
Fixing Probe for Multi-Threaded MPI Applications

Douglas Gregor, Torsten Hoefler, and Andrew Lumsdaine
{dgregor,htor,lums}@osl.iu.edu

April 28, 2008

1 Introduction

MPI’s message-probing operations, MPI Probe and MPI Iprobe, are useful in MPI applications
that do not know a priori what messages they will receive or how much data those messages
will contain. Such applications often have irregular, data-driven communication patterns or
deal with data structures that require serialization for transmission.

Unfortunately, MPI’s message-probing operations are unusable in multi-threaded appli-
cations where they could be most useful. The fundamental problem with MPI Probe and
MPI Iprobe functions is that a message found by a probe can still be matched and received
by a receive operation in a different thread. Thus, despite the fact that a probe operation
returns a source and tag that can be used to receive a message, there is no guarantee that
the message will still be available when that receive operation is invoked. For example, the
following code can not be executed concurrently by two threads in an MPI process, because
a message could be found by the MPI Probe in both threads, while only one of the threads
could successfully receive the message (the other will block):

MPI Status status;
int value;
MPI Probe(MPI ANY SOURCE, /∗tag=∗/0, MPI COMM WORLD, &status);
MPI Recv(&value, 1, MPI INT, status.MPI SOURCE, /∗tag=∗/0, MPI COMM WORLD,
MPI Recv(MPI STATUS IGNORE);

There is no known workaround that addresses all of the problems with MPI Probe and
MPI Iprobe in multi-threaded MPI applications. For certain aspects of the problem (e.g.,
receiving data of unknown size), there are workarounds, but they are inefficient and verbose.
Therefore, we propose extensions for MPI-3 that introduce a new kind of probe and a set of
corresponding receive operations. The new probe matches a message and returns a handle
to that specific message, which cannot be found by any other probe operation or matched
by any other receive. The new receive operations allow the receipt of a message based on
the message handle returned from this probe. These extensions allow the use of probe in a
multi-threaded context, ensuring that the message found by probe is the message received.

In the following example, we illustrate how the new probe operation, MPI Rprobe, can
be used to receive a message of unknown length. Note that this code can be concurrently
executed in several threads, each of which will receive different messages.

1



MPI Message msg;
/∗ Match a message ∗/
MPI Rprobe(MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &msg);

/∗ Allocate memory to receive the message ∗/
MPI Aint count;
MPI Message get count(&msg, MPI BYTE, &count);
char∗ buffer = malloc(count);

/∗ Receive this message. ∗/
MPI Rrecv(buffer, count, MPI BYTE, &msg, MPI STATUS IGNORE);

2 Proposed Extensions

2.1 Message handles

A message handle returned by a matching probe (MPI Rprobe or MPI Irprobe) has type
MPI Message.

In C, the message is a structure that contains two fields named MPI SOURCE and
MPI TAG; the structure may contain additional fields. Thus, message.MPI SOURCE and
message.MPI TAG contain, respectively, the source and tag of the matched message.

In Fortran, the message is an array of INTEGERs of size MPI MESSAGE SIZE. The
constants MPI SOURCE and MPI TAG are the indices of the entries that store the source
and tag fields. Thus, message(MPI SOURCE) and message(MPI TAG) contain, respectively,
the source and tag of the matched message.

In C++, the message is a class MPI::Message with member functions used to access the
source and tag of the matched messages.

int Message::Get source() const
int Message::Get tag() const

The message argument also returns information on the length of the message matched.
However, this information is not directly available as a field of the message variable and a
call to MPI MESSAGE GET COUNT is required to “decode” this information.

int MPI Message get count(MPI Message ∗message, MPI Datatype datatype, MPI Aint ∗count)

MPI MESSAGE GET COUNT(MESSAGE, DATATYPE, COUNT, IERROR)
INTEGER MESSAGE(MPI MESSAGE SIZE), DATATYPE, COUNT, IERROR

MPI Aint Message::Get count(const Datatype& type) const

IN message matched message handle (Message)
IN datatype datatype of each buffer entry (handle)
OUT count number of entries in the message (integer)

2



Returns the number of entries in the message. (Again, we count entries, each of type
datatype, not bytes.)

int MPI Message cancel(MPI Message ∗message)

MPI MESSAGE CANCEL(MESSAGE, IERROR)
INTEGER MESSAGE, IERROR

void Message::Cancel()

INOUT message the message to be cancelled (Message)

A call to MPI MESSAGE CANCEL cancels the receipt of a message matched by a matching
probe. A cancelled message cannot be received.

