Alml6f J (1991) Chem Phys Lett 181:319
40. Paldus J (1992) in: Wilson S, Dierchsen GHF (eds) Methods in computational molecular

physics. Plenum Press, NY
41. Paldus J, Qi2ek J, Shavitt I (1972) Phys Rev A5:50
42. Wilson S (ed) (1989) Concurrent computation in chemical calculations. Meth Comput Chem 3,

Plenum Press, NY
43. Saunders VR (1990) in: Evans RG, Wilson S (eds) Supercomputational science. Plenum Press,

NY
44. Saunders VR, Wilson S (in press) Parallel Computing
45. Guest MF, Sherwood P, van Lenthe JH, Theoret Chim Acta (this issue)

