
MPI for High-Level Languages

Douglas Gregor, Jeff Squyres, and Andrew Lumsdaine

October 10, 2008

1 Introduction

Much of MPI’s success can be attributed to its ability to support programs written in the
programming languages that have been the mainstay of high-performance computing for
years—Fortran, C, and (to a lesser extent) C++. However, programmers are increasingly
turning to higher-level languages like Python and Java for their ease-of-use, even for HPC
applications. To support these applications, a number of different language bindings for MPI
have been developed for these languages, including bindings for Java [1], Python [2,7–9,11],
and C# [4], and Ruby [10], along with improved bindings for C++ [5, 6].

The availability of MPI bindings for a wide variety of languages is a great asset to the
MPI community, and will help insure that MPI remains relevant for years to come. MPI
should strive to provide better support for bindings in high-level languages, but it should not
attempt to provide these bindings as part of the standard, for two reasons: first, the amount
of work to standardize and maintain MPI bindings is enormous, and the MPI Forum itself
will not always have the necessary expertise in these languages to maintain these bindings
in the longer term; second, regardless of whatever languages the MPI Forum chooses to
support, advocates of other high-level languages will still need to build their own bindings.

We propose to improve MPI’s support for high-level language bindings with extensions
that address the major issues encountered in the development of bindings for MPI in popular
high-level languages. Specifically, we address the following issues encountered by many high-
level MPI bindings:

Transmitting objects (§2.1) Most of the high-level languages in use today support
object-oriented programming. Therefore, MPI bindings for these languages must cope
with the transmission of objects, which typically requires serialization of the object
representation into a variable-length, platform-neutral format. This proposal includes
changes that better support such variable-length data in two major areas:

• Point-to-point communication (§2.1.1)

• Collective communication (§2.1.2)

User-defined operations (§2.2) High-level language bindings are often required to sup-
port user-defined operations (e.g., for MPI Reduce) that are expressed in the high-level
language and may operate on user-defined or serialized data types. This proposal

1



includes changes that make it possible to build user-defined operations that interact
better with high-level languages.

Garbage collection and memory management (§2.3) Many high-level languages in-
clude some form of garbage collection. MPI bindings for these languages must interact
with the garbage collector, e.g., by pinning memory provided to MPI or copying data
between memory managed by the garbage collector and memory outside of the garbage
collector. This proposal includes changes that improve the interaction between MPI
and garbage collectors.

Deprecate C++bindings If all of the above issues are addressed, the current C++ MPI
bindings should be deprecated and (later) removed. The bindings themselves provide
very little utility over the C bindings (and in fact are typically lightweight wrappers over
the C bindings), and are being superceded by more advanced bindings (e.g., [5]) that
address modern C++ development practices. As with other high-level languages, the
C++ community is better prepared to build usable MPI bindings for C++ than the MPI
Forum is, and the maintenance of the C++ bindings has already taken a considerable
amount of effort in the MPI Forum.

Provide only C bindings With the exception of the MPI standard Fortran bindings,
all MPI bindings to other languages are built on top of the C MPI bindings. For this
reason, our proposed changes are intended to be available from within C, only, and
will not affect the Fortran bindings.

2 Summary of High-Level Language Binding Issues

This section summarizes the changes required to provide support for high-level language
bindings in MPI. We make relatively few specific proposals, opting instead to point to existing
proposals where possible and outlining the requirements on a solution where no such proposal
exists.

2.1 Transmitting Objects

Nearly every high-level language encourages programmers to create their own data types,
and provides abstraction mechanisms so that those data types can be used in similar ways to
primitive data types. Thus, MPI bindings for these high-level languages attempt to provide
similar interfaces for both user-defined and primitive types, e.g., by allowing the user to
transmit a (Python, Java, C#, Ruby) object via MPI’s communication routines.