Advice to implementers. Because no receive buffers have been posted for a receive, cancel-
lation always succeeds even if the underlying interconnect does not permit the cancellation of
transmissions after they have been matched. A valid implementation of MPI Message cancel
that supports such interconnects is:

MPI Aint count;
MPI Message get count(&message, MPI BYTE, &count);
char∗ buffer = malloc(count);
MPI Rrecv(buffer, count, MPI BYTE, &msg, MPI STATUS IGNORE);
free(buffer); �

Rationale. Although a message handle has similar fields and usage to the status structure, the
differences between the two are significant enough to warrant having different names. The
message handle does not require error information (MPI ERROR), since errors will never be
reported in the message; however, it does require extra hidden information that status does
not require, e.g., an internal handle to a message that has been matched but not yet received.
More importantly, message handles are used in different ways from status structures: status
structures describe just the characteristics of a communication (source, tag, size, whether it
was cancelled, etc.), whereas message handles represent and manipulate the communication
itself. �

2.2 Matching Probe

The MPI RPROBE and MPI IRPROBE operations allow incoming messages to be checked for,
without actually receiving them. The user can then decide how to receive them, based on
the information returned by the probe. In particular, the user may allocate memory for the
receive buffer, according to the length of the probed message.

int MPI Irprobe(int source, int tag, MPI Comm comm, int ∗flag, MPI Message ∗message)

MPI IRPROBE(SOURCE, TAG, COMM, FLAG, MESSAGE, IERROR)
LOGICAL FLAG
INTEGER SOURCE, TAG, COMM, MESSAGE(MPI MESSAGE SIZE), IERROR

bool Comm::Irprobe(int source, int tag, Message& message) const

3



IN source source rank or MPI ANY SOURCE (integer)
IN tag tag value or MPI ANY TAG (integer)
IN comm communicator (handle)
OUT flag (logical)
OUT message message handle (Message)

MPI IRPROBE(source, tag, comm, flag, status) returns flag = true if there is a message that
can be received and that matches the pattern specified by the arguments source, tag, and
comm. The call matches the same message that would have been received by a call to
MPI RECV(..., source, tag, comm, status) executed at the same point in the program, and
returns in message a handle to that message. Otherwise, the call returns flag = false, and
leaves message undefined.

If MPI IRPROBE returns flag = true, then the content of the message object can be
subsequently accessed as described in section 2.1 to find the source, tag and length of the
matched message.

A ready receive executed with the message handle will receive the message that was
matched by the probe. Unlike MPI IPROBE, no other probe or receive operation may match
the message returned by MPI IRPROBE. Each message returned by MPI IRPROBE must
either be completed with a a ready receive or cancelled with MPI MESSAGE CANCEL.

The source argument of MPI IRPROBE can be MPI ANY SOURCE, and the tag argument
can be MPI ANY TAG, so that one can probe for messages from an arbitrary source and/or
with an arbitrary tag. However, a specific communication context must be provided with
the comm argument.

int MPI Rprobe(int source, int tag, MPI Comm comm, MPI Message ∗message)

MPI RPROBE(SOURCE, TAG, COMM, MESSAGE, IERROR)
INTEGER SOURCE, TAG, COMM, MESSAGE(MPI MESSAGE SIZE), IERROR

void Comm::Rprobe(int source, int tag, Message& message) const

IN source source rank or MPI ANY SOURCE (integer)
IN tag tag value or MPI ANY TAG (integer)
IN comm communicator (handle)
OUT message message handle (Message)

MPI RPROBE behaves like MPI IRPROBE except that it is a blocking call that returns
only after a matching message has been found.

