
Generalized MPI Collectives –
proposal to MPI Forum

Hans-Joachim Plum

Parallel Applications Engineer
Intel Corporation

March 2008

´v-operations´ with unknown message sizes

• In Gatherv / Scatterv / Allgatherv / Alltoallv,
often the receive counts are not known a priori; user needs to do a
preparing gather operation (inconvenient, time consuming)

• Example: sparse matrix operations

Assume as sparse matrix in compact row storage, distributed by rows to
processes. A row is attached to a mesh point. Every process knows what
mesh points of other processes it touches through the matrix, but not which
other processes touch what points of its part

=> Alltoallv required, with mutually unknown elementary portion sizes

=> must be done by Alltoall + Alltoallv in current setting

´v-operations´ with unknown message sizes

• Introduce 2 new MPI flags for unknown receive sizes / displacements

MPI_SIZE_UNKNOWN
entered in the receive counts array[0] which is then INOUT

MPI_DISPL_CONSECUTIVE
entered in the displacements array[0] which is then INOUT;
important when sizes are unknown: place receive portions consecutively in
rank order

• Additional argument RECV_MAX_COUNT for an upper bound of the
#elements to be received overall = size (at least) of the recv buffer

• Probably sensible to introduce new interfaces for these extensions (more
user friendly, standard case easier to tune if kept separate)

´v-operations´ with unknown message sizes

E.g. Gatherv

// all processes:

rcnt[0] = MPI_SIZE_UNKNOWN;
rdispl[0] = MPI_DISPL_CONSECUTIVE;

// could be released to “only root enters this” but more convenient to
// implement if entered globally;
// note: non-roots can use single int for rcnt, rdispl, no arrays needed
// note: all other entries of rcnt/rdispl are irrelevant; on return,
// rcnt[], rdispl[] will have the actual values
// note: all combinations known / unknown rcnt with
// definite / consecutive rdispl allowed

// Root has to provide enough overall buffer space
RECV_MAX_COUNT = <certainly enough to hold all messages>

MPI_XGatherv(SENDBUF, SEND_COUNT, SEND_TYPE,
RECVBUF, RECV_MAX_COUNT, rcnt, rdispl, RECV_TYPE,
root, COMM)

Implementation concept; draft prototype timings

Prototype implementation with a non trivial pattern (other than “all non roots
just send”) done; compared against what has to be done momentarily if
MPI_SIZE_UNKNOWN (MPI_Gather + MPI_Gatherv), with the
analogous implementation (same pattern) used for the standard case

All cases use 16 processes on 16 different nodes, IB, non uniform
message sizes, root=rank 1 (not 0);
Timings in us, gain = gain XGatherv vs. Gather+Gatherv

KNOWN SIZES
Avrg size MPI_Gatherv std MPI_Gather + MPI_Gatherv std.MPI_XGatherv gain %

41 6,8 10,1 6,9 31,7
83 7,2 10,6 7,4 30,2

169 8,2 11,6 8,4 27,6
340 9,0 12,7 9,3 26,8
682 14,4 17,9 14,5 19,0

1366 20,0 22,7 20,3 10,6
2733 28,6 31,8 29,8 6,3
5469 49,1 50,8 49,2 3,1

MPI_SIZE_UNKNOWN / MPI_DISPL_CONSECUTIVE

	Generalized MPI Collectives – proposal to MPI Forum
	´v-operations´ with unknown message sizes
	´v-operations´ with unknown message sizes
	´v-operations´ with unknown message sizes
	Implementation concept; draft prototype timings