The transmission of objects typically requires the MPI binding library to serialize the ob-
ject into a platform-neutral format, using either MPI’s serialization routines (e.g., MPI Pack,
MPI Unpack) or language-specific mechanisms (e.g., Python’s pickle module, Java’s seri-
alization interface). The serialized representation is then transmitted as raw bytes (or
MPI PACKED) and de-serialized by the receiver. However, the serialized representation of
an object tends to have a variable length, and MPI provides insufficient support for trans-
mitting variable-length data in its point-to-point communication (see [3]), and no support

2



for variable-length data either in its collective or one-sided communication. The inability
to communicate serialized objects forces high-level MPI bindings to use complex and in-
efficient implementations, including re-implementing all of MPI’s collectives and one-sided
communication over point-to-point.

2.1.1 Point to Point

The transmission of serialized data over MPI’s point-to-point is complicated by the need to
support multi-threading in high-level languages. In particular, since one cannot know the
length of serialized data to be received a priori when receiving an object, the implementation
of the high-level MPI binding must either probe for the message (which does not work in a
multi-threaded application [3]) or send a separate message containing the size of the serialized
data (which requires the use of an additional communicator).

The proposal to fix probe for multi-threaded applications [3] addresses the problem of
transmitting serialized object data in a thread-safe manner over point-to-point. For example,
the following code illustrates how to use matched probe and matched receive to receive an
arbitrary number of bytes to be deserialized.

MPI Message msg;
MPI Status status;
/∗ Match a message ∗/
MPI Mprobe(MPI ANY SOURCE, MPI ANY TAG, MPI COMM WORLD, &msg, &status);

/∗ Allocate memory to receive the message ∗/
int count;
MPI get count(&status, MPI BYTE, &count);
char∗ buffer = malloc(count);

/∗ Receive this message. ∗/
MPI Mrecv(buffer, count, MPI BYTE, &msg, MPI STATUS IGNORE);

/∗ De-serialized data from the buffer. ∗/

2.1.2 Collectives

With collective communication, MPI provides no facilities for coping with serialized objects.
To illustrate the issue, consider the following code, which uses MPI.NET’s equivalent to
MPI Allreduce to concatenate strings [4]:

public static string concat(string x, string y) { return x + y; }
string longString = world.Allreduce(myString, concat);

In this example, the string class requires serialization whenever it is transmitted, and must
be de-serialized to perform the actual user-defined reduction operation (concatenation). The
same Allreduce that supports string concatenation also supports arbitrary, user-defined op-
erations on serialized object types, e.g., computing the intersection/union of hash tables,
finding common subsequences within larger sequences, or computing global metrics of com-
plex data structures.

3



One particularly interesting property of user-defined reductions like string concatenation
is that the reduction actually increases the amount of data transmitted at each step. The
MPI Allreduce interface cannot accommodate such a growth:

int MPI Allreduce (void ∗sendbuf, void ∗recvbuf, int count,
MPI Datatype datatype, MPI Op op, MPI Comm comm);

The problem with this interface is that the count argument is a fixed value known to each
processor, but this information cannot be known a priori in the string concatenation exam-
ple: each processor only knows the length of its own string (stored in sendbuf), but cannot
know the length of the resulting string and therefore cannot allocate an appropriate recvbuf
without an additional round of communication. In more complex cases (e.g., using Allreduce
to perform a complex reduction on containers of objects), the size of the required recvbuf
cannot be computed without actually performing the reduction itself.

The problem of needing to precompute the size of the receive buffer also extends into
the interface for creating user-defined MPI operations. A user-defined MPI operation is a
function that has the following signature:

typedef void MPI User function(void ∗invec, void ∗inoutvec, int ∗len,
MPI Datatype ∗datatype);

A user-defined string-concatenation function cannot be properly implemented with this in-
terface, because there is no way to reallocate inoutvec to refer to a buffer that is large enough
to contain the contents of the strings in invec and inoutvec.

MPI’s Reduce, Scan, Exscan, and Reduce scatter collectives all suffer from the same
limitations as Allreduce with respect to their use with serialized object types. Thus, it is
relatively common for high-level language bindings to reimplement each of these collectives
over point-to-point communication, a task that requires a huge amount of duplicated effort
and is likely to result in poorer performance than if the MPI library directly supported such
variable-length collectives.