Advice to users. Unlike the (deprecated) MPI PROBE and MPI IPROBE, MPI RPROBE
and MPI IRPROBE can be safely used in a multi-threaded MPI program. A message returned
by MPI RPROBE or MPI IRPROBE has already been matched, and can only be received with
a ready-receive operation (section 2.3) executed with the corresponding message handle. �

The MPI implementation of MPI RPROBE and MPI IRPROBE needs to guarantee progress:
if a call to MPI RPROBE has been issued by a process, and a send that matches the probe has
been initiated by some process, then the call to MPI RPROBE will return, unless the mes-
sage is matched by a concurrent matching probe operation or received by another concurrent

4



receive operation (that is executed by another thread at the probing process). Similarly, if
a process busy waits with MPI IRPROBE and a matching message has been issued, then the
call to MPI IRPROBE will eventually return flag = true unless the message is matched by a
concurrent matching probe operation or received by another concurrent receive operation.

Editorial note: the definitions of MPI IPROBE and MPI Probe should remain the same
as they are now, but we deprecate them by adding the following text:

MPI PROBE and MPI IPROBE are deprecated.
Rationale. MPI PROBE and MPI IPROBE find messages, but do not match them, which

makes MPI PROBE and MPI IPROBE unusable in multi-threaded MPI programs. MPI RPROBE
and MPI IRPROBE provide better semantics than MPI PROBE and MPI IPROBE for multi-
threaded MPI programs. �

2.3 Ready receives

Messages that have been matched by a matching probe (section 2.2) can be received by a
ready receive.

int MPI Rrecv(void∗ buf, MPI Aint count, MPI Datatype datatype, MPI Message∗ message,
int MPI Rrecv(MPI Status ∗status)

MPI RRECV(BUF, COUNT, DATATYPE, MESSAGE, COMM, STATUS, IERROR)
<type> BUF(∗)
INTEGER COUNT, DATATYPE, MESSAGE(MPI MESSAGE SIZE), STATUS(MPI STATUS SIZE),
INTEGER IERROR

void Message::Recv(void∗ buf, MPI Aint count, const MPI Datatype& datatype,
void Message::Recv(MPI Status& status)
void Message::Recv(void∗ buf, MPI Aint count, const MPI Datatype& datatype)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message to be received (Message)
OUT status status object (Status)

This call receives a message found by a matching probe operation (section 2.2).
The receive buffer consists of the storage containing count consecutive elements of the

type specified by datatype, starting at address buf. The length of the received message must
be less than or equal to the length of the receive buffer. An overflow error occurs if all
incoming data does not fit, without truncation, into the receive buffer.

If a message that is shorter than the receive buffer arrives, then only those locations
corresponding to the (shorter) message are modified.

Example The following example uses a matching probe and a ready receive to receive
any message of any size. This code can be executed in multiple threads concurrently.

5



MPI Message message;
/∗ Match a message ∗/
MPI Rprobe(MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &message);

/∗ Allocate memory to receive the message ∗/
MPI Aint count;
MPI Message get count(&message, MPI BYTE, &count);
char∗ buffer = malloc(count);

/∗ Receive this message. ∗/
MPI Rrecv(buffer, count, MPI BYTE, &message, MPI STATUS IGNORE); �

Rationale. MPI RRECV does not have a communicator parameter because the commu-
nicator was part of the matching probe operation. Requiring the communicator to also be
passed into MPI RRECV would involve addition user code and additional error checking in
the MPI implementation, with no clear benefit. �

int MPI Irrecv(void∗ buf, MPI Aint count, MPI Datatype datatype, MPI Message∗ message,
int MPI Irrecv(MPI Request ∗request)

MPI IRRECV(BUF, COUNT, DATATYPE, MESSAGE, COMM, REQUEST, IERROR)
<type> BUF(∗)
INTEGER COUNT, DATATYPE, MESSAGE(MPI MESSAGE SIZE), REQUEST, IERROR

void Message::Irrecv(void∗ buf, MPI Aint count, const MPI Datatype& datatype,
void Message::Irrecv(MPI Request& request)

OUT buf initial address of receive buffer (choice)
IN count number of elements in receive buffer (integer)
IN datatype datatype of each receive buffer element (handle)
INOUT message message to be received (Message)
OUT request request object (Status)

Start a ready, non-blocking receive of a message found by a matching probe operation (sec-
tion 2.2).

6


	Introduction
	Proposed Extensions
	Message handles
	Matching Probe
	Ready receives


