

Generalized MPI Collectives – proposal to MPI Forum

Hans-Joachim Plum

Parallel Applications Engineer Intel Corporation

March 2008

'v-operations' with unknown message sizes

- In Gatherv / Scatterv / Allgatherv / Alltoallv, often the receive counts are not known a priori; user needs to do a preparing gather operation (inconvenient, time consuming)
- Example: sparse matrix operations

Assume as sparse matrix in compact row storage, distributed by rows to processes. A row is attached to a mesh point. Every process knows what mesh points of other processes it touches through the matrix, but not which other processes touch what points of its part

- => Alltoallv required, with mutually unknown elementary portion sizes
- => must be done by Alltoall + Alltoallv in current setting

v-operations' with unknown message sizes

• Introduce 2 new MPI flags for unknown receive sizes / displacements

MPI_SIZE_UNKNOWN

entered in the receive counts array[0] which is then INOUT

MPI_DISPL_CONSECUTIVE

entered in the displacements array[0] which is then INOUT; important when sizes are unknown: place receive portions consecutively in rank order

- Additional argument RECV_MAX_COUNT for an upper bound of the #elements to be received overall = size (at least) of the recv buffer
- Probably sensible to introduce new interfaces for these extensions (more user friendly, standard case easier to tune if kept separate)

v-operations' with unknown message sizes

E.g. Gatherv

// all processes:

rcnt[0] = MPI_SIZE_UNKNOWN; rdispl[0] = MPI_DISPL_CONSECUTIVE;

// could be released to "only root enters this" but more convenient to // implement if entered globally; // note: non-roots can use single int for rcnt, rdispl, no arrays needed // note: all other entries of rcnt/rdispl are irrelevant; on return, // rcnt[], rdispl[] will have the actual values // note: all combinations known / unknown rcnt with // definite / consecutive rdispl allowed

// Root has to provide enough overall buffer space
RECV_MAX_COUNT = <certainly enough to hold all messages>

MPI_XGatherv(SENDBUF, SEND_COUNT, SEND_TYPE, RECVBUF, RECV_MAX_COUNT, rcnt, rdispl, RECV_TYPE, root, COMM)

Implementation concept; draft prototype timings

Prototype implementation with a non trivial pattern (other than "all non roots just send") done; compared against what has to be done momentarily if MPI_SIZE_UNKNOWN (MPI_Gather + MPI_Gatherv), with the analogous implementation (same pattern) used for the standard case

All cases use 16 processes on 16 different nodes, IB, non uniform message sizes, root=rank 1 (not 0); Timings in us, gain = gain XGatherv vs. Gather+Gatherv

	KNOWN SIZES	MPI_SIZE_UNKNOWN / MPI_D	ISPL_CONSEC	UTIVE
Avrg size	MPI_Gatherv std	MPI_Gather + MPI_Gatherv std.	MPI_XGatherv	gain %
41	6,8	10,1	6,9	31,7
83	7,2	10,6	7,4	30,2
169	8,2	11,6	8,4	27,6
340	9,0	12,7	9,3	26,8
682	14,4	17,9	14,5	19,0
1366	20,0	22,7	20,3	10,6
2733	28,6	31,8	29,8	6,3
5469	49,1	50,8	49,2	3,1

Software and Solutions Group