For the remaining collectives, the implementation burden on developers of high-level
language bindings isn’t nearly as large. For example, a broadcast of serialized objects can
be implemented with two broadcasts: a broadcast of the length of the serialized data, after
which all of the receivers can allocate buffers, followed by a broadcast of the data itself. A
similar pattern follows for the remaining collectives, where one can typically use the collective
itself to determine the size of the serialized data, then use the “v” variant of the collective
to communicate the actual serialized data.

Although there has been some discussion of more powerful variable-length collectives, we
know of no active proposals that would address the issues described above. However, see
Section 3 for one potential solution.

2.1.3 One-Sided

One-sided communication via MPI Put, MPI Get, and MPI Accumulate provides no support
for operations on serialized object types. The first major problem is that, unlike with
point-to-point communication, there is no way to use the existing one-sided communication
operations to support variable-length data. A second problem is that, even if one could

4



transmit the serialized representations of objects, there is no way for a user program to react
to the completion of a MPI Put or MPI Get to de-serialize the transmitted data into a proper
object. Finally, MPI Accumulate cannot be used with user-defined MPI operations, making
it completely unusable with user-defined types; we defer this last problem to Section 2.2.2.

We know of no attempts to make one-sided communication possible for serialized object
types or user-defined types. This is likely due to a combination of factors, including the
less-than-widespread use of MPI-2 one-sided communication and the significant complexity
required to build one-sided communication for serialized objects into high-level MPI bindings,
which requires emulation of one-sided communication using point-to-point communication.

At this point, we do not believe that it makes sense to extend the existing MPI-2 one-sided
routines to support serialized data types. However, as the MPI Forum considers revisions
to MPI’s one-sided communication model, we will reconsider the impact of those changes on
serialized data types.

2.2 User-Defined Operations

MPI allows users to supply their own MPI operations via MPI Op create, which can then
be used in the various reduction and parallel-prefix collectives provided by MPI. Through
this mechanism, users can extend the existing reduction and parallel-prefix collectives to
work with new operations and new, user-defined data types. The suggestions in this section
aim to make user-defined MPI operations more widely applicable for use in high-level MPI
bindings.

2.2.1 Associating Data with MPI Operations

User-defined MPI operations are creating with the function MPI Op create:

int MPI Op create(MPI User function ∗function, int commute, MPI Op ∗op);

In this case, function is a standalone function that will be invoked whenever the resulting
MPI operation op is needed, e.g., to perform a reduction. The function is only permitted
to access global data and its arguments, because there is no way to associate extra data
with the MPI operation that will be passed to the function. Thus, it is not possible to
express the idea that an MPI operation is a function with additional state. This extra state
is typically very algorithm-specific, e.g., placing bounds on the computation performed by
the MPI operation. For high-level languages, the extra state is often used to store more
information about the calling context, e.g., a reference to the Python object whose method
is being called by the MPI operation.

At present, there is no workaround to permit the use of stateful user-defined MPI oper-
ations in multi-threaded MPI applications. Within a single-threaded MPI application, only
a single user-defined MPI operation can be in use at any given time, so the extra state asso-
ciated with that oepration can be written into a global variable. However, this workaround
will fail in multi-threaded MPI applications (which can have several collectives executing
concurrently) or with the introduction of non-blocking collectives.

To properly support user-defined operations for high-level languages, MPI will need a
way to associate extra data with user-defined MPI Ops. Section 4 proposes a simple solution

5



to this problem.

2.2.2 User-Defined Accumulation

MPI Accumulate bans the use of user-defined operations, which makes it unusable with any
user-defined types. While it is infeasible to support user-defined operations in the current
MPI-2 one-sided communication model, it is possible that a revamped model would make
accumulation of user-defined operations possible.

2.3 Garbage Collection and Memory Management

2.3.1 Send Buffer Access

A garbage collector may scan the contents of a send buffer while the MPI implementation is
processing an MPI send of that data, violating the current prohibition on reading the send
buffer before the send has completed. The current proposal to remove the restriction on
send buffer access for MPI 2.2 addresses the problem of supporting send operations where
the buffers themselves live in garbage-collected memory.

2.3.2 Managing Multiple Heaps

In many garbage-collected languages, there are actually two separate heaps from which
memory can be allocated: a garbage-collected heap that is used for allocating memory
within the language itself, and a separate system heap used by other libraries (like MPI)
that are written in lower-level languages that explicitly malloc and free memory. The two
heaps are often handled in different ways.

The garbage-collected heap generally does not permit explicit free operations, waiting
instead for the garbage collector itself to find unused objects and reclaim them as necessary.
More advanced garbage collectors may even move objects within the heap to reduce fragmen-
tation, meaning that the address of existing objects can change. In these cases, the high-level
language bindings must be careful to “pin” any memory allocated on the garbage-collected
heap if that memory might be passed down into an MPI function, e.g., as the location of a
send or receive buffer.

The system heap is typically the same heap as would be used by a C or Fortran program,
which requires explicit malloc and free operations. For the most part, users of a garbage-
collected language can ignore the existence of the system heap, since any memory required
from that heap will be allocated or deallocated by native libraries (like MPI) that don’t
interact directly with the garbage-collected language. However, there are certain cases where
high-level MPI bindings might need to interact with the system heap:

• If the language provides no ability to “pin” memory in the garbage-collected heap, the
serialized representations of objects may need to be copied between the two heaps.

• If the language cannot read memory from the system heap, e.g., to deserialize an object
that was transmitted via MPI BLOB (see Section 2.1.2), the memory may need to be
copied to the garbage-collected heap and deallocated from the system heap.

6



• Memory allocation behavior on either the system or garbage-collected heaps can affect
allocations on the other heap, leading to unpredictable performance issues.

While memory pinning is typically in the domain of high-level MPI bindings, some MPI
extensions might be required to help eliminate the need for extraneous copies of serialized
data between the system and garbage-collected heaps. At present, it is unclear what these
extensions might need to do.

3 Transmitting Serialized Data with Type Blobs

MPI’s communication routines are designed to cope primarily with data types of fixed length,
e.g., primitive types and structures of primitive types. Serialized objects are, by nature,
variable in length. However, we could invent a new datatype that uses a fixed-length structure
to represent that variable-length data, e.g.,

struct MPI Blob {
MPI Aint length;1

MPI Aint address;
};

Coupled with a special new MPI datatype, MPI BLOB, MPI can support serialized object
data. Whenever MPI needs to send or receive data of type MPI BLOB, it will actually
send the length bytes stored at the given address rather than sending the MPI Blob structure.
Thus, each serialized object will map to an instance of MPI Blob, with the address pointing to
the serialized representation. The user is responsible for serializing/de-serializing the objects
where needed—when sending or receiving a buffer of MPI Blob objects, or manipulating those
objects within a user-defined MPI operation—because serialization is very language-specific.

In our string-concatenation example, we could use MPI BLOB as follows:

char ∗myString = ...;
MPI Blob myStringBlob;
MPI Blob longStringBlob;

myStringBlob.length = strlen(mystring)+1;
myStringBlob.address = myString;
MPI Allreduce(&myStringBlob, &longStringBlob, 1, MPI BLOB, concatOp, MPI COMM WORLD);

char∗ longString = (char∗)longStringBlob.address2;
printf(”Long string = %s\n”, (char∗)longStringBlob.address);

The memory associated with MPI Blobs needs to be carefully managed. In some cases,
such as myStringBlob in the string-concatenation example above, the user will both allocate

1The type of the length field might change, depending on the resolution to the discussion about supporting
large message counts.

2This cast will not always be valid; most likely, MPI will need a function that maps from MPI Aint values
to void*. Alternatively, addresses in blobs can be expressed as void* values.

7



and deallocate the memory associated with the blob. For longStringBlob, however, the im-
plementation will allocate the memory associated with the blob (since the user cannot do
so in advance) while the user is responsible for its deallocation. The situation is further
complicated by temporary buffers passed to user-defined MPI operations for intermediate
reductions and by MPI IN PLACE.

One simple strategy is to require that all memory allocated for MPI Blob objects be
allocated with MPI Alloc mem and freed with MPI Free mem. Users would be responsible for
deallocating any memory returned to them via a receive buffer, and any memory they have
allocated to be passed to MPI in a send buffer. Note, however, that this simple strategy
may cause problems for some garbage-collected languages; see Section 2.3.2.

Additionally, the MPI BLOB should not be permitted in any derived datatypes, because
it is only meant to be used directly as the datatype of a communication operation.

4 Data In User-Defined Callbacks

Most C libraries that provide callbacks of some sort also allow the user to provide an extra
void∗ argument that will be passed on to the callback function whenever it is invoked. MPI
could do the same, with an improved version of MPI Op create and MPI User function that
allow users to provide a data pointer at the time that the MPI Op is created, e.g.

typedef void MPI User function data(void ∗invec, void ∗inoutvec, int ∗len,
MPI Datatype ∗datatype, void ∗data);

int MPI Op create data(MPI User function data ∗function, int commute,
MPI Op ∗op, void ∗data);

MPI Op create data creates an MPI Op that also includes a user pointer. The MPI Op can be
used anywhere that an MPI operation can be used, even though it calls a slightly different
kind of user function. Therefore, there is no need to introduce additional variants of, e.g.,
Reduce or Scan, because the MPI implementation will handle the difference between MPI Op
values created with MPI Op create vs. MPI Op create data internally.

It is very likely that high-level language bindings will create a new MPI Op each time
that a reduction operation is called, since the user data pointer will likely change each
time. This usage is acceptable, since MPI Op creation is typically very quick and requires
no communication.

References

[1] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object serialization for
marshalling data in a Java interface to MPI. In JAVA ’99: Proceedings of the ACM
1999 conference on Java Grande, pages 66–71, New York, NY, USA, 1999. ACM Press.

[2] Lisandro Dalcin. MPI for Python. http://mpi4py.scipy.org/, 2007.

[3] Brian Barrett Douglas Gregor, Torsten Hoefler and Andrew Lumsdaine. Fixing probe
for multi-threaded MPI applications. Technical report, MPI Forum, 2008.

8

http://mpi4py.scipy.org/


[4] Douglas Gregor and Andrew Lumsdaine. Design and implementation of a high-
performance MPI for C# and the common language infrastructure. In Proceedings ACM
SIGPLAN Symposium on Principles and Practice of Parallel Programming, February
2008. To appear.

[5] Douglas Gregor and Matthias Troyer. Boost.MPI. http://www.generic-programming.
org/∼dgregor/boost.mpi/doc/, November 2006.

[6] Prabhanjan Kambadur, Douglas Gregor, Andrew Lumsdaine, and Amey Dharurkar.
Modernizing the C++ interface to mpi. In Proceedings of the 13th European PVM/MPI
Users’ Group Meeting, LNCS, pages 266–274, Bonn, Germany, September 2006.
Springer.

[7] Wilfred Li. MYMPI. http://peloton.sdsc.edu/∼tkaiser/mympi/, 2006.

[8] Patrick Miller and Martin Casado. MPI Python. http://sourceforge.net/-

projects/pympi/.

[9] Ole Nielsen. Pypar. http://sourceforge.net/projects/pypar, 2007.

[10] Emil Ong and Rudi Cilibrasi. MPI Ruby. http://mpiruby.sourceforge.net/, July
2001.

[11] Mike Steder. Maroon MPI. http://code.google.com/p/maroonmpi/, 2006.

9

http://www.generic-programming.org/~dgregor/boost.mpi/doc/
http://www.generic-programming.org/~dgregor/boost.mpi/doc/
http://peloton.sdsc.edu/~tkaiser/mympi/
http://sourceforge.net/projects/pypar
http://mpiruby.sourceforge.net/
http://code.google.com/p/maroonmpi/

	Introduction
	Summary of High-Level Language Binding Issues
	Transmitting Objects
	Point to Point
	Collectives
	One-Sided

	User-Defined Operations
	Associating Data with MPI Operations
	User-Defined Accumulation

	Garbage Collection and Memory Management
	Send Buffer Access
	Managing Multiple Heaps


	Transmitting Serialized Data with Type Blobs
	Data In User-Defined Callbacks

